
1 

PharmaSUG 2017 - Paper SP01 

Multiple Imputation: A Statistical Programming Story 

Chris Smith, Cytel Inc., Cambridge, MA 

Scott Kosten, DataCeutics Inc., Boyertown, PA 

ABSTRACT  

Multiple imputation (MI) is a technique for handling missing data.  MI is becoming an increasingly popular 
method for sensitivity analyses in order to assess the impact of missing data.  The statistical theory 
behind MI is a very intense and evolving field of research for statisticians.  It is important, as statistical 
programmers, to understand the technique in order to collaborate with statisticians on the recommended 
MI method.  In SAS/STAT

®
 software, MI is done using the MI and MIANALYZE procedures in conjunction 

with other standard analysis procedures (e.g. FREQ, GENMOD or MIXED procedures).  We will describe 
the 3-step process in order to perform MI analyses.  Our goal is to remove some of the mystery behind 
these procedures and to address typical misunderstandings of the MI process.  We will also illustrate how 
multiply imputed data can be represented using the ADaM standards and principals through an example-
driven discussion.  Lastly, we will do a run-time simulation in order to determine how the number of 
imputations influences the MI process.  SAS

®
 9.4 M2 and SAS/STAT 13.2 software were used in the 

examples presented, but we will call out any version dependencies throughout the text.  This paper is 
written to all levels of SAS users.  While we present a statistical programmer’s perspective, an 
introductory level understanding about statistics including p-values, hypothesis testing, confidence 
intervals, mixed models, and regression is beneficial. 

INTRODUCTION  

Most procedures in the SAS/STAT software only analyze complete cases (i.e. records that have all non-
missing values for covariates and dependent variables, end up contributing to the statistical model).  Over 
the course of our careers, we have seen many types of imputation done on missing data in order to 
perform sensitivity analyses.  Examples for continuous data are baseline observation carried forward, last 
observation carried forward, and worst observation carried forward.  For dichotomous endpoints, such as 
success/failure, some imputation possibilities are missing values treated as failure and missing values 
treated as success.  These approaches are somewhat straightforward to implement from a programming 
perspective.  An alternative to these single value imputation methods is multiple imputation (MI), but it is 
not as widely known amongst the statistical programming community nor is it as easy to implement as the 
other imputation techniques.  This paper will provide an applied approach and bring clarity to the MI 
process.  We will also show how data for a MI analysis can be represented using ADaM standards.  
Lastly, we will do a run-time comparison utilizing various numbers of imputations. 

THE MI PROCESS 

Implementing the MI process requires three steps, and unfortunately there is not a single SAS software 
procedure to execute the entire process.  We will describe the 3-step process and the procedures used at 
each stage.  Statistical considerations and missing data assumptions are beyond the scope of this paper.  
For more information on those topics, see Berglund and Heeringa (2014, Chapters 1 and 2).   

STEP 1: IMPUTATION STEP 

First, each missing value is imputed based on statistical modeling, and this process is repeated several 
times.  Later, we will discuss the various methods, but for now we just need to be aware it is 
accomplished using the MI procedure.  The output of interest from PROC MI is a data set containing 
multiple repetitions of the original data set, along with the newly imputed values.  The repetitions are 
indexed with a variable named _IMPUTATION_.  Let us show what this looks like.  Table 1 contains 
subject data in a diabetes clinical trial with variables of weight and HbA1c at baseline, week 24, and week 
48.  

  



Multiple Imputation: A Statistical Programming Story, continued 
 

2 

SUBJID WEIGHT BASE HBA1C24 HBA1C48 

100-101 60.7 6.5 6.3 6.4 

100-102 57.7 7.9 7.5 ? 

100-103 80.7 7.0 ? 8.4 

Table 1. Incomplete Data 

After running PROC MI, we see multiple sets of information as shown in Table 2. 

SUBJID WEIGHT BASE HBA1C24 HBA1C48 _IMPUTATION_ 

100-101 60.7 6.5 6.3 6.4 1 

100-102 57.7 7.9 7.5 7.3 1 

100-103 80.7 7.0 8.5 8.4 1 

100-101 60.7 6.5 6.3 6.4 2 

100-102 57.7 7.9 7.5 8.0 2 

100-103 80.7 7.0 7.1 8.4 2 

… … ... … … 3 

Table 2. Completed Sets 

Note that subject 100-101 did not have any missing information, so the variable values are the same 
across each _IMPUTATION_.  However, for the other two subjects, the missing values are imputed with 
various values.  A graphical look at the HbA1c values over time for 100-103 is shown in Figure 1. 

  

Figure 1. Imputed Values for Subject 100-103 at Week 24 

By plotting the newly imputed values at week 24, we see the process introduces more variability.  We will 
handle the added variability in step 3 of the MI process, but first we need to analyze each MI repetition.  
Also note that in general, the more variables included in the imputation model, the better our model will 
impute the data.  We are not limited to the dependent variables and covariates used in the analysis step.  
Based on the recommendations of Berglund and Heeringa, we should use more variables than are in the 
analysis model (Berglund and Heeringa, 2014, pp. 16-17). 

STEP 2: ANALYSIS STEP 

Next, analysis is done using any SAS statistical procedure the same way we analyze non-imputed data.  
This includes, for example, the FREQ, MEANS, MIXED, and GENMOD procedures.  However, we need 
to analyze each MI repetition separately.  This is done by adding a BY statement with the 
_IMPUTATION_ variable to the relevant procedure.  We will provide an example later in the paper. 

STEP 3: POOLING STEP 

Lastly, we need to combine all the results obtained in step 2.  The MIANALYZE procedure combines the 
results from every MI repetition and provides valid statistical inferences (SAS, 2014, p. 5160).  



