
1

PharmaSUG 2017 - Paper QT12

Same statistical method different results? Don't panic the reason might be
obvious.

Iryna Kotenko, Intego Group / Experis Clinical A Manpower Group Company, Kharkiv, Ukraine

ABSTRACT

Modern statisticians and statistical programmers are able to use a variety of analytics tools to perform a
statistical analysis. Performing quality control checks or verification analysis using different statistical packages
for the same statistical method one may receive unexpectedly unequal results. So the question comes: what is
wrong with the calculations? The answer might disconcert: the calculations are valid and the root of
discrepancies is the difference in computational methods and default settings that are implemented in each
statistical package. The aim of this article is to bring an awareness to the auditory about known inconsistency
in computational methods in commonly used analytics tools: SAS®, Python®, R®, and SPSS®.

INTRODUCTION

Many statistical programmer and biostatisticians have their preferences in statistical packages. They are
experts in writing a code in given software and are confident in the results this code produces. But
sometimes it happens that the person that used to use let’s say R has to switch to SAS or vice versa, or the
independent qc-er has different taste and uses Python. Quite often the results that different statistical
packages produce do not agree and that might rise the questions: do I do anything wrong? Is this something
wrong with alternative statistical package? And the answer usually simple: the results are correct to the
point of used settings.

This article is aimed to show number of frequently notified differences in most common statistical calls.
For the purpose of illustration four statistical packages were used: SAS and SPSS as the most commonly
used in analysis of clinical trials, and R and Python the most popular open-sourced statistical packages.

ARE YOU AFRAID OF DISCREPANCIES?

EXAMPLE #1 KOLMAHOROV-SMIRNOFF TEST FOR NORMALITY

In statistics, normality tests are used to determine if a data set is well-modeled by a normal distribution
and to compute how likely it is for a random variable underlying the data set to be normally distributed.

The Kolmogorov–Smirnov test (K–S test or KS test) is a nonparametric test of the equality of continuous,
one-dimensional probability distributions that can be used to compare a sample with a reference
probability distribution (one-sample K–S test), or to compare two samples (two-sample K–S test). It is
named after Andrey Kolmogorov and Nikolai Smirnov. In our case it is going to be one-sample K–S test
and the reference probability distribution is normal with estimate the population mean and population
variance based on the data.

The Kolmogorov–Smirnov statistic quantifies a distance between the empirical distribution function of the
sample and the cumulative distribution function of the reference distribution and the null distribution of this
statistic is calculated under the null hypothesis that the sample is drawn from the reference distribution.

The K-S test has been run in all 4 packages on the data that contains 49 records (one per patient) with
some overall efficacy score.

SAS

A UNIVARIATE procedure has been used in SAS for the purpose to obtain KS-score:

proc univariate data=results normaltest;

 var EFSCORE;

run;

and the results are:

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Data_set
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Random_sample
https://en.wikipedia.org/wiki/Nikolai_Smirnov_(mathematician)
https://en.wikipedia.org/wiki/Metric_(mathematics)
https://en.wikipedia.org/wiki/Empirical_distribution_function
https://en.wikipedia.org/wiki/Null_distribution
https://en.wikipedia.org/wiki/Null_hypothesis

Same statistical method different results? Don't panic the reason might be obvious, continued

2

Tests for Normality

Test Statistic p Value

Shapiro-Wilk W 0.921376 Pr < W 0.0030

Kolmogorov-Smirnov D 0.117807 Pr > D 0.0876

Cramer-von Mises W-Sq 0.162415 Pr > W-Sq 0.0170

Anderson-Darling A-Sq 1.165686 Pr > A-Sq <0.0050

Output 1. Output from a PROC UNIVARIATE

SPSS

K-S test produced by SPSS will have the following code and results:

*Nonparametric Tests: One Sample.

NPTESTS

 /ONESAMPLE TEST (EFSCORE)

 /MISSING SCOPE=ANALYSIS USERMISSING=EXCLUDE

 /CRITERIA ALPHA=0.05 CILEVEL=95.

Output 2. Output from a NPTESTS SPSS run

As you can see the p-value for K-S test obtained in SPSS corresponds to SAS result to the certain
degree.

