
1

PharmaSUG 2017 - Paper BB20

Automating Title and Footnote Extraction Using Visual Basic for
Applications (VBA) and SAS™.

Tony Cardozo, Spaulding Clinical

ABSTRACT
When developing tables, figures and listings (TFLs) for clinical trial data we must ensure we are providing
outputs that are consistent with the Statistical Analysis Plan (SAP) shells. Titles and footnotes, among
other key elements, need a high level of accuracy to minimize review cycles with the statistician and
overall development time. Depending on your current process, this may involve copying and pasting
every title and footnote into a centralized macro or individual programs. This may be done by multiple
programmers and can be a time-consuming process that leaves opportunities for human error. When the
TFL shells are created in Microsoft Word, title and footnote extraction can be done programmatically
utilizing Visual Basic for Applications (VBA) and SAS™. In this paper, we’ll discuss what VBA is, how to
set it up and program title and footnote extraction. Also, we’ll cover how to process the text streams to
catch special characters (≤, ≥, µ, etc) and provide SAS™ Output Delivery System (ODS) friendly
equivalents. Additionally, we will go over some assumptions made about the shells and how post
processing with SAS™ can make the whole title/footnote process from shells to TFLs dynamic and
automated.

INTRODUCTION
Processes that help reduce development time while increasing accuracy are essential to deliver high
quality deliverables on time. The process of extracting titles and footnotes from a TFL shell document can
be time-consuming and error prone. In this paper, we’ll discuss the utilization of VBA and SAS™ to
significantly decrease the time needed for title/footnote extraction while increase accuracy. This process
will allow for conversion of sub/super scripts and special characters to ODS equivalent values. The VBA
UTF-8 friendly text output will be further processed to structure the values into a format that will flow into
previously established processes for displaying the titles and footnotes in the corresponding output.

SHELL ASSUMPTIONS
The process outlined in this paper requires a certain structure in the TFL shells. Although the program
can be modified to adapt to different shell structures, a certain level of agreement and consistency is
necessary in TFL shell development to deliver a consistent extraction output.

GENERAL ASSUMPTIONS
General TFL shell assumptions include:

• TFL shells are developed in MS Word or other software that supports VBA.

• Key words (Table, Listing, Figure) are used in output titles.

• Each new output is in a new section break.

• Title and Footnotes are placed in the Header and Footer sections of the Word document.

Each output shell can have as many titles and footnotes as needed. Superscripts and subscripts are
supported and converted dynamically. However, special characters will require additional lines of code as
they are used.

Automating Title and Footnote Extraction Using Visual Basic for Applications (VBA) and SAS™, continued

2

VISUAL BASIC FOR APPLICATIONS (VBA)
Visual Basic for Applications is a programming language that is embedded in individual Microsoft
applications such as Word and Excel. Its syntax is very similar to Visual Basic (VB), but unlike VB, VBA
cannot compile standalone executable programs. VBA is an object based language, meaning different
parts of a document are consider their own object. Each object has properties, methods and attributes
that can be manipulated with dot notation. Microsoft applications have a built-in VBA editor that can be
opened by pressing Alt+F11 in an open application instance. A walkthrough of the editor environment is
not within the scope of this paper but can be easily found online.

VBA DOT NOTATION
VBA uses dot notation to separate the various things that can be accessed and manipulated with the
programming language. Dot notation is hierarchical, and usually starts with an object followed by a dot.
After the dot, it specifies what can be done with the object, or what can be manipulated. The available
actions are called methods. The object can also be manipulated via properties or parameters.

MSDN LIBRARY
Starting out, the vast number of different methods and parameters available can be a little overwhelming.
Luckily, the Microsoft Development Network (MSDN) has great reference tools and documentation. The
VBA MSDN Library (https://msdn.microsoft.com/en-us/library/office/gg264383.aspx) has examples,
conceptual overviews, method definitions, how-to topics and language reference that help during the
developmental process.

PROGRAMMING TITLE FOOTNOTE EXTRACTION
Once TFL shells are provided that meet the basic assumptions mentioned above we are ready to start the
extraction process. The extraction process needs to perform a couple different tasks before a final text file
can be output. Since the title and footnotes were placed into the header/footer sections of the document,
they are not directly available for some VBA methods. To further complicate it, since each header/footer
for a new table is within a new document section so we cannot use some global methods either.