Multiple Imputation: A Statistical Programming Story, continued 
 

3 

Regardless of the method used to analyze the data in step 2, PROC MIANALYZE combines the 
information to obtain one result.  Thus, we account for the variability originally introduced in step 1. 

COMMON MISUNDERSTANDINGS 

We have seen a few misunderstandings about the MI process.  Some frequent questions are: 

 Do we simply analyze the last repetition of imputed results?  Do we average them before analysis? 

 I performed an MI analysis using PROC MI.  Do I need to use PROC MIANALYZE? 

 How many imputations do we need? 

Hopefully, it is clear that all MI repetitions are used in the 3-step MI process and also that PROC 
MIANALYZE is required to complete the final pooling step.  So, we might question a programmer’s 
comfort level with the overall MI process if they used PROC MI without PROC MIANALYZE.  The 3-step 
MI process could be split up, with the imputation step being created within an analysis data set request 
and the analysis and pooling steps handled in an output table request.  As for the number of imputations, 
we will address this later. 

MISSING DATA PATTERNS 

Before we get into the various MI methods, we will discuss the different types of missing data patterns.  
The pattern can be checked using the following code: 

   PROC MI DATA=adeff NIMPUTE=0;  

      VAR weight base hba1c24 hba1c48; 

   RUN; 

 NIMPUTE= requests the number of imputations.  Here, we choose 0 since we are only interested in 
the missing data pattern and not generating any imputed values for missing data. 

The PROC MI code above will reveal one of two patterns, monotone or arbitrary, shown in Output 1 and 
Output 2, respectively.   

        Group    WEIGHT    BASE    HBA1C24    HBA1C48 

            1      X        X        X          X 

            2      X        X        X          . 

            3      X        X        .          . 

            4      X        .        .          . 

Output 1. Abbreviated PROC MI Output Revealing a Monotone Missing Data Pattern 

Above, an “X” represents observed data and a “.” represents missing data.  The ordering of variables is 
important in defining a monotone missing data pattern.  Once a missing value is encountered, then all 
subsequent variables in the ordered list must also be missing. In the example above, had we listed 
variable HBA1C24 prior to variable WEIGHT, we would have an arbitrary missing data pattern rather than 
a monotone missing data pattern.  Typically, demographic and baseline variables are listed first, which 
are usually not missing, followed by the chronologically ordered, dependent variables.  This type of 
pattern might arise in clinical trial data if subjects are lost-to-follow-up or discontinue from the study.  
While it may be rare for clinical data to fall exactly into a monotonic pattern, it does allow for more choices 
in how to impute the missing values.  From a programming perspective, it still involves the 3-step process.  
If the data does not have a monotone pattern, then it is classified as an arbitrary missing data pattern, 
which is more common due to a subject missing a single visit without discontinuing the study. 

        Group    WEIGHT    BASE    HBA1C24    HBA1C48 

            1      X        X        X          X 

            2      X        X        X          . 

            3      X        X        .          X 

            4      .        X        X          . 

Output 2. Abbreviated PROC MI Output Revealing an Arbitrary Missing Data Pattern  



Multiple Imputation: A Statistical Programming Story, continued 
 

4 

Subjects in Group 1 are complete cases with no missing data.  Groups 2 and 3 contain subjects with 
missing HbA1c at one study visit, while Group 4 subjects have missing weight and HbA1c at week 48. 

METHOD RECOMMENDATIONS 

Choosing the recommended MI method requires knowledge of the missing data pattern.  It is also 
dependent on the type of data we are imputing.  We will not go behind the scenes and dive into statistical 
theory and the inner workings of these methods.  However, as statistical programmers, it is important to 
be aware of the different MI methods in order to contribute to the conversation with our statistician 
colleagues. Table 3 shows various MI methods available in SAS/STAT 13.2 software. 

Missing 
Data Pattern 

Imputed 
Variable Type 

Method PROC MI Statement 

Monotone Continuous Linear regression MONOTONE REG 

Predictive mean matching MONOTONE REGPMM 

Propensity score MONOTONE PROPENSITY 

Binary/ordinal Logistic regression MONOTONE LOGISTIC 

Nominal Discriminant function MONOTONE DISCRIM 

Arbitrary Continuous 

 

With continuous covariates: 

MCMC monotone method 

MCMC full-data imputation 

 

MCMC IMPUTE=MONOTONE  

MCMC IMPUTE=FULL 

With mixed covariates: 

FCS regression 

FCS predictive mean matching 

 

FCS REG 

FCS REGPMM 

Binary/ordinal FCS logistic regression FCS LOGISTIC 

Nominal FCS discriminant function FCS DISCRIM 

Table 3. SAS PROC MI Imputation Methods.  Adapted from Multiple Imputation of Missing Data Using 
SAS

®
 (p. 18), by P. Berglund and S. Heeringa, 2014, Cary, NC: SAS Press.  Copyright  2014, SAS 

Institute Inc., Cary, NC, USA. All Rights Reserved. Reproduced with permission of SAS Institute Inc., 
Cary, NC. 

As we can see, there are a number of methods available, and the table above nicely organizes them 
based on missing data patterns and variable types to be imputed.  The Fully Conditional Specification 
(FCS) method is a newer approach that was experimental in SAS 9.3 software and available starting in 
SAS/STAT 12.1 software.  The default method, if none is specified, is the Markov chain Monte Carlo 
(MCMC) method with full-data imputation (SAS, 2014, pp. 5038-5039, 5051).  

A TALE OF TWO IMPUTATION METHODS 

As mentioned above, prior to SAS/STAT 12.1 software the FCS method was not available.  In order to 
impute missing values of the continuous type with an arbitrary missing data pattern and an imputation 
model that contains mixed covariates, we would need to break the imputation step into two parts.  The 
first part imputes just enough missing values to create a monotone missing data pattern.  We accomplish 
this using the MCMC method with IMPUTE=MONOTONE option and only continuous covariates in the 
imputation model.  A rudimentary way to control for classification variables is to add them to a BY 
statement within PROC MI.  This would allow different imputation models for each treatment group.  The 
second part utilizes the MONOTONE statement, in a second call to PROC MI, to impute the remaining 
missing data.   