R

ks.test(df$X, "pnorm", mean = 2.003, sd = 0.714)

Warning in ks.test(df$X, "pnorm", mean = 2.003, sd = 0.714): ties should

not be present for the Kolmogorov-Smirnov test

One-sample Kolmogorov-Smirnov test

data: df$X

D = 0.11758, p-value = 0.5072

alternative hypothesis: two-sided

The default R run gives the result that differs from the rest. The reason for that is hidden in the note
produced by SPSS run. It says “Lilliefors Corrected”.

Same statistical method different results? Don't panic the reason might be obvious, continued

3

The Lilliefors test, named after Hubert Lilliefors, professor of statistics at George Washington University,
is a normality test based on K-S test and is implemented by default in SAS, SPSS, and Python. It should
be mentioned that apart from SPSS none of the packages indicates that Liliefors correction is used.

In order to bring R results in agreement with the rest of the packages one could use the following code:

library(nortest)

lillie.test(df$X)

Lilliefors (Kolmogorov-Smirnov) normality test

data: df$X

D = 0.11781, p-value = 0.08643

PYTHON

Before running K-S test on Python one should prepare the data and calculate z-score because kstest()
from scipy.stats library deals with standard normal distribution μ = 0 and σ = 1.

import numpy as np

import scipy.stats as stats

>>> ar_n=stats.zscore(ar)

and after this call K-S test:

>>> stats.kstest(ar_n,'norm')

KstestResult(statistic=0.12029482392816848,pvalue=0.44776961593152764)

The results we receive are closer to K-S test results obtained with ks.test in R on the default settings, the
reason is the same: Phyton does not produce Lilliefors test instead of K-S for normality testing. If you
want to obtain Lilliefors Corrected p-value you should call the following function:

import statsmodels.api as sm

sm.stats.lillifors(ar)

and the results you receive is in harmony with the others:

>>> sm.stats.lillifors(ar)

(0.11780700082211182, 0.086433013548767562)

EXAMPLE #2 PEARSON’S CHI SQUARE TEST FOR 2 X 2 TABLE

Let’s assume you are asked to calculate chi square test for the 2х2 table:

Cold

Cold No Cold

Treatment

Placebo 31 109

VitaminC 17 122

Table 1. Data of incidences of cold depending on preventive Vitamin C treatment

Pearson's chi-squared test (χ2) is a statistical test applied to sets of categorical data to evaluate how
likely it is that any observed difference between the sets arose by chance.

https://en.wikipedia.org/wiki/Hubert_Lilliefors
https://en.wikipedia.org/wiki/George_Washington_University
https://en.wikipedia.org/wiki/Normality_test
https://en.wikipedia.org/wiki/Chi_(letter)
https://en.wikipedia.org/wiki/Categorical_data

Same statistical method different results? Don't panic the reason might be obvious, continued

4

SAS

To perform chi-square test for the given tale you should run the following code in SAS:

data ski;

input treatment $ response $ count;

datalines;

placebo cold 31

placebo nocold 109

ascorbic cold 17

ascorbic nocold 122;

run;

proc freq;

weight count;

tables treatment*response/ chisq;

run;

The results are:

The FREQ Procedure

Statistics for Table of treatment by response

Statistic DF Value Prob

Chi-Square 1 4.8114 0.0283

Likelihood Ratio Chi-Square 1 4.8717 0.0273

Continuity Adj. Chi-Square 1 4.1407 0.0419

Mantel-Haenszel Chi-Square 1 4.7942 0.0286

Phi Coefficient -0.1313

Contingency Coefficient 0.1302

Cramer's V -0.1313

Output 3. Output from a PROC FREQ

R

In R you submit the following code:

> ski<-matrix(c(31, 17, 109, 122), ncol=2,

dimnames=list(Treatment=c("Placebo", "VitaminC"), Cold=c("Cold", "NoCold"))

> result<-chisq.test(ski)

> result

data: ski

X-squared = 4.1407, df = 1, p-value = 0.04186

The results do not agree with Chi-Square produced by SAS, however are comparably equal to SAS
Continuity Adjusted Chi-Square. These discrepancy is caused by Yates correction that is implemented in
with Continuity Adjusted Chi-Square and is used in R by default. The effect of Yates' correction is to
prevent overestimation of statistical significance for small data. To obtain uncorrected chi-square value
the following code should be run:

