
1

PharmaSUG 2017 - Paper QT11

Multi-Dimensional Arrays: Add Derived Parameters

Siddharth Kumar Mogra, GCE Solutions Inc

ABSTRACT

Multidimensional arrays are useful when Data needs to be grouped into a ‘table like’ arrangement for
processing. Often we are required to derive and add records in analysis datasets. When there are large
numbers of parameters to be added, the use of repeated if-then statements are prone to error and time
consuming. Effective use of Multi-Dimensional Arrays or Nested Arrays can increase efficiency of
program. It can minimize the code and makes program efficient. This paper demonstrates situation where
use of Multi-Dimensional Arrays is practical and appropriate in Clinical Trials.

INTRODUCTION

Creating Laboratory analysis datasets is challenging and daunting task, due to the size of dataset and
number of derived parameters required. Creating Lab analysis dataset requires to derive parameters.
Common technique used to add records in dataset is the use of if-then statement, or create dummy
dataset etc. Use of Nested arrays to derive these parameters limits the chance of error and makes
program efficient.

Arrays can be very powerful with its iterative and conditional processing. Array in SAS® allows to group

a bunch of variables for the same process. The huge block of repetitious statements and redundant
calculation codes can be reduced to just a few lines. With arrays you can simplify the coding in many
cases and can accomplish tasks which are not easily done.

An array must be defined within the data step prior to being referenced. if an array is referenced without
first being defined, an error will occur. As array exist only for the duration of the data step in which they
are defined therefore, they can only be used in the same data step where it is referenced.

WHY ARRAYS

Arrays are useful and effective tool when we want to perform same actions on multiple variables. Arrays
allows to group a bunch of variables for the same process. The huge block of the repetitious statements
and redundant calculation codes can be reduced to just a few lines. Code can be simplified. Some of the
examples where use of arrays in clinical trials are, to derive / Update Treatment Variables in Analysis
Dataset, to derive / Update Analysis Flag Variables (anl01fl,) in Analysis Dataset , to concatenate and
Apply Format to all the Treatment Variables for presentation in Output, etc.

THE SYNTAX:

array array-name {n} <$> <length> array-elements <(initial values)>;

 array-name – Any valid SAS name that identifies the group of variables
 n – Number of elements within the array
 $ - Indicates the elements within the array are character type variables
 Length – assigns length for the array elements
 Elements – List of SAS variables to be part of the array
 Initial values – Provides the initial values for each of the array elements.

Multi-Dimensional Arrays: Add Derived Parameters, continued

2

ARRAY REFERENCE:

array-name {subscript}

 Where array-name - is the name of an array that was previously defined with ARRAY statement
in the same DATA step.

 Subscript - specifies the subscript, which can be a numeric constant, the name of a variable
whose value is the number, a SAS numeric expression, or an asterisk (*).

 An array must be defined within the data step prior to being referenced.
 Array exists only for the duration of the data step in which they are defined

ONE DIMENSIONAL ARRAYS

A simple array may be created when the variables grouped together conceptually appear as a single row.
This is known as a one-dimensional array.

The array statement to define one-dimensional array will be:

array temperature_array {24} temp1 – temp24;

The array has 24 elements for the variables TEMP1 through TEMP24. When the array elements are used
within the data step the array name and the element number will reference them.
The reference to the ninth element in the temperature array is: temperature_array{9}
The statement used to define an array is the ARRAY statement.

array array-name {n} <$> <length> array-elements <(initial-values)>;

The Array statements provides the following information about SAS array:

array-name – Any valid SAS name

n – Number of elements within the array

$ - Indicates the elements within the array are character type variables

Length – assigns length for the array elements

Elements – List of SAS variables to be part of the array

Initial values – Provides the initial values for each of the array elements.

In clinical trials arrays are mostly applied in the creation of TLFs. Example of situation where arrays are

commonly used are: Creating final format on treatment columns

MULTI DIMENSIONAL ARRAY

Multi dimensional arrays are used when you want to put values in a table format (i.e., rows and columns).

Multidimensional arrays can be used to input data or to perform operations on the data set.