The extraction must perform the following task:

• Using a find and replace process, dynamically convert all superscripts and subscripts to ODS
commands.

• Determine the number of pages and sections to extract all text in the header/footer sections.

• Convert special characters to the ODS equivalents.

• Output UTF-8 encoded text file.

Please note, the process as outlined in this paper is destructive to the shell document opened. It should
be done on a secondary copy or make sure not to save changes to the document after processing is
complete. There are ways around this that will be discussed briefly in the Future Development section but
those options are outside the scope of this paper.

SETTING UP THE EXTRACTION PROCESS
Before we can start manipulating the different parts of the document, some variables will need to be
initialized:

Dim oDoc As Word.Document
Dim oSec As Word.Section
Dim oPageStart As Word.Range
Dim story As Word.Range
Dim iPage As Integer, iTotalPages As Integer, iSection As Integer
Dim sHeader As String, sFooter As String, sFileName As String

1

2

3

https://msdn.microsoft.com/en-us/library/office/gg264383.aspx

Automating Title and Footnote Extraction Using Visual Basic for Applications (VBA) and SAS™, continued

3

Dim fso As Object
Set fso = CreateObject("Scripting.FileSystemObject")
Dim oFile As Object
Set oFile = fso.CreateTextFile("c:\YOUR_PATH/FILENAME.txt", True, True)

Application.ScreenUpdating = False

Set oDoc = ActiveDocument

1. Create a Word Document object so the different parts of the document can be manipulated.

2. Create a Section object so each document section can be accessed.

3. Create a Range object. A Range identifies a specific portion of a document within a section.

4. Create a Scripting.FileSystemObject object to enable text file output. Define output path and set
output encoding parameters to True so a UTF-8 file is outputted.

5. Application.ScreenUpdating allows all the process to be done without wasting time updating the
screen. This allows for faster processing.

6. Set the oDoc object created in step 1 to the currently opened document.

CONVERTING SUPERSCRIPTS AND SUBSCRIPTS
Unlike special characters that have their own ASCii value, superscripts and subscripts are a format that
does not alter the characters ASCii or hexadecimal value. Since the formatting is lost when the text is
extracted, a simple replace function will not work. A find and replace function would have to be ran that is
looking for only superscripts/subscripts and convert the text to what is needed. To use find and replace
(like hitting Ctrl+H) each layer, or story in MS Word terms, must be checked.

This can be done by looping through each story and checking the ones that relate to header and footers:
For Each story In oDoc.StoryRanges
 Do
 If story.StoryType = wdPrimaryHeaderStory Or _
 story.StoryType = wdPrimaryFooterStory Or _
 story.StoryType = wdFirstPageHeaderStory Or _
 story.StoryType = wdFirstPageFooterStory Then

 ReplaceScripts story
 End If

 Set story = story.NextStoryRange
 Loop Until (story Is Nothing)
 Next;

1. Define a loop and loop through each StoryRange object in the active document.

2. Check if the current StoryRange object is one that relates to the headers or footers.

3. Run the ReplaceScripts sub-routine for the current story to replace any super/sub scripts.

4. Move to the next StoryRange object in the collection. Repeat process until all StoryRanges were
checked.

Step 3 mentions the ReplaceScripts sub-routine. A sub-routine is a user created routine that is called
from the main routine. It can be thought of as a SAS™ Macro. Like macros, a sub-routine can have
parameters or not and be called from anywhere in the program. They are useful when the same task
needs to be performed multiple times with different attributes.

4

5

6

1

2

3

4

Automating Title and Footnote Extraction Using Visual Basic for Applications (VBA) and SAS™, continued

4

ReplaceScripts and SubScripts sub-routines:
Sub ReplaceScripts(r As Range)
 'Replace Subscripts
 SubScripts r, False, True, "", "``{sub ^&}"

