
1

PharmaSUG 2017 - Paper DA06

Check Your Data: Tools for Automating Data Assessment

Paul Stutzman, Axio Research LLC

ABSTRACT

This paper presents tools that can be employed to check the consistency and validity of data, and it
discusses building blocks for automating these tasks. Individually or in combination, these components
can be used to check data within data sets, across data sets, and over time.

It is important to carefully examine data to ensure consistency and accuracy. This can be a time-
consuming process, so automating these tasks can be of great value. These data checking tasks range
from simple (e.g. making sure related variable pairs like --TEST/--TESTCD are consistent within a data
set) to more complex (e.g. seeing if VISIT/VISITNUM pairs are consistent across all data sets, or looking
at how the structure of a set of data sets and the information they contain change over time). Regardless
of the complexity, there are some fundamental building blocks that can help automate these processes.

INTRODUCTION

This paper starts with some brief examples of tools that can be useful when assessing data. These
examples include tools for assessing data within and across a set of data sets, tools that assess how data
and data structures change over time, and tools that examine the timestamps of related objects. It also
discusses ways automation can improve these tools.

The main focus of the paper is on creating these tools. It discusses SAS®-based components for getting
information about data sets, variables, and the information they contain. It shows techniques for
combining and presenting information from these components in meaningfully ways.

Within the context of this paper, “automation” refers to programmatically determining data sets, variables,
and/or data of interest and performing analyses based on these findings. One example would be
programmatically finding all data sets that contain visit and visit number variable pairs, and seeing if the
values in these pairs are consistent within and across a set of data sets. Implementation of the Clinical
Data Interchange Standards Consortium (CDISC) Study Data Tabulation Model (SDTM) and Analysis
Data Model (ADaM) standards can greatly simplify these automation tasks, since they enforce
consistency in the attributes and content of data sets and variables.

TOOLS FOR ASSESSING DATA

This section briefly describes some tools that can be used to assess data. It also discusses how
automating these tools can be beneficial. Subsequent sections describe components that can used to
build these tools, and how these example tools were built.

The goal is not to provide a comprehensive list of tools. Rather, it is to show some possibilities and to
inspire other creative uses of the building blocks that follow.

ASSESSING RELATED VARIABLES WITHIN DATA SETS

Some of the most straight-forward and easiest data assessment tools to implement are programs that
check the content of related variables within individual data sets to ensure consistency. A few examples
include VISIT/VISITNUM, --TEST/--TESTCD, and --TEST/--STRESU variable pairs from SDTM compliant
domains; QNAM/QLABEL variable pairs in SDTM compliant supplemental qualifier domains; and
PARAM/PARAMCD/PARAMN variables in ADaM compliant analysis data sets.

As mentioned, these programs are easy to write for individual data sets or domains. However, a great
deal of power and efficiency can be gained when these programs are automated – when they
programmatically identify which data sets or domains contain the variables of interest, when they
automatically perform checks for consistency, and when they present the results in a comprehensive,
concise and effective manner.

Check Your Data: Tools for Automating Data Assessment, continued

2

ASSESSING RELATED VARIABLES ACROSS DATA SETS

A slightly more complex set of assessment tools involve looking at related variables across multiple data
sets or domains. One example is checking all VISIT/VISITNUM variable pairs to ensure consistency
across all SDTM domains within a study. Discrepancies can be highlighted in the output in order to make
them more obvious. Sample output from a program that does this is shown as Output 1.

Output 1: Output from a VISIT/VISITNUM checking program

The automation component programmatically determines which domains have VISIT/VISITNUM variable
pairs, it finds the all the values contained in those pairs, it checks for consistency, and it presents the
results effectively.

ASSESSING RELATED VARIABLES ACROSS TIME

A variant of checking related variables across multiple data sets or domains is checking related variables
across different versions of the same data set or domain over time. This can be invaluable for ensuring
consistency between different data transfers or snapshots. Output 2 shows an excerpt from output that
compares values of the related variables QLABEL and QNAM from SDTM supplemental qualifier
domains, with their corresponding domains from a previous data snapshot.

Output 2. Output from a QLABEL/QNAM checking program

Within each domain, it identifies value pairs that only appear in one of the snapshots, and those that
appear in both. The automation piece consists of programmatically determining which supplemental
qualifier domains appear in both transfers, performing the comparisons, and presenting the results of the
comparisons effectively.