Let us return to our previous example for subjects in a diabetes clinical trial with variables of weight and 
HbA1c at baseline, week 24, and week 48, but now we also want to account for treatment group and sex 
in our imputation and analysis models. Output 3 shows us the missing data pattern for the diabetes trial, 
which does not fit the monotone pattern.  So, we cannot use the MONOTONE statement to impute the 
missing values.     



Multiple Imputation: A Statistical Programming Story, continued 
 

5 

        Group    TRTP   SEX   WEIGHT    BASE    HBA1C24    HBA1C48 

            1      X     X       X        X        X          X 

            2      X     X       X        X        X          . 

            3      X     X       X        X        .          X 

            4      X     x       X        .        X          . 

Output 3. Missing Data Pattern with TRTP and SEX Included. 

Suppose we are asked to create five MI repetitions.  As can be seen in the pattern of missing values, we 
need to impute missing values for HbA1c at baseline, week 24, and week 48.  Since TRTP and SEX are 
classification variables, they cannot be included in the initial MCMC step directly.  However, we can add 
them into the BY statement of the PROC MI code so that separate imputation models are performed for 
each combination of treatment group and sex.  The first part is to impute just enough values to convert 
the missing data pattern to monotone: 

   PROC MI DATA=adeff NIMPUTE=5 OUT=mi_monotone; 

      BY trtp sex; 

      MCMC IMPUTE=MONOTONE; 

      VAR weight base hba1c24 hba1c48; 

   RUN; 

 MCMC statement with IMPUTE=MONOTONE option imputes just enough data to obtain a monotone 
missing data pattern. 

We now have a data set named MI_MONOTONE with five MI repetitions of the data that is indexed with 
the _IMPUTATION_ variable.  We now perform a separate PROC MI step using the MONOTONE 
statement to impute the remaining missing values.  For this example, suppose the statistician wants to do 
a regression model that uses all “previous” variables to impute the next (e.g., BASE is imputed using 
SEX, TRTP, and WEIGHT; HBA1C24 is imputed using SEX, TRTP, WEIGHT, and BASE; HBA1C48 is 
imputed using SEX, TRTP, WEIGHT, BASE, and HBA1C24).  This can be done with the following code: 

   PROC MI DATA=mi_monotone NIMPUTE=1 OUT=mi_complete; 

      BY _imputation_; 

      CLASS sex trtp; 

      VAR sex trtp weight base hba1c24 hba1c48; 

      MONOTONE REG(base = sex trtp weight); 

      MONOTONE REG(hba1c24 = sex trtp weight base) 

      MONOTONE REG(hba1c48 = sex trtp weight base hba1c24); 

   RUN;   

 NIMPUTE= requests the number of imputations.  Here, NIMPUTE=1 since we already have five 
repetitions of the data in MI_MONOTONE; we only need to impute the remaining missing values. 

 MONOTONE statement dictates how the variables with a monotone missing data pattern are 
imputed.  Here, we are using a regression method to impute the missing values [REG (<imputed 
variable> = <effects>)] for continuous variables BASE, HBA1C24 and HBA1C48.   

Note that since we only have missing values for BASE, HBA1C24, and HBA1C48, we only need to 
specify imputation models for these three variables.  The other continuous variable weight and two 
classification variables are always present on all observations, so it is not necessary to specify an 
imputation model for them.  In this scenario, the above three MONOTONE statements could be replaced 
with a single MONOTONE statement with no options specified (i.e., “MONOTONE;”).  The SAS/STAT 
13.2 User’s Guide for the MONOTONE statement reveals: 

When a MONOTONE statement is used without specifying any methods, the regression method is used for 
all imputed continuous variables and the discriminant function method is used for all imputed classification 
variables. In this case, for each imputed continuous variable, all preceding variables in the VAR statement 
are used as the covariates, and for each imputed classification variable, all preceding continuous variables 
in the VAR statement are used as the covariates.  (SAS, 2014, p. 5059)   

Excerpted from “SAS/STAT
®
 13.2 User’s Guide” published by SAS Institute Inc. Copyright © 2014 SAS 

Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.  



Multiple Imputation: A Statistical Programming Story, continued 
 

6 

Published by SAS Institute Inc. Copyright © 2014 SAS Institute Inc., Cary, North Carolina, USA. ALL 
RIGHTS RESERVED. 

This is a nice default option to have, but if a more complex model is needed (e.g. inclusion of interaction 
terms in the imputation model [e.g. sex*trtp]) or more transparency in the programming is desired, then 
the three explicit MONOTONE statements may be more appropriate.  We would then go on to complete 
the second and third steps in the overall MI process.  These are the analysis and pooling steps. 

This two part process was a necessity prior to the inclusion of the FCS method in SAS/STAT 12.1 
software.  However, this two part imputation process can be replaced using the FCS statement using the 
following code: 

   PROC MI DATA=adeff NIMPUTE=5 OUT=mi_complete; 

      CLASS sex trtp; 

      VAR sex trtp weight base hba1c24 hba1c48; 

      FCS REG(base = sex trtp weight); 

      FCS REG(hba1c24 = sex trtp weight base) 

      FCS REG(hba1c48 = sex trtp weight base hba1c24); 

   RUN; 

 FCS statement dictates how the variables with an arbitrary missing data pattern are imputed.  Here, 
we are using a regression method to impute the missing values for continuous variables BASE, 
HBA1C24 and HBA1C48.   