 'Replace Superscripts
 SubScripts r, True, False, "", "``{super ^&}"
End Sub

Sub SubScripts(r As Range, bSuper As Boolean, bSub As Boolean, stxt As
String, rtxt As String)
 r.Select
 selection.Find.ClearFormatting
 With selection.Find.Font
 .StrikeThrough = False
 .DoubleStrikeThrough = False
 .Hidden = False
 .SmallCaps = False
 .AllCaps = False
 .Superscript = bSuper
 .Subscript = bSub
 End With
 selection.Find.Replacement.ClearFormatting
 With selection.Find
 .Text = stxt
 .Replacement.Text = rtxt
 .Forward = True
 .Wrap = wdFindContinue
 .Format = True
 .MatchCase = False
 .MatchWholeWord = False
 .MatchWildcards = False
 .MatchSoundsLike = False
 .MatchAllWordForms = False
 End With
 selection.Find.Execute Replace:=wdReplaceAll

End Sub

1. Define the ReplaceScripts sub-routine as expecting a Range object (blue text) to be passed in.

2. Call the SubScripts sub-routine using the Range object passed in and defining bSuper (brown
text) as False and bSub (green text) as True. This will replace all the sub scripts in the
document, since stxt (purple text) is null, with rtxt (red text) ``{sub ^&} where ^& represents a
wildcard for the text found. This allows find and replace to be dynamic since the actual
subscripted text does not need to be known.

3. Same as step 2 except defined for search for the superscripts, bSuper as True and bSub as
False.

4. Define SubScripts sub-routine with range, Boolean and text parameters. Select the current range,
like highlighting in Word, so it can be manipulated.

5. Set the attributes of selection.Find.Font so that it only searches for sub or super scripts.

6. Use bSuper and bSub defined above to toggle the correct search criteria.

1

4

5

6

8

7

9

2

3

Automating Title and Footnote Extraction Using Visual Basic for Applications (VBA) and SAS™, continued

5

7. With the actual find function, define the search text (.Text) and replacement text
(.Replacement.Text) using stxt and rtxt defined in sub-routine call.

8. Set .Forward = True so the find replace function works as “replace all.” If set to false, only the first
instance of a sub/super script would be replaced.

9. Replace the text in the range selection with the text defined in the Replacement.Text attribute.

At this point, we have all the sub and scripts replaced with parsing anchor ‘``’ and OBS sub/super script
command.

LOOPING THROUGH EACH PAGE AND HEADER SECTION
The next step is to loop through each page and section to extract the actual text. This can be done by
defining a couple variables to determine the upper and lower bound of the loops.

The following code defines these values, loops through the pages, extracts the text, converts special
characters and outputs the text file:

 iTotalPages = oDoc.ComputeStatistics(wdStatisticPages)

 With oDoc

 iSection = 0

 For iPage = 1 To iTotalPages

 Set oPageStart = oDoc.GoTo(what:=wdGoToPage, _
 Which:=wdGoToAbsolute, Count:=iPage)
 Set oSec = oPageStart.Sections(1)

 If (iSection < oSec.Index) And _
 (oSec.PageSetup.DifferentFirstPageHeaderFooter) Then
 sHeader = oSec.HeaderS(wdHeaderFooterFirstPage).Range.Text
 sFooter = oSec.Footers(wdHeaderFooterFirstPage).Range.Text
 Else
 sHeader = oSec.HeaderS(wdHeaderFooterPrimary).Range.Text
 sFooter = oSec.Footers(wdHeaderFooterPrimary).Range.Text
 End If

 iSection = oSec.Index

 sHeader = Replace(sHeader, Chr(7), "")
 sFooter = Replace(sFooter, Chr(7), "")

 sFooter = Replace(sFooter, ChrW(8805), "^R'\ {\uc2\u8805 >=}'")
 sFooter = Replace(sFooter, ChrW(8804), "^R'\ {\uc2\u8804 <=}'")

 sHeader = Replace(sHeader, "``{", "^{")
 sFooter = Replace(sFooter, "``{", "^{")

 oFile.WriteLine "Page~" & iPage & "~Section~" & iSection
 WriteHeadFootLines sHeader, oFile, "Header~"
 WriteHeadFootLines sFooter, oFile, "Footer~"
 Next
 oFile.Close
 Set fso = Nothing
 Set oFile = Nothing
 End With

1

2

3

4

5

6

11

7

8

9

10

12

Automating Title and Footnote Extraction Using Visual Basic for Applications (VBA) and SAS™, continued

6

1. Create iTotalPages using the ComputeStatistics method to determine the total number of pages

in the document.