ASSESSING ALL DATA SETS AND VARIABLES OVER TIME

Assessing structural and data content changes that happen between data transfers and snapshots can
be extremely important. It can be critical to know if data sets or variables have been added or omitted, or
if variable attributes have changed. Evaluating how the number of observations in each data set change
is also important. Often it is necessary to know if new or different values are present in categorical
variables, or if numeric variables’ ranges have changed. These are just some of the assessments that
can be done when evaluating sets of data over time.

Check Your Data: Tools for Automating Data Assessment, continued

3

This is a lot of information, so one effective way of presenting it is in individual spreadsheets within a
Microsoft EXCEL workbook. Particulars regarding the specific information in these spreadsheets was
presented in a previous PharmaSUG paper (Stutzman, 2016). Automation pieces include
programmatically determining and comparing the data sets and variables in each transfer, identifying and
comparing the values contained in categorical and numeric variables, and presenting the results.

ASSESSING CHRONOLIGICAL RELATIONSHIPS

It can be important to assess the chronological relationship between programs, their output, and their
logs. Information about test or quality control (QC) programs, their output, and their logs can be added,
providing a snapshot of the chronology of programming, output generation and QC. Example output is
shown in Output 3.

Output 3. Output from a chronology checking program

Automation is accomplished by simply pointing the tool at a set of folders, and allowing standard folder
structures and file naming conventions to drive the object and date comparisons.

COMPONENTS FOR BUILDING AND AUTOMATING ASSESSMENT TOOLS

This section describes components that can be used to create assessment tools like the ones described
above. All these components are SAS-based. In a few instances (e.g. pipes) the specifics relate to SAS
running in a Windows environment, but the concepts apply to any operating system.

STRUCTURAL INFORMATION

Information related to the structure of SAS data sets and their variables is important for many types of
assessments. In addition to providing information that can be assessed directly, it is also a key to
automation. Specifically, it enables programs to determine the data sets and variables to be assessed.

Structural information comes from three main sources: DICTIONARY tables, the CONTENTS procedure,
and file system information gathered through pipes.

DICTIONARY Tables

SAS provides read-only access to a number of tables called DICTIONARY tables. They contain a wealth
of information about the SAS environment and SAS data sets. Some of the most pertinent information for
data assessment comes from the COLUMNS DICTIONARY table, which describes the all the variables in
all data sets in the currently assigned LIBNAMEs.

Unlike normal SAS data sets, DICTIONARY tables can only be read by the SQL procedure. The
following PROC SQL statements read the COLUMNS DICTIONARY table:

create table columns as

select *

from dictionary.columns

where libname ne "WORK";

The following fields in the COLUMNS table are of particular interest: LIBNAME, MEMNAME (data set
name), NAME (variable name), TYPE, LENGTH, and LABEL. This information is useful for making
comparisons between data sets and data transfers/snapshots. It can also be used to automate
assessments by determining, for example, which data sets contain specific variables or sets of variables.

Check Your Data: Tools for Automating Data Assessment, continued

4

The CONTENTS Procedure

PROC CONTENTS can provide similar information to the COLUMNS DICTIONARY table by using the
OUT= option and the _ALL_ keyword on the DATA= option as follows:

proc contents data=Old._all_ noprint out=OldData;

run;

In this example, all data set and variable information from the data sets in the library Old will be written to
a data set named OldData.

In addition to the information available in the COLUMNS DICTIONARY table, the PROC CONTENTS
output also contains information about the data sets themselves: the number of observations they
contain, their creation and last modification dates, etc. Unlike DICTIONARY tables, the resulting data set
can be read by DATA steps and regular SAS procedures – not just PROC SQL.

As with DICTIONARY table information, this information is useful for making comparisons between data
sets and data transfers/snapshots, and it can also be used to automate assessments.

Pipes

Pipes provide the ability to submit commands to the operating system, and they make the output from
those commands available via FILENAME statements. The following FILENAME statement will submit a
Windows DIR command to read the C:\SASData folder and all its subfolders (by using the “/s” option):

filename DirInfo pipe "dir C:\SASData /s" lrecl=32767;

Output from the DIR command, just as it would appear in a Windows COMMAND window, will be
available from the DirInfo FILENAME. It can be read as follows:

data Dir;

 length InRec $256;

 infile DirInfo length=LRecl;

 input InRec $varying256. LRecl;

Once this data has been parsed, the operating system’s information about all files in this folder (and its
subfolders) is available. Last modification dates and file sizes are of particular interest. This information
is useful when assessing information about SAS program output, logs, and the programs themselves.