The syntax is similar to the MONOTONE statement.  However, the FCS statement with no options 
specified (i.e., “FCS;”) will not use the same imputation model as the MONOTONE statement with no 
options specified.  The SAS/STAT 13.2 User’s Guide for the FCS statement states: 

When an FCS statement is used without specifying any methods, the regression method is used for all 
imputed continuous variables and the discriminant function method is used for all imputed classification 
variables. In this case, for each imputed continuous variable, all other variables in the VAR statement are 
used as the covariates, and for each imputed classification variable, all other continuous variables in the 
VAR statement are used as the covariates.  (SAS, 2014, p. 5045) 

Excerpted from “SAS/STAT
®
 13.2 User’s Guide” published by SAS Institute Inc. Copyright © 2014 SAS 

Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.  

Published by SAS Institute Inc. Copyright © 2014 SAS Institute Inc., Cary, North Carolina, USA. ALL 
RIGHTS RESERVED. 

So, for example, if we were to use the FCS with no options specified, HBA1C24 and HBA1C 48 would be 
used as covariates to impute BASE.  This is not possible with the MONOTONE statement. 

MCMC AND MONOTONE VERSUS FCS 

There are likely to be small differences in parameter estimates and standard errors between the two part 
process and the one-step FCS due to the random nature of how the data are drawn for the imputations.  
As a result, it is possible for inferences to be affected (e.g., a p-value just below 0.05 using one method 
and a p-value just over 0.05 using the other method).  However, this is also true for different runs of the 
same method using a different value in the SEED= option.  In general, inferences should be similar 
between the two methods. 

Another advantage of the FCS method is that any variable can be used in the imputation model for any 
other variable.  We are not limited to the ordered list in the VAR statement as we are with the 
MONOTONE statement.  Intuitively, it may seem strange to predict week 24 data based on week 48 data.  
However, we are actually trying to impute missing values at week 24 using observed week 48 data.  In 
the end, the main goal is to impute missing values as accurately as possible, and being able to include as 
many variables in the model can only help to achieve this goal.  

  



Multiple Imputation: A Statistical Programming Story, continued 
 

7 

NUMBER OF IMPUTATIONS 

Statistically speaking, the more imputations we perform, the better our estimates will be (Berglund and 
Heeringa, 2014, p. 40).  Practically speaking, we need to determine a reasonable cutoff so computing 
time will not be excessive, but still produces reliable results.  In theory, we want a relative efficiency (RE) 
close to 1.0, which is calculated as 

𝑅𝐸 = (1 +
𝜆

𝑚
)

−1

 

where 𝑚 is the number of imputations and 𝜆 is the fraction of missing information (Berglund and 
Heeringa, 2014, p. 39).  PROC MI reports both pieces of information, which we will illustrate in our 
working example below.  

Programmers will have to work in conjunction with statisticians to determine the appropriate number of 
imputations.  Using 𝑚 = 100 would probably be excessive in most situations, but as long as the 
imputation and analysis steps do not require significant computing time, this could be a conservative 
number to use as a starting point.  Later, we will do a comparison of run times and number of imputations.  

EXAMPLE WITH ADAM CONSIDERATIONS 

When implementing the MI process, there are a couple different paths one could journey down.  One 
option involves handling the 3-step MI process all within a single output program.  As you can imagine, it 
would be quite a large, complex program and would not allow for reusability of the imputed results for 
various analyses.  If a mismatch exists between production and validation results, it may be difficult to 
locate the source of the discrepancy.  The discrepancy could be within the imputation, analysis, or pooling 
step. 

We recommend splitting the process into two programs (one for the imputation step, and another for the 
analysis and pooling steps); this will allow for ease of debugging and documentation.  A data set 
specification can handle the description of the imputation step, while an output shell with programming 
notes can explain the analysis and pooling step.  Next, we will go through an example of creating an 
ADaM Basic Data Structure (BDS) data set, incorporating MI results, and performing the subsequent 
analysis. 

IMPUTATION STEP 

PROC MI requires a horizontal, one record per subject data set.  More often than not, the data we impute 
will come from a vertical ADaM BDS data set.  Therefore, we will need to first transpose to a horizontal 
structure in order to run PROC MI.  It is possible, for some types of analyses, to leave it in this horizontal 
structure.  However, for other types of analyses, a vertical data structure is required.  For example, one 
record per subject per visit data to implement a repeated measures analysis using PROC MIXED or 
PROC GENMOD.  Thus, we will transform back to a vertical BDS structure and utilize the DTYPE ADaM 
variable to indicate which values were imputed.   

In our hypothetical study, we collected midichlorian count at several visits for each subject.  See the 
Appendix for the full set of code and simulated data.  We will use treatment group, gender, age and 
midichlorian count at each visit to impute the missing values of midichlorians at a given visit.  The data 
structure is shown in Output 4. 

SUBJID   TRTP     PARAMCD  PARAM             AVISITN  AVISIT   AVAL   BASE 

101-011  Placebo  MIDI     Midichlorians (n)       1  BL      10108  10108 

101-011  Placebo  MIDI     Midichlorians (n)       7  DAY 7   10067  10108 

101-011  Placebo  MIDI     Midichlorians (n)      14  EOT      9949  10108 

101-011  Placebo  MIDI     Midichlorians (n)      28  FU D28   9991  10108 

101-011  Placebo  MIDI     Midichlorians (n)      42  FU D42   9850  10108 

101-011  Placebo  MIDI     Midichlorians (n)      98  FU D98   9863  10108 

Output 4. PROC PRINT Data Sample from ADaM BDS (AGE and SEX Not Shown). 



Multiple Imputation: A Statistical Programming Story, continued 
 

8 

We will need to transpose this information into a horizontal structure, where each visit record becomes its 
own variable.  Note that in doing so, we will lose any visit information such as dates, times, and visit 
names that may be present in a typical ADaM BDS data set.  The following code obtains a one record per 
subject data set: 

PROC TRANSPOSE DATA=adeff OUT=onepersub PREFIX=MIDI; 

    BY subjid age sex trtp base paramcd param; 

    ID avisitn;     

    VAR aval; 

RUN;   

 PREFIX= value is used in transposed variable names. 