2. Define that the succeeding processes are to be performed on the oDoc object.

3. Define iSection to track the sections that have been processed.

4. Prepare a for loop to through all the pages from 1 to the value of iTotalPages.

5. Go to the current page getting processed using the GoTo method and defining the page as
Count:=iPage. Once on the correct page, select it’s content for processing.

6. Determine if the current section is the first section within the page range. Since Word treats the
first page within a section differently, the page sections need to be determined to use the correct
attributes for text extraction. If it is the first page, use (wdHeaderFooterFirstPage).Range.Text to
extract the text from the oSec.Header and oSec.Footer objects. Otherwise use
(wdHeaderFooterPrimary).Range.Text.

CHECKING FOR SPECIAL CHARACTERS
Now that the text is extracted for the current section some post extraction processing can be performed.

7. Replace carriage returns that will not import correctly to SAS™ with a blank.

8. Using the ASCii value, replace special characters with the SAS™ ODS equivalent. The ChrW
method takes the ASCii value of the character being replace.

9. Replace any other text that needs replacing. For example, the ‘^’ was the desired ODS escape
character but it could not be directly set in the SubScripts sub-routine because ‘^’ is a VBA
operator in the Find/Replace method. The SubScripts sets ‘``{‘ which can now be replaced to the
desired ‘^{‘ value without undesirable effects.

OUTPUTTING UTF-8 ENCODED TEXT FILE
10. Using the Scripting.FileSystemObject object oFile, the contents of sHeader and sFooter for the

current section/page are written to the text file defined during object creation. Adding the Page~,
~Section~, Header~ and Footer~ text will allow for easier post extraction processing.

11. Continue to the next page until all pages are processed.

12. Close the text file and clear it from memory.

POST PROCESSING WITH SAS™
At this point, there is a text file that contains all the headers and footnotes for a TFL Shell document. The
text file will look like the screen shot in Display 1.

Display 1: Example of outputted text file from extraction process.
Depending how titles and footnotes are handled, additional processing may be used to re-structure the
output as needed. The process outlined below re-structures the text in preparation to be read into a

Automating Title and Footnote Extraction Using Visual Basic for Applications (VBA) and SAS™, continued

7

macro called in the TFL programs directly. Although processes for handling titles and footnotes may differ
between companies, the same overall logic outlined below may apply in part or in its entirety.

The following code segment was used to pares the extraction text file as needed for internal application:
filename shellex "&dir_path.\&import_filename" lrecl=39562 ;

data Shell_extract;
 length extract_txt $5000;
 infile shellex dlm='|' truncover;
 input extract_txt $;
 list;

 *Compress formating characters like tabs, section breaks, etc;
 extract_txt=strip(compress(extract_txt, ,'H'));
 if extract_txt ne '';
run;

data Shell_extract2(where=(cnt >0 and program_name = '' and extract_txt ne ''))
 prg(where=(program_name ne '' and output_number ne '') keep=output_number
program_name);
 set Shell_extract;
 retain pg sec header_footer_flg output_number cnt;

 length pg sec header_footer_flg output_number program_name _temp
output_number_char $100;

 if _n_ = 1 then do; pg=''; sec=''; header_footer_flg=''; output_number='';
cnt=0; end;

 if index(extract_txt,'Program:') then
program_name=strip(scan(scan(extract_txt,2,':'),1,'.'));
 if index(extract_txt,'Source: ') then delete;
 if index(extract_txt,'Page~') then
 do;
 header_footer_flg='';
 pg=strip(scan(extract_txt,2,'~'));
 output_number='';
 cnt=0;
 end;
 if index(extract_txt,'Section~') then sec=strip(scan(extract_txt,4,'~'));
 if index(extract_txt,'Header~') and index(extract_txt,'Page')=0 then
 do;
 cnt=0;
 header_footer_flg='Title';
 end;
 if index(extract_txt,'Footer~') and index(extract_txt,'Page')=0 then
 do;
 cnt=0;
 header_footer_flg='Footer';
 extract_txt=substr(extract_txt,8);
 end;

 if strip(compress(extract_txt,'1234567890. "'))
 in('Table' 'Figure' 'Appendix' 'Listing') then
 output_number=strip(extract_txt);

 if output_number ne '' then cnt+1;

 if output_number ne '' then
 do;
 _temp=strip(compress(scan(output_number,2,''),'.'));
 output_number_char=strip(scan(output_number,1,''));