INFORMATION ABOUT DATA

In addition to obtaining information about the structure of data sets and the variables they contain, it is
equally important to assess the values within these data sets. For the examples in this paper, this
information comes primarily from the SUMMARY or MEANS procedures or from the FREQ procedure.

ODS OUTPUT and ODS TRACE

In many cases, the information needed from a SAS procedure can be obtained by generating output from
the procedure directly, often with an OUT= option. However, some procedures can provide much more
information than just what is contained in their OUT= output data sets. ODS OUTPUT and ODS TRACE
provide the means for accessing this information programmatically.

ODS TRACE writes the names of the pieces of information available from SAS procedures to the SAS
log. The following example shows how to find the names of the information that is available when the
NLEVELS option is included in a PROC FREQ step:

ods trace on;

proc freq data=DataSet1 nlevels;

 tables Var1;

run;

ods trace off;

The resulting output that is written to the SAS log is shown in Output 4:

Check Your Data: Tools for Automating Data Assessment, continued

5

Output 4. SAS log output from an ODS TRACE of PROC FREQ’s NLEVELS option

Once the name of the output is known (in this case it is NLevels) the ODS TRACE statements can be
removed and an ODS OUTPUT statement can be added before the PROC of interest, as in the following:

ods output NLevels=Levels;

proc freq data=DataSet1 nlevels;

 tables Var1;

run;

After this code is run, NLevels information will reside in a data set named Levels.

Note: ODS OUTPUT will not produce an output data set when a SAS procedure’s NOPRINT option is
used. NOPRINT can be quite useful for suppressing printed (textual) output from procedure steps within
automated data assessment programs, since these procedures might be called many times, and their
printed output is of no use. A work-around is to use ODS EXCLUDE statements before and after SAS
procedure steps as follows:

ods exclude all;

proc freq ...;

 ...

run;

ods exclude none;

ODS EXCLUDE ALL prevents the creation of textual output. This is similar to how adding the NOPRINT
option to the PROC FREQ statement would have worked.

The SUMMARY and MEANS Procedures

Both PROC SUMMARY and PROC MEANS produce simple descriptive statistics, and their output is
available for assessment via the OUT= option of an OUTPUT statement. The following example creates
a data set with simple descriptive statistics for all numeric variables in DataSet1:

proc means data=DataSet1 noprint;

 var _NUMERIC_;

 output out=Means;

run;

In this case, the output data set (Means) could be compared with the output from a different data set to
see if same named variables have similar values and ranges.

The FREQ Procedure

PROC FREQ is the primary tool for assessing related variables. It can also be used to identify categorical
variables and to assess their values.

The OUT= option of the TABLES statement can be used to gather the information for related variables.
The following example gets frequencies and percentages for all matched values of VISITNUM and VISIT
in the LB SDTM domain:

Check Your Data: Tools for Automating Data Assessment, continued

6

proc freq data=SDTM.LB noprint;

 tables VISITNUM * VISIT / out=LBVis;

run;

The resulting output will be written to LBVis. This data set could be checked for consistency within the LB
domain itself, it could be compared to visit information from previous data snapshots, or it could be
checked for consistency with other domains.

PROC FREQ can create two particularly useful output data sets that are only available via ODS
OUTPUT: OneWayFreqs and NLevels. OneWayFreqs provides one way frequency information for all
variables that are included on a TABLES statement. The NLevels data set contains information about the
number of unique values that variables contain.

PROC FREQ’s OneWayFreqs Output

Given the following PROC FREQ TABLES statement:

tables Var1 Var2 Var3 / out=Freqs;

The resulting output data set (Freqs) will only contain frequency information for the last variable specified
(Var3). The OneWayFreqs output data set provides a way around this. Placing the following statement
before a PROC FREQ step will cause one-way frequency information to be written to AllFreqs for all
variables in the previous TABLES statement

ods output OneWayFreqs=AllFreqs;

Be sure to heed the note regarding NOPRINT in the ODS OUTPUT and ODS TRACE section of this
paper.