 ID variable values are used as the suffix of the transposed variable names (e.g. MIDI98). 

 VAR statement lists the variable to be transposed. 

Output 5 shows a sample subject with missing data.  Note that typically missing data are not represented 
in ADaM BDS.  To clarify, there would simply be no record for a particular visit with missing data.  
However, now that we have a horizontal structure, we see missing data represented in MIDI7 and MIDI98 
for subject 101-002. 

SUBJID   TRTP    BASE   MIDI1  MIDI7  MIDI14  MIDI28  MIDI42  MIDI98 

101-002  Active  10075  10075    .     10188   10036   10044    .     

Output 5. PROC PRINT Data Sample from Subject with Missing Data (AGE and SEX Not Shown). 

Next, we will explore the missing data pattern by using PROC MI with 0 imputations: 

   PROC MI DATA=onepersub NIMPUTE=0; 

      CLASS sex trtp; 

      FCS; 

      VAR sex trtp age base midi7 midi14 midi28 midi42 midi98;     

   RUN;   

Note that we had to specify FCS (or MONOTONE) because the default MCMC method does not allow for 
classification variables.  See the results from the PROC MI step above in Output 6 below. 

Group  SEX TRTP AGE BASE MIDI7 MIDI14  MIDI28  MIDI42 MIDI98 Freq Percent 

    1  X   X    X   X    X     X       X       X      X       131   65.50 

    2  X   X    X   X    X     X       X       X      .         9    4.50 

    3  X   X    X   X    X     X       X       .      X        12    6.00 

    …  

   12  X   X    X   X    .     X       X       .      X         1    0.50 

Output 6. Missing Data Pattern from PROC MI with NIMPUTE=0. 

Note that 66% of the records are complete cases.  Groups 2 through 12 have some missing data, and we 
can see from Group 3 that the pattern is arbitrary.  Since we are imputing continuous variables with mixed 
covariates and an arbitrary missing data pattern, we will choose the FCS REG method from Table 3: 

   PROC MI DATA=onepersub OUT=midi_mi SEED=1999 NIMPUTE=5 

      ROUND = . . . . 1 1 1 1 1;     

      CLASS sex trtp;     

      FCS REG (midi7 midi14 midi28 midi42 midi98); 

      VAR sex trtp age base midi7 midi14 midi28 midi42 midi98; 

   RUN; 

 SEED= option is used to reproduce results. 

 CLASS statement specifies variables that are classification variables. 

 ROUND= option tells PROC MI to round imputed results for MIDI7, MIDI14, …, MIDI98.  Note that the 
order of values in the ROUND= option is based on the order of variables listed in the VAR statement. 



Multiple Imputation: A Statistical Programming Story, continued 
 

9 

 FCS REG (<vars>) lists the variables to be imputed by the FCS regression method. 

 VAR statement lists the covariates used as a basis for imputing missing values. 

See selected results from the PROC MI step with NIMPUTE=5 in Output 7 below. 

                                            Relative    Fraction  

         -----Variance---------             Increase     Missing   Relative 

Variable  Between Within  Total      DF  in Variance Information Efficiency 

MIDI7     1.236   38.935  40.42  178.39     0.038107    0.037357   0.992584 

MIDI14    6.225   61.775  69.25   116.3     0.120929    0.113029   0.977894 

MIDI28    8.711   49.013  59.47   72.03     0.213278    0.188233   0.963719 

MIDI42    3.999   45.886  50.68  127.44     0.104574    0.098704   0.980641 

MIDI98    0.910   72.602  73.69  192.06     0.015041    0.014926   0.997024 

Output 7. Variance Information from PROC MI with NIMPUTE=5. 

With only five imputations per missing value, we obtain an RE of 0.96 or higher for each variable.  In the 
past, we have seen analysis plans requiring an RE of 0.98 or higher.  It will be important to consult with 
the study statistician on the RE requirement, if it is not specified in the analysis plan.  For now, we will 
move forward with our example and proceed to the analysis step.  Unfortunately, we first need to 
transpose our imputed data back into a vertical structure.  The _IMPUTATION_ variable from PROC MI 
will be included in the BY statement of our transpose:  

   PROC TRANSPOSE DATA=midi_mi OUT=backtobds; 

      BY _imputation_ subjid age sex trtp base paramcd param;     

      VAR midi1 midi7 midi14 midi28 midi42 midi98; 

   RUN; 

While we technically can proceed with the analysis step, we choose to do some additional clean up and 
derive DTYPE in order to have a valid ADaM data set.  Recall DTYPE is a BDS variable used to indicate 
the derivation method of the analysis value (i.e. AVAL or AVALC).  DTYPE must be populated when 
AVAL or AVALC has been derived differently than other records for the same parameter (CDISC, 2016, 
p. 46). 

First, we will need to re-derive AVISIT and AVISITN based on the former variable names (i.e. MIDI1, 
MIDI7, … MIDI98).  Then, we need to merge back to the original (non-imputed) data set to determine 
which visit values were imputed.  We will flag these as DTYPE=MI for values imputed by PROC MI.  
Lastly, we will rename _IMPUTATION_ to have a valid name not exceeding eight characters for purposes 
of ADaM: 

   DATA _adeffmi(DROP=_name_); 

      SET backtobds; 

      avisitn = INPUT(COMPRESS(_name_, 'MID'), BEST.); 

      avisit = PUT(avisitn, VIS.); 

   RUN; 

 

   PROC SORT DATA=_adeffmi; BY subjid avisitn aval; RUN; 

 

   DATA adeffmi(RENAME=(_imputation_=imputeno)); 

      MERGE _adeffmi(IN=mi)  

            adeff(IN=observed KEEP=subjid avisitn aval /*<ady adtm ...>*/); 

      BY subjid avisitn aval; 

      IF mi AND NOT observed THEN dtype='MI'; *Flag imputed records; 

   RUN; 

At this stage, ADEFFMI could be output as a permanent data set, and the data set program would be 
complete.  The output production program could then be created using ADEFFMI.   