Same statistical method different results? Don't panic the reason might be obvious, continued

5

> ###Pearson's Chi-squared test withOUT Yates' continuity correction

> result<-chisq.test(ski, correct=FALSE)

> result

Pearson's Chi-squared test

data: ski

X-squared = 4.8114, df = 1, p-value = 0.02827

PYTHON

Those who use Python to test 2x2 table with good chance would write the following simple code:

stats.chisquare([[17,122],[31,109]])

and would receive the following results:

>>> stats.chisquare([17,122],[31,109])

Power_divergenceResult(statistic=7.8730393607576206,

pvalue=0.0050177245029165646)

As we can see p-value 0.0050 does not correspond to any of p-values obtained by different statistical
packages. The reason is that actually stats.chisquare was built to test one-way chi-square test. This chi-
square test tests the null hypothesis that the categorical data has the given frequencies and by default the
categories are assumed to be equally likely.

In contrast to this our example is aimed to test of independence of variables in a contingency table and
thus a special application of chi-square should be used:

>>> stats.chi2_contingency([[17,122],[31,109]])(4.1406789213805189,

0.041864375625494867, 1, array([[23.91397849, 115.08602151], [24.08602151,

115.91397849]]))

 As we can see we obtain Yates corrected result by default (p-value = 0.0419). In order to eliminate this
correction you should set correction parameter in this function to FALSE:

>>> stats.chi2_contingency([[17,122],[31,109]],correction=False)

(4.8114126463207896, 0.028271860246822603, 1, array([[23.91397849,

115.08602151], [24.08602151, 115.91397849]]))

EXAMPLE #3 ANOVA F-VALUE

Let’s assume you are asked to perform analysis of variance and calculate F values for the efficacy
outcome EFOVR (from example #1) with gender and treatment arm as fixed factors.

ANOVA is used to simultaneously compare two or more group means based on independent samples
from each group. To use the F-test to determine whether group means are equal, it’s just a matter of
including the correct variances in the ratio.

SAS

In SAS the ANOVA call looks like this:

proc glm data=result alpha=0.05;

 class ARMCD DMSEX;

 model EFOVR = ARMCD DMSEX ARMCD*DMSEX /intercept;

run;

quit;

Same statistical method different results? Don't panic the reason might be obvious, continued

6

and the results are:

The GLM Procedure

Dependent Variable: EFOVR

Source DF Sum of Squares Mean Square F Value Pr > F

Model 4 198.8449254 49.7112313 101.18 <.0001

Error 45 22.1081996 0.4912933

Uncorrected Total 49 220.9531250

R-Square Coeff Var Root MSE EFOVR Mean

0.095883 35.00151 0.700923 2.002551

Source DF Type I SS Mean Square F Value Pr > F

Intercept 1 196.5003189 196.5003189 399.97 <.0001

ARMCD 1 0.8954103 0.8954103 1.82 0.1838

DMSEX 1 1.4356954 1.4356954 2.92 0.0943

ARMCD*DMSEX 1 0.0135009 0.0135009 0.03 0.8691

Source DF Type III SS Mean Square F Value Pr > F

Intercept 1 44.40527635 44.40527635 90.38 <.0001

ARMCD 1 0.35630441 0.35630441 0.73 0.3989

DMSEX 1 0.63832719 0.63832719 1.30 0.2604

ARMCD*DMSEX 1 0.01350085 0.01350085 0.03 0.8691

Output 4. Output from a PROC GLM procedure

By default SAS produces a series of tables with information about general fit of the model, R-square
value, and Type I Sum of Squares (SS) and Type III SS statistics.

What is a difference between Type I SS and Type III SS? Consider a model that includes two factors A
and B; there are therefore two main effects, and an interaction, AB. The full model is represented by
SS(A, B, AB). Type I SS also called "sequential" sum of squares and calculates SS(A) for factor A,
SS(A, B) - SS(A) for factor B and SS(A, B, AB) - SS(A, B) for interaction. Type I SS is sensitive to the
order of factors in your model. Type III SS calculates SS(A, B, AB) - SS(B, AB) for factor A and
SS(A, B, AB) - SS(A, AB) for factor B and does not care the order of factors in the model.