PROC FREQ’s NLEVELS Option and NLevels Output

NLEVELS determines the number of unique values one or more variables contain. For example, if all the
values of variable SEX are either “F”, “M”, or “ ”, the NLEVELS output would show three levels (two non-
missing levels and one missing level). The following PROC FREQ step would accomplish this:

ods output NLevels=Levels;

proc freq data=Analysis.ADSL nlevels;

 tables SEX;

run;

The resulting output data set (Levels) is shown as Output 5.

Output 5. NLevels output data set (Levels) for SEX

Comparing the number of levels to a threshold value can be useful for programmatically identifying
variables that are likely to be categorical. The values of these variables can be tracked over time to see if
categorical values are added, removed, or changed.

Be sure to heed the note regarding NOPRINT in the ODS OUTPUT and ODS TRACE section of this
paper.

OUTPUT AND FORMATTING

There are a number of ways to effectively present the results of data assessment tools. ODS output in
RTF, PDF, or HTML format can each be effective in many circumstances. The idea is to present the
resulting information in a clear and concise manner in which discrepancies and issues are easily spotted.

Two tools that can assist are traffic lighting and making use of the ODS EXCEL XP tagset.

Check Your Data: Tools for Automating Data Assessment, continued

7

Traffic Lighting

“Traffic Lighting” within the context of this paper is the use of colors, bolding, etc. to highlight items of
interest in order to make them easily identifiable. Automated tools, like the ones presented in this paper,
can produce many pages of output. It is important that items of concern or interest jump off the page.
Items of concern might include differences in VISIT/VISITNUM pairs across SDTM domains, variables
that are missing in one group of data sets, or instances where a program’s log predates the program
itself.

One way to highlight a value in the REPORT procedure’s output is to provide ODS formatting information
along with a character value to be displayed. For example, if the current value in the variable Column2 is
to appear bolded and in red, the following statement could accomplish this:

Column2 = cat("~{style [foreground=red fontweight=bold]", Column2, "}");

Note that PROTECTSPECIALCHARS=OFF must appear in the PROC REPORT DEFINE statements for
variables that contain ODS formatting information, like the variable Column2 in the example above.

There are a number of other techniques for traffic lighting including the use of SAS FORMATS, PROC
REPORT COMPUTE blocks, and CALL DEFINE. Some excellent papers have been written about traffic
lighting in general (Hadden, 2006) and about traffic lighting within EXCEL workbooks (Black, 2011).

The ODS EXCEL XP Tagset

The ODS EXCEL XP tagset provides a powerful method for creating Microsoft EXCEL spreadsheets from
within SAS. Automated tools can create large volumes of output, and spreadsheets within an EXCEL
workbook can organize and present this information in an effective way. The specifics of using the ODS
EXCEL XP tagset are beyond the scope of this paper, but some excellent papers have already been
written on this topic (DelGobbo, 2014 and 2015).

AUTOMATION

The following building blocks are particularly helpful for automating assessment tools. Methods for
passing values of interest via macro variables using CALL SYMPUT and PROC SQL’s INTO keyword are
discussed. CALL EXECUTE, which enables the execution of macros, DATA steps, and SAS procedures
from within DATA steps is also described, as is the use of the _ALL_, _NUMERIC_, and _CHARACTER_
keywords.

Setting Macro Variables

Macro variable values can be set within macro code, but sometimes it is easier or more effective to do so
in DATA steps or with PROC SQL steps. CALL SYMPUT performs this function in DATA steps. The
INTO keyword of PROC SQL’s SELECT statements provides similar functionality.

CALL SYMPUT

Sometimes the easiest way to determine the names of a group of data sets or variables of interest is with
a DATA step. In these cases, using CALL SYMPUT to place these names into macro variables for
subsequent processing can be effective. For example, the following call sets the macro variable Domains
to the value contained in the DATA step variable DomNames:

call symput("Domains", strip(DomNames));

PROC SQL’s INTO keyword

PROC SQL’s INTO keyword is quite powerful for creating macro variables for automation. One of its
common uses in automation is to provide a list of data sets to process. The following code does this:

proc sql noprint;

 select distinct memname into: DataSets separated by " "

 from dictionary.columns

 where libname eq "ANALYSIS";

quit;

Check Your Data: Tools for Automating Data Assessment, continued

8

In this case all distinct values of MEMNAME (data set name) from the LIBNAME called “ANALYSIS” are
loaded into a macro variable named DataSets. The data set names in DataSets are separated by
spaces. Subsequent macros, DATA steps, or SAS procedures could use &DataSets for analyses.