  



Multiple Imputation: A Statistical Programming Story, continued 
 

10 

ANALYSIS STEP 

Our analysis is a mixed effect model with repeated measures to assess the differences in midichlorian 
count between treatments at each visit.  It will be performed on each imputation independently.  
Therefore, we must first sort by the imputation number: 

   PROC SORT DATA=adeffmi; BY imputeno subjid avisitn; RUN; 

 

   ODS OUTPUT DIFFS=diffbyvis(WHERE=(avisitn=_avisitn)); 

   PROC MIXED DATA=adeffmi(WHERE=(avisitn > 1)); 

      BY imputeno; 

      CLASS subjid trtp avisitn; 

      MODEL aval = base trtp avisitn trtp*avisitn; 

      REPEATED avisitn / SUBJECT=subjid TYPE=UN;     

      LSMEANS trtp*avisitn / DIFF CL; 

   RUN; 

 ODS OUTPUT DIFFS= retrieves the estimate differences from the LSMEANS statement.  This will 
contain a comparison for each treatment combination within the same analysis visit. 

 Note that since baseline midichlorian count is in the model, we only select post baseline records to 
enter the model (i.e. AVISITN > 1). 

 BY IMPUTENO statement provides independent analyses for each imputation.  This is required for 
the MI process.  These results will later be pooled to obtain overall estimates for each visit. 

 Note that the MODEL statement has fewer variables in the analysis model than there were in the 
imputation model (i.e. sex and age are not present).  This was intentional since the MI process 
encourages additional information in the imputation step. 

POOLING STEP 

Lastly, we will need to sort (once again) in order to produce pooled results by visit using PROC 
MIANALYZE: 

PROC SORT DATA=formianalyze; BY avisitn imputeno; RUN;  

 

ODS OUTPUT PARAMETERESTIMATES=diffestvisit; 

PROC MIANALYZE DATA=formianalyze; 

    BY avisitn; 

    MODELEFFECTS estimate; 

    STDERR stderr; 

RUN; 

In Output 8 below, we end up with pooled results (one per visit) taking into account the variability between 
imputations. 

AVISITN    Estimate     StdErr   LCLMean   UCLMean      DF  tValue    Probt    

      7    4.071768  13.555938  -22.6597   30.8032  199.31    0.30   0.7642 

     14   31.181263  16.098630   -0.3949   62.7575    1629    1.94   0.0529  

     28    6.595001  14.223452  -21.2844   34.4744   17375    0.46   0.6429 

     42   30.899041  13.727096    3.9851   57.8130  3497.9    2.25   0.0245 

     98  101.630556  15.869421   70.5131  132.7480  2693.9    6.40   <.0001 

Output 8. PROC PRINT Output Data Set from PROC MIANALYZE. 

The estimate column represents pooled results for the differences in midichlorian count between 
treatments at each visit.  The overall standard error, 95% confidence interval, and p-values are also 
available.  Note that for days 7, 14, and 28, the confidence intervals contain 0, and the treatment effect is 
not significant at the 0.05 level.  However, at day 42 and 98 there is a significant difference between 
active and placebo groups. 



Multiple Imputation: A Statistical Programming Story, continued 
 

11 

Let us look closer at what is happening behind the scenes in PROC MIANALYZE.  In Output 9, there are 
the five observations being fed into PROC MIANALYZE for AVISITN = 98. 

   IMPUTENO       Estimate      StdErr    WITHINVAR 

          1         103.53     15.8707     251.880 

          2         105.59     15.2563     232.755 

          3        98.8878     15.4334     238.190 

          4        99.4763     15.4012     237.198 

          5         100.67     15.8319     250.649 

Output 9. PROC PRINT of FORMIANALYZE Where AVISITN=98, with Derived WITHINVAR. 

The estimated variance of our estimate within each imputation is WITHINVAR = STDERR
2
.  Below, 

Output 10 shows the mean and variance descriptive statistics for the ESTIMATE and WITHINVAR 
variables across the five imputations. 

Variable            Mean        Variance 

---------------------------------------- 

Estimate         101.631           8.087 

WITHINVAR        242.134          73.845 

---------------------------------------- 

Output 10.  PROC MEANS of ESTIMATE and WITHINVAR Where AVISITN=98 

There are similarities in the information in Output 10 when compared against the PROC MIANALYZE 
data set from Output 8 and the variance information in Output 11 from the same PROC MIANALYZE. 

                                            Relative    Fraction 

          --------Variance-------           Increase     Missing   Relative 

Parameter Between  Within   Total     DF in Variance Information Efficiency 

estimate    8.087 242.134 251.839 2693.9    0.040078    0.039247   0.992212 

Output 11. Variance Information from PROC MIANALYZE Where AVISITN=98 

The overall parameter estimate for AVISITN = 98, 101.631, is simply the mean of the ESTIMATE 
variable.  The between-imputation variance, 8.087, is the variance of the ESTIMATE variable across the 
five imputations.  The within-imputation variance, 242.134, is the mean of the variance within each of the 
five imputations.  The total variance (TV) is a given by  

𝑇𝑉 = 𝑊 + (
𝑚 + 1

𝑚
) ∙ 𝐵 = 242.134 + (

6

5
) ∙ 8.087 = 251.839. 

where 𝐵 = between-imputation variance, 𝑊 = within-imputation variance, and 𝑚 = number of imputations 
performed.  The standard error used for computing confidence intervals and t-statistics is the square root 
of the total variance, 15.869.  One other insight is the Relative Increase in Variance (RIV) is given by 

𝑅𝐼𝑉 =
𝑇𝑉 − 𝑊

𝑊
=

251.839 − 242.134

242.134
=  0.04008. 