Multi dimensional arrays are defined as follows: The number of elements are placed in each dimension

after the array name in the form {n, ..}. From right to left, the rightmost dimension represents columns; the

next dimension represents rows. Each position farther left represents a higher dimension.

 array temprg {3, 5} c1t1 c1t2 c1t3 c1t4 c1t5

 c2t1 c2t2 c2t3 c2t4 c2t5

Multi-Dimensional Arrays: Add Derived Parameters, continued

3

 c3t1 c3t2 c3t3 c3t4 c3t5;

This is an example of two-dimensional array with three rows and five columns The array contains fifteen

variables: five temperature measures (t1 through t5) from three cities (c1, c2 and c3).

SAS ® places variables into a multidimensional array by filling all rows in order, beginning at the upper left

corner of the array (known as row-major order). You can think of the variables as having the following

arrangement:

c1t1 c1t2 c1t3 c1t4 c1t5

c2t1 c2t2 c2t3 c2t4 c2t5

To refer to an element of the array later with an array reference, you can use the array name and

subscripts. Always specify the row you want first, and then the column. Separate the two numbers with a

comma. The following table lists some of the array references for the previous example:

Array References for array TEMPRG

Variable Array Reference

c1t1 temprg{1,1}

c1t2 temprg{1,2}

c2t2 temprg{2,2}

c2t5 temprg{2,5}

In summary, listing the dimensions of arrays works like the following:

 One-dimensional array: array x(cols)

 Two-dimensional array: array y(rows,cols)

 Three-dimensional array: array z(levels, rows, cols)

USING NESTED DO LOOPS

Multidimensional arrays are usually processed inside nested Do loops.

For example, a two-dimensional array can be processed as follows:

 Do index-variable-1 = 1 to number of rows;

 Do index-variable-2=1 to number of columns;

 more SAS statements …

 End;

 End;

An array reference can use two or more index variables as the subscript to refer to two or more

Multi-Dimensional Arrays: Add Derived Parameters, continued

4

dimensions of an array. Use the following form:

array-name {index-variable-1, …,index-variable-n}

The following example creates an array that contains fifteen variables- five temperature measures (t1
through t5) from three cities (c1, c2, c3). The DATA step contains two DO loops.

A do loop is needed for each dimension, thus two do loops are specified below, one for the rows (which is
represented by i and set from 1 to 3) and one for the columns (represented by j and set from 1 to 5).
Note, if you make i reference the rows (1 to 3), then i should be put in the first position in the array.

The outer DO loop (DO I=1 TO 3) processes the inner DO loop thrice. The inner DO loop (DO J=1 TO 5)
applies the ROUND function to all the variables in one row. For each iteration of the DO loops, SAS
substitutes the value of the array element corresponding to the current values of I and J.

options linesize=80 pagesize=60;

data temps;

 array temprg{3,5} c1t1-c1t5 c2t1-c2t5 c3t1-c3t5;

 do i=1 to 3;

 do j=1 to 5;

 temprg{i,j}=round(temprg{i,j});

 end;

 end;

 run;

The previous example can also use the DIM function to produce the same result:

do

i=1 to dim1(temprg);

 do j=1 to dim2(temprg);

 temprg{i,j}=round(temprg{i,j});

 end;

end;

The value of DIM1(TEMPRG) is 3; the value of DIM2(TEMPRG) is 5.

Multi-Dimensional Arrays: Add Derived Parameters, continued

5

APPLICATION IN CLINICAL TRIAL

An example of application of Two-Dimensional arrays to derive parameters in laboratory analysis dataset

PROGRAMMING SPECIFICATIONS

As per the Programming specifications, 24 parameters are required to add in ADLB (lab) dataset. Table
1, is an example of the parameters required.

Table 1: Programming Specifications

DATA:

Dataset 1: Lab Analysis Dataset

Multi-Dimensional Arrays: Add Derived Parameters, continued

6

USE OF NESTED ARRAYS

Here is an example of use of nested arrays where the parameters that are required as per the
programming specifications are derived.

Output 1: Ex. Multi-Dimensional Array

Output 2: Dataset with Added Parameters

Multi-Dimensional Arrays: Add Derived Parameters, continued

7

BENEFITS:

Use of Multidimensional arrays reduces lines of code, and is easier to maintain. It is less prone to error, the review of
code is quicker and the program is efficient.

CONCLUSION

When there are large number of parameters to derive, SAS two-dimensional arrays can provide a great
deal of flexibility and increases the efficiency of program.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Siddharth Kumar Mogra
GCE Solutions, Inc
DLF Towers, New Delhi
New Delhi 110001

 Work Phone: 9727583226
Email: Siddharth.kumar@gcesolutions.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