CALL EXECUTE

CALL EXECUTE is a powerful tool that enables users to call SAS macros and to execute DATA steps
and SAS procedures from within DATA steps. This can be quite useful when automating assessment
tools.

For example, assume there is a macro called %QCheck that checks QNAM/QLABEL variable pairs in a
pair of STDM supplemental qualifier domains (perhaps a current domain and its previous version). A
data set containing the names of all domains that contain QNAM/QLABEL variable pairs could be passed
to a DATA _NULL_ step, and CALL EXECUTE could run %QCheck for each of the domains as follows:

data _null_;

 set SUPPDoms;

 call execute('%QCheck(domain=' || strip(memname) || ');');

run;

Although this example could be easily done using macro variables and a macro, CALL EXECUTE can
create quite complex invocations, including dynamically generating and executing entire DATA and
PROC steps. It can also be more straight-forward for less experienced SAS programmers to understand.

ALL, _NUMERIC_, and _CHARACTER_

Sometimes it is necessary to specify all the variables in a data set, all the numeric variables in a data set,
or all the character variables in a data set without knowing (or caring) what the variables’ names are. The
ALL, _NUMERIC_, and _CHARACTER_ keywords perform this function. For example, the following
statements create two arrays: Num which contains all the numeric variables in a data set and Char which
contains all the character variables:

array Num{*} _NUMERIC_;

array Char{*} $ _CHARACTER_;

ALL can also be used in conjunction with a LIBNAME’s name on the DATA= option of some SAS
procedures, in order to specify all data sets in a library, as in:

proc contents data=SDTM._all_ ...;

BUILDING THE EXAMPLE TOOLS USING THESE COMPONENTS

This section describes the steps needed to create the examples presented in the Tools for Assessing
Data section above. It also identifies how the components described above can be employed.

ASSESSING RELATED VARIABLES WITHIN DATA SETS

This is the simplest type of analysis tool described in this paper. It involves identifying the data sets that
contain a pair or group of related variables (e.g. VISIT and VISITNUM), then seeing if these variables’
values are consistent within each data set. The specific programming steps are:

1. A PROC SQL step reads the COLUMNS DICTIONARY table, or a PROC CONTENTS step with
libname._ALL_ on its DATA= option is used to get a list of all data sets and their variables.

2. A DATA step identifies data sets that contain the related variables of interest.

3. CALL EXECUTE is called once for each identified data set, to submit a PROC SQL step that finds all
the distinct paired values of the related variables.

4. A DATA step identifies inconsistent mappings of the variables’ values within each data set, and it
provides ODS formatting information to highlight any discrepancies.

5. PROC REPORT is used to present the results.

Check Your Data: Tools for Automating Data Assessment, continued

9

ASSESSING RELATED VARIABLES ACROSS DATA SETS

The sample tool described here checks VISIT/VISITNUM variable pairs across a set of SDTM domains.
The specific programming steps are:

1. Steps 1 through 3 above are performed for VISIT and VISITNUM. Each resulting data set includes
the name of its source domain and its VISIT/VISITNUM pair’s values.

2. A DATA step merges these data sets by VISIT, checks for differences in each VISIT’s VISITNUM
values across all domains, and adds ODS formatting information to highlight any discrepancies.

3. PROC REPORT is used to present the results.

ASSESSING RELATED VARIABLES ACROSS TIME

The sample tool described here compares QNAM/QLABLE variable pairs’ values within a set of SDTM
supplemental qualifier domains (SUPP--) with the values found in a previous version of those same
domains. It assumes the new domains are kept in one folder, and the previous version of the domains is
kept in a separate folder. The specific programming steps are:

1. A PROC SQL step reads the COLUMNS DICTIONARY table to find all variables named QNAM or
QLABEL in both the new and previous libraries (folders), where the data set name (MEMNAME)
starts with “SUPP” and is six characters long.

2. A DATA step uses this information to identify domains that have both QNAM and QLABEL variables.

3. CALL EXECUTE is used to run a comparison macro for each of the identified domains. The
comparison macro:

a. Uses PROC SQL to find the distinct QNAM/QLABEL paired values in the new domain

b. Uses PROC SQL to find the distinct QNAM/QLABEL paired values in the previous domain

c. Uses a DATA step to merge these data sets by QLABEL, check for differences in each QLABEL’s
QNAM values, and add ODS formatting information to highlight any discrepancies

d. Executes PROC REPORT to present the results

ASSESSING ALL DATA SETS AND VARIABLES OVER TIME

The sample tool described here assesses structural and data content changes that happen between two
data transfers or snapshots. The resulting output is presented as a series of spreadsheets within a
Microsoft EXCEL workbook. The exact details of the information shown in these spreadsheets was
presented in a previous PharmaSUG paper (Stutzman, 2016).