Suppose we had no missing values in our data, but performed an MI analysis anyway.  Then, we would 
not have any between-imputation variation because all imputations would result in the same estimate.  
So, the total variance in this case would be equal to the within-imputation variance.  One way to think of 
this is like a percent change from baseline calculation, where W represents our baseline (i.e., the smallest 
possible variance when no data are missing) and 𝑇𝑉 – 𝑊 represents the amount of new variation 
introduced by the imputation step. 

NUMBER OF IMPUTATIONS EPISODE II: RUN-TIME COMPARISON  

We would like to return to the number of imputations discussion.  We want to do a comparative exercise 
looking at various numbers of MI repetitions and run-times of each step in the process.  Below, Table 4 
shows the run-times of 5, 25, 50, and 100 repetitions for the imputation, analysis, and pooling steps on 
the 200 simulated subjects. 

  



Multiple Imputation: A Statistical Programming Story, continued 
 

12 

Step\Imputations 5 25 50 100 

Step 1: MI 0.14 0.55 1.07 2.06 

Step 2: MIXED 0.27 0.93 2.25 4.05 

Step 3: MIANALYZE 0.02 0.03 0.02 0.02 

Table 4. Approximate Run-times (seconds) by Number of Imputations and Step of the MI Process 

We see the run-time increases for the MI and MIXED steps as the number of imputations increase from 5 
to 100, but it is only a few seconds.  The pooling step done by PROC MIANALYZE is not affected by the 
number of MI repetitions.  By increasing the number of subjects in the simulation to 2000 (a 10-fold 
increase), the run-times for 100 repetitions become 20.21, 23.08, and 0.03 seconds during the MI, 
MIXED, and MIANALYZE procedures, respectively.  We see this has a significant impact on run-times, 
but still not too extreme.  During program development, we could use fewer imputations for PROC MI, 
then later increase NIMPUTE=100 for the final run. 

CONCLUSION  

The MI process can be an intimidating and challenging task to implement.  However, we have now 
covered the basics for performing a MI analysis.  It is a 3-step process requiring MI and MIANALYZE 
procedures, in addition to an analysis procedure (e.g. FREQ, GENMOD or MIXED procedures).  The 
method used in PROC MI depends on the types of variables to be imputed along with the missing data 
pattern.  As for the number of imputations for each missing data value, we recommend 100 as a starting 
point and suspect it will provide adequate RE.  We also revealed how the FCS method can be used to 
impute values for data with arbitrary missing data patterns.  The FCS method is more flexible in that it 
allows for classification variables as covariates in the imputed model and can be used to impute various 
types of data (i.e. continuous, binary/ordinal, nominal).  It also allows for all variables to be used in the 
imputation model, not just preceding variables.  Therefore, we imagine most MI analyses, in order to 
incorporate demographic data such as race, sex, or ethnicity in the imputation model, will resort to using 
FCS. 

REFERENCES 

Berglund, Patricia and Heeringa, Steven, 2014. Multiple Imputation of Missing Data Using SAS
®
. Cary, 

NC: SAS Institute Inc. 

CDISC. “Analysis Data Model Implementation Guide v1.1.” CDISC, 12 Feb. 2016. Web. 12 Mar. 2017.  

SAS Institute Inc. 2014. SAS/STAT
®
 13.2 User’s Guide. Cary, NC: SAS Institute Inc. 

CONTACT INFORMATION  

Your comments and questions are valued and encouraged. Contact the authors at: 

Name: Chris Smith 
Enterprise: Cytel Inc. 
E-mail: chris.smith@cytel.com 
Web: www.linkedin.com/in/smithchr 
 
Name: Scott Kosten, Ph.D. 
Enterprise: DataCeutics Inc. 
E-mail: kostens@dataceutics.com 
Web: www.linkedin.com/in/kostens 
 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of 
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.  

Other brand and product names are trademarks of their respective companies.  

  

mailto:chris.smith@cytel.com
mailto:kostens@dataceutics.com


Multiple Imputation: A Statistical Programming Story, continued 
 

13 

APPENDIX 

 

/************************************************************************/ 

/* Appendix - Code for Simulated Data and Multiple Impuation (MI) Steps */ 

/************************************************************************/ 

 

*Format for visit; 

PROC FORMAT; 

    VALUE vis 1 = 'BL' 

              7 = 'DAY 7'  

              14= 'EOT' 

              28= 'FU D28' 

              42= 'FU D42' 

              98= 'FU D98'; 

RUN; 

 

/* Core data simulation */ 

DATA dd1; 

    LENGTH subjid trtp $7. paramcd $4. param $17.; 

 

    *Visit structure; 

    ARRAY visits (6) _TEMPORARY_ (1 7 14 28 42 98); 

 

     *Sets seed for all rand functions ; 

    CALL STREAMINIT(1977);                          

     

    *Data simulation loop; 

    DO id = 1 TO 200; 

        *Assign subject id; 

        subjid='101-'||PUT(id, Z3.);                 

 

        *Assign gender; 

        IF RAND('Bernoulli', 0.5) = 1 THEN sex='M';  

        ELSE sex='F'; 

 

        *Assign treatment group; 

        IF RAND('Bernoulli', 0.5) = 1 THEN trtp='Active';  

        ELSE trtp='Placebo'; 

 

        *Assign age; 

        age=ROUND(RAND('Normal', 50, 15)); 

 

        *Assign result name and short code; 

        paramcd='MIDI'; 

        param='Midichlorians (n)'; 