SPSS

Interactive run of the following code gives us the table below:

UNIANOVA EFOVR BY ARMCD DMSEX

 /METHOD=SSTYPE(3)

 /INTERCEPT=INCLUDE

 /CRITERIA=ALPHA(0.05)

 /DESIGN=V1 V2 V1*V2.

Same statistical method different results? Don't panic the reason might be obvious, continued

7

Tests of Between-Subjects Effects

Dependent Variable: EFOVR

Source

Type III Sum of

Squares df Mean Square F Sig.

Corrected Model 2.345a 3 .782 1.591 .205

Intercept 44.405 1 44.405 90.384 .000

DMSEX .638 1 .638 1.299 .260

ARMCD .356 1 .356 .725 .399

DMSEX *ARMCD .014 1 .014 .027 .869

Error 22.108 45 .491

Total 220.953 49

Corrected Total 24.453 48

a. R Squared = .096 (Adjusted R Squared = .036)

Output 5. Output from a UNIANOVA SPSS run

The F values for fixed factors its interaction and intercept agree in SAS and SPSS, although F value for
model is different in these two packages. The explanation of this effect is in number of variables (degrees
of freedom) considered for building the F-score. SAS uses 4 (gender, arm, its interaction and intercept)
when SPSS uses 3 (gender, arm and intercept).

R

If you run the standard crf.lm function in R you will definitely receive results that differ from both SAS and
SPSS. R doesn’t do anything wrong, but as we see could already notice the example above R simply has
a different default configurations. So here are 3 thing you have to check before you run you R script:

 Set each independent variable as a factor

 Set the default contrast to helmert

 Conduct analysis using Type III Sums of Squares

The code that repeats SAS and SPSS results should be as follows:

Set the variables to factors

> my.data$dmsex <- as.factor(my.data$dmsex)

> my.data$armcd <- as.factor(my.data$armcd)

> options(contrasts = c("contr.helmert", "contr.poly"))

> install.packages("car",dependencies = TRUE)

> crf.lm <- lm(efovr~dmsex*armcd,data=my.data)

> library(car)

> Anova(crf.lm,type=3)

The results will be:

Anova Table (Type III tests)

Response: efovr

Sum Sq Df F value Pr(>F)

(Intercept) 44.405 1 90.3844 2.473e-12 ***

dmsex 0.638 1 1.2993 0.2604

armcd 0.356 1 0.7252 0.3989

dmsex:armcd 0.014 1 0.0275 0.8691

Residuals 22.108 45

Same statistical method different results? Don't panic the reason might be obvious, continued

8

CONCLUSION

All four tested packages gave algorithmically correct results. It is user’s responsibility to understand what
is implemented in certain methods and what statistics is behind it. In all of the described cases reading
documentation and statistical literature was really helpful for getting understanding what the source of
discrepancies was.

It is always nice to try something new as it usually challenges you to gain more knowledge on the matter
you considered yourself familiar with.

REFERENCES

Walker, Glenn A., and Shostak, Jack. 2010. Common Statistical Methods for Clinical Research with
SAS® Examples, Third Edition. Cary, NC: SAS Institute Inc.

Venables, W.N., Smith, D.M. and the R Development Core Team. 2005. An Introduction to R, Version 2.2.0.

“ANOVA (and R)” http://goanna.cs.rmit.edu.au/~fscholer/anova.php.

David Stanley. “Ensuring R Generates the Same ANOVA F-values as SPSS“. R-bloggers. 2015.
https://www.r-bloggers.com/ensuring-r-generates-the-same-anova-f-values-as-spss/

ACKNOWLEDGMENTS

Thanks to Iaroslav Domin for providing R support, Peter Lord and Chad Melson for reviewing the article
and Andrii Rekalo for inspiring to explore this topic.

RECOMMENDED READING

 SAS/STAT(R) 9.2 User's Guide, Second Edition

 Stack Overflow http://stackoverflow.com

 Stack Exchange http://stats.stackexchange.com

 Numpy and Scipy Documentation

 Getting Help with R https://www.r-project.org/help.html

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Iryna Kotenko
Irina.Kotenko@intego-group.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

https://www.r-bloggers.com/author/david-stanley/
http://stackoverflow.com/
mailto:Irina.Kotenko@intego-group.com