The tool assumes that the new transfer/snapshot is kept in one folder, and the previous version is kept in
a separate folder. The structural changes this tool identifies include:

 New or missing data sets

 New or missing variables in each data set

 Variable attributes that have changed

The data changes it evaluates include:

 Determining if the number of observations in each data set have increased or decreased

 Checking for new values in categorical variables

 Providing simple descriptive statistics for numeric variables in order to identify potential outliers

The specific programming steps are:

1. PROC CONTENTS steps gets data set and variable information for both the old and new snapshots.

2. PROC SQL steps creates two pairs of data sets: lists of data sets (and their record counts) in the old

Check Your Data: Tools for Automating Data Assessment, continued

10

and new, and lists of variables (and their attributes) in the old and new.

3. A pair of DATA steps merge the pairs of data sets just created. They look for and highlight
mismatches between data sets and variables in the old and new snapshots, and they create data sets
for subsequent reporting.

4. The ODS EXCEL XP tagset environment is set up, and an output EXCEL workbook (in XML format)
is opened.

5. A PROC REPORT step creates a data sets level spreadsheet. It shows all data sets and the number
of observations each data set contains. This spreadsheet and the ones created in the next two steps
are based on the data sets created in Step 3 above.

6. PROC REPORT steps create two spreadsheets: one that shows all variables that only appear in the
old snapshot, and one that shows all variables that only appear in the new snapshot.

7. A PROC REPORT step creates a spreadsheet that shows all variables that have attributes that differ
between snapshots.

8. A DATA _NULL_ step reads the list of all variables that was created in Step 3 above. It uses BY
processing to perform the following tasks for each data set in the new snapshot individually:

a. A macro variable that contains a list of all numeric variables in the data set is created using CALL
SYMPUT.

b. After all records for a data set have been read, CALL EXECUTE is used to call a categorical
values comparison macro for the data set. This macro:

i. Uses ODS OUTPUT to get NLEVELS information from PROC FREQ for all variables in the
old and new versions of the data set. NLEVELS determines how many unique values are
found in each variable.

ii. A DATA step merges the old and new NLEVELS data sets by variable name. It checks to
see if the NVALUES values for each variable are less than a pre-specified threshold value.
Variables that meet this criteria are assumed to be categorical, and a macro variable that
contains all the categorical variables’ names is created.

iii. CALL EXECUTE runs a macro that compares all the categorical variables’ values in the new
snapshot with their values on the old snapshot. This macro accomplishes this by using ODS
OUTPUT statements to get OneWayFreqs information from PROC FREQ steps that include
all the categorical variables’ names on their TABLES statements. There is one PROC FREQ
step for the old snapshot and one PROC FREQ step for the new snapshot.

The resulting OneWayFreqs data sets are merged by variable name and value in a DATA
step. Values are compared, and ODS formatting information is added to highlight any
discrepancies.

iv. A PROC REPORT step creates a spreadsheet for the data set. It shows all categorical
variables and their values.

c. CALL EXECUTE is also used to call a macro that uses PROC MEANS, a DATA step, and PROC
REPORT to create a spreadsheet that shows simple descriptive statistics for all numeric
variables.

9. The XML workbook is opened in Microsoft EXCEL so it can be saved as an XLSX workbook.

ASSESSING CHRONOLIGICAL RELATIONSHIPS

The sample tool described here checks the chronological relationship between programs, their output,
and their logs. It also includes information about test or quality control (QC) programs and their output
and logs. Consistent folder structures and file naming conventions are essential for this type of
assessment.

Check Your Data: Tools for Automating Data Assessment, continued

11

Before programming begins, a set of content and temporal rules should be established. Examples could
include:

 Programs must have corresponding output and logs.

 A program’s timestamp must precede the timestamps for its output and its log.

 A QC program’s timestamp must come after the timestamp of the program it validates.