 

        *Simulate results; 

        DO i=1 TO DIM(visits); 

            avisitn=visits(i); 

            avisit=PUT(avisitn, VIS.); 

 

            IF trtp='Active' THEN DO; 

                *Produces advancing treatment effect over time; 

                IF visits(i)=1 then aval=ROUND(RAND('Normal', 10000, 100)); 

                ELSE aval=ROUND(RAND('Normal', 10000, 100)+visits(i)); 

            END; 



Multiple Imputation: A Statistical Programming Story, continued 
 

14 

            ELSE DO; 

                *Produces no treatment effect for placebo patients; 

                aval=ROUND(RAND('Normal', 10000, 100));        

            END; 

 

            OUTPUT;  

        END; 

    END; 

 

    DROP i id; 

RUN; 

 

*Derive baseline and simulate missing data; 

DATA adeff; 

    SET dd1; 

    BY subjid; 

 

    CALL STREAMINIT(1980);                          

 

    *Derive baseline value; 

    RETAIN base .; 

    IF first.subjid THEN base=.; 

    IF avisit='BL' THEN base= aval; 

 

    *Simulate arbitrary missing data pattern; 

    IF avisit ne 'BL' THEN DO; 

        IF RAND('Bernoulli', 0.08) THEN DELETE; 

    END; 

RUN; 

 

*Transpose to horizontal structure; 

PROC TRANSPOSE DATA=adeff OUT=onepersub PREFIX=MIDI; 

    BY subjid age sex trtp base paramcd param; 

    ID avisitn;     

    VAR aval; 

RUN; 

                          

*Complete case - for paper output; 

PROC PRINT data=adeff (DROP=age sex) NOOBS; 

    WHERE subjid='101-011';       

RUN;  

 

*Missing data case - for paper output; 

PROC PRINT DATA=onepersub NOOBS;     

    WHERE MISSING(midi7) and MISSING(midi98); 

    VAR subjid trtp base midi1 midi7 midi14 midi28 midi42 midi98; 

RUN;  

 

/* Multiple Imputation - 3-step process */ 

 

*Step 1a - check missing data pattern (arbitrary vs monotone); 

PROC MI DATA=onepersub NIMPUTE=0; 

    CLASS sex trtp; 

    FCS; 

    VAR sex trtp age base midi7 midi14 midi28 midi42 midi98;     

RUN;   

 



Multiple Imputation: A Statistical Programming Story, continued 
 

15 

*Step 1b - select appropriate method given missing  

           data pattern and variables to be imputed; 

PROC MI DATA=onepersub OUT=midi_mi SEED=1999 NIMPUTE=5 

    ROUND = . . . . 1 1 1 1 1;     

    CLASS sex trtp;     

    FCS REG (midi7 midi14 midi28 midi42 midi98); 

    VAR sex trtp age base midi7 midi14 midi28 midi42 midi98; 

RUN; 

 

*Step 2a - transpose back to vertical structure; 

PROC TRANSPOSE DATA=midi_mi OUT=backtobds; 

    BY _imputation_ subjid age sex trtp base paramcd param;     

    VAR midi1 midi7 midi14 midi28 midi42 midi98; 

RUN; 

 

*Clean up; 

DATA _adeffmi; 

    SET backtobds; 

 

    *Rederive avist/avisitn; 

    avisitn=INPUT(COMPRESS(_name_, 'MID'), BEST.); 

    avisit=PUT(avisitn, VIS.); 

 

    DROP _name_; 

RUN; 

 

*Sort for merge with original data; 

PROC SORT DATA=_adeffmi; 

    BY subjid avisitn aval; 

RUN; 

 

*Flag imputed records; 

DATA adeffmi (RENAME=(_imputation_=imputeno)); 

    MERGE _adeffmi(IN=mi)  

           adeff  (IN=observed KEEP=subjid avisitn aval); 

    BY subjid avisitn aval; 

 

    IF mi AND NOT observed THEN dtype='MI'; 

RUN; 

 

*Sort for analysis step; 

PROC SORT DATA=adeffmi; 

    BY imputeno subjid avisitn;     

RUN; 

 

*Step 2b - Analysis step; 

ODS OUTPUT diffs=diffbyvis(WHERE=(avisitn=_avisitn)); 

PROC MIXED DATA=adeffmi (WHERE=(avisitn > 1)); 

    BY imputeno; 

    CLASS subjid trtp avisitn ; 

    MODEL aval = base trtp avisitn trtp*avisitn ; 

    REPEATED avisitn / SUBJECT=subjid TYPE=un;     

    LSMEANS trtp*avisitn /DIFF CL; 

RUN; 

ODS OUTPUT CLOSE; 

  



Multiple Imputation: A Statistical Programming Story, continued 
 

16 

*Derive variable for later exploration; 

DATA formianalyze; 

    SET diffbyvis;     

    withinvar=stderr**2; 

RUN; 

 

*Step 3 – Pooling step; 

PROC SORT DATA=formianalyze; 

    BY avisitn imputeno; 

RUN;  

 

ODS OUTPUT PARAMETERESTIMATES=diffestvisit; 

PROC MIANALYZE DATA=formianalyze; 

    BY avisitn; 

    MODELEFFECTS estimate; 

    STDERR stderr; 

RUN; 

ODS OUTPUT CLOSE; 

 

PROC PRINT DATA=diffestvisit NOOBS; 

RUN; 

 

*Exploratory – Within Variance; 

PROC PRINT DATA=formianalyze NOOBS; 

 WHERE avisitn=98; 

 VAR imputeno estimate stderr withinvar; 

RUN; 

 

PROC MEANS DATA=formianalyze MEAN VAR MAXDEC=3; 

 WHERE avisitn=98; 

 VAR estimate withinvar; 

RUN; 

 