Once these rules have been established, a tool can be developed. The specific programming steps are:

1. Pipes are used to submit a series of Windows DIR commands (or corresponding commands, if in a
non-Windows environment) to read all the relevant file system folders – gathering directory
information for the all the files of interest: programs, output, and logs.

2. DATA steps parse the information form the FILENAMEs that established the pipes. The resulting
data sets contain timestamp information for all items of interest. They also contain a common key
value (perhaps the programs’ output object names) that uniquely identifies related programs, QC
programs, and their associated logs and output.

3. A DATA step merges the previously created data sets by the common key value, checks for
deviations from the content and temporal rules that were developed beforehand, and adds ODS
formatting information to highlight any discrepancies.

4. A PROC REPORT step presents the results.

CONCLUSION

The use of programmatic tools to assess data is an important part of ensuring consistency and quality.
The more these tools can be automated, the more powerful and efficient these assessment processes
become.

As mentioned previously, the goal was not to provide a comprehensive list of tools. The goal was to
show some possibilities and to inspire other creative uses of the building blocks described herein.

REFERENCES

Black, Steven. 2011. “Excel Traffic Lighting and Street Paving Simplified.” Proceedings of the
PharmaSUG 2011 Conference. Nashville, TN: PharmaSUG. Available at
http://www.pharmasug.org/proceedings/2011/TU/PharmaSUG-2011-TU03.pdf.

DelGobbo, Vincent. 2014. "Creating Multi-Sheet Microsoft Excel Workbooks with SAS®: The Basics and
Beyond Part 1." Proceedings of the SAS Global Forum 2014 Conference. Cary, NC: SAS Institute Inc.
Available at http://support.sas.com/resources/papers/proceedings14/SAS050-2014.pdf.

DelGobbo, Vincent. 2015. “Creating Multi-Sheet Microsoft Excel Workbooks with SAS®: The Basics and
Beyond. Part 2.” Proceedings of the PharmaSUG 2015 Conference. Orlando, FL: SAS Institute Inc.
Available at http://www.pharmasug.org/proceedings/2015/HT/PharmaSUG-2015-HT08-SAS.pdf.

Hadden, Louise. 2006. “STOP! WAIT! GO!: See What Traffic-Lighting Can Do For You!” Proceedings of
the SUGI 31 Conference. San Francisco, CA: SUGI. Available at
http://www2.sas.com/proceedings/sugi31/142-31.pdf.

Lafler, Kirk Paul. 2005. “Exploring DICTIONARY Tables and Views.” Proceedings of the SUGI 30
Conference. Philadelphia, PA: SUGI. Available at http://www2.sas.com/proceedings/sugi30/070-30.pdf.

Sharma, Rajkumar. 2008. “CALL EXECUTE: A Hidden Treasure and Powerful Function.” Proceedings of
the PharmaSUG 2008 Conference. Atlanta, GA: PharmaSUG. Available at
http://www.lexjansen.com/pharmasug/2008/po/PO11.pdf.

Stutzman, Paul. 2016. “Handling Interim and Incomplete Data in a Clinical Trials Setting.” Proceedings of
the PharmaSUG 2016 Conference. Denver, CO: PharmaSUG. Available at
http://www.pharmasug.org/proceedings/2016/IB/PharmaSUG-2016-IB12.pdf.

http://www.pharmasug.org/proceedings/2011/TU/PharmaSUG-2011-TU03.pdf
http://support.sas.com/resources/papers/proceedings14/SAS050-2014.pdf
http://www.pharmasug.org/proceedings/2015/HT/PharmaSUG-2015-HT08-SAS.pdf
http://www2.sas.com/proceedings/sugi31/142-31.pdf
http://www2.sas.com/proceedings/sugi30/070-30.pdf
http://www.lexjansen.com/pharmasug/2008/po/PO11.pdf
http://www.pharmasug.org/proceedings/2016/IB/PharmaSUG-2016-IB12.pdf

Check Your Data: Tools for Automating Data Assessment, continued

12

Varney, Brian. 2008. “Check out These Pipes: Using Microsoft Windows Commands from SAS®.”
Proceedings of the SAS Global Forum 2008 Conference. San Antonio, TX: SAS Global Forum. Available
at http://www2.sas.com/proceedings/forum2008/092-2008.pdf.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Paul Stutzman
Axio Research, LLC
pauls@axioresearch.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://www2.sas.com/proceedings/forum2008/092-2008.pdf
mailto:pauls@axioresearch.com