2

1

4

3

5

6

7

8

9

Automating Title and Footnote Extraction Using Visual Basic for Applications (VBA) and SAS™, continued

8

 nlen=length(_temp);

 num_levels = length(strip(scan(output_number,2,'')))-
 length(strip(compress(scan(output_number,2,''),'.')));

 array sort_levels[*] lord1-lord6;

 do __i=1 to (num_levels+1);

sort_levels[__i]=
 input(strip(scan(strip(scan(output_number,2,'')),__i,'.')),best.);

 end;

 output_number_num=input(_temp,best.);
 end;
run;

1. Import file into SAS™.

2. Remove any formatting characters that were extracted but not needed.

3. Process the imported data and create 2 output data sets. One contains all the title and footnote
information, the other has all the program names and associated table numbers for later use.

4. Create and initialize retain variables so each section can be processed and grouped as needed
per output per header and footnote.

5. Use the page anchor text (Page~) to determine when a new page begins. Set Page number
variable accordingly and re-set other retained variables to 0 or null.

6. Use the header anchor text (Header~) to determine the start of a header section and update
header_footer_flg accordingly.

7. Use the footer anchor text (Footer~) to determine the start of a Footer section and update
header_footer_flg accordingly.

8. Determine if the line being processed contains the output number.

9. For accurate sorting, break down the character table number to its individual numeric parts. For
example, ‘Table 14.10.2.3’ would break down to lord1=14, lord2=10, lord3=2 and lord4=3.

The above code will produce a data set that looks like below.

Now we can drop repeat records by output, merge on program names, add footnote records for the
outputs with 0 footnotes or any other additional processing needed for desired output.

Automating Title and Footnote Extraction Using Visual Basic for Applications (VBA) and SAS™, continued

9

Display 2: Example of fully processed headers and footers ready for TFL production.

FURTHER DEVELOPMENT
Right now, the VBA code requires Word to have the Shell document actively open. This makes for the
possibility of the changes made during the find and replace process to be accidently saved. In future
versions, the VBA code could have a Graphic User Interface (GUI) added where a file is selected, oDoc
document object is created, assigned, processed and closed without saving any changes.

The VBA code could also be transferred in a standalone VB application with its own executable file. This
would allow for an .exe file to be ran independent of MS Word.

Java could also be leveraged to run the script from the command prompt allowing for future version to be
ran completely from SAS™.

CONCLUSION
The process of extracting header and footnotes from TFL shell documents can be a time-consuming
process that leaves room for human error. The process outlined in this paper can handle dynamic
mapping of superscripts, subscripts and special characters to ODS equivalent values. In future versions,
a GUI interface may be added or it can be made into a standalone application using VB or Java. Utilizing
a shell document that follows certain criteria, VBA and SAS™ a process can be developed that
automates the extraction process while eliminating copy/paste and human errors thus reducing TFL
production/review time.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Tony Cardozo
Spaulding Clinical, West Bend, Wisconsin
Antonio.Cardozo@spauldingclinical.com

mailto:Antonio.Cardozo@spauldingclinical.com

Automating Title and Footnote Extraction Using Visual Basic for Applications (VBA) and SAS™, continued

10

APPENDIX 1: VBA AUTOTITLFOOT() CODE:
Sub WriteHeadFootLines(sHeader As String, oFile As Object, sPrefix As
String)

 Dim arrHeader() As String
 Dim i As Integer

 arrHeader() = Split(sHeader, Chr(13))

 For i = LBound(arrHeader) To UBound(arrHeader)
 If i = LBound(arrHeader) Then
 oFile.WriteLine " " & sPrefix & arrHeader(i)
 Else
 oFile.WriteLine " " & arrHeader(i)
 End If
 Next i

End Sub

Sub ReplaceScripts(r As Range)
 'Replace Supscripts
 SubScripts r, False, True, "", "``{sub ^&}"

 'Replace Superscripts
 SubScripts r, True, False, "", "``{super ^&}"
End Sub

Sub SubScripts(r As Range, bSuper As Boolean, bSub As Boolean, stxt As
String, rtxt As String)
 r.Select
 selection.Find.ClearFormatting
 With selection.Find.Font
 .StrikeThrough = False
 .DoubleStrikeThrough = False
 .Hidden = False
 .SmallCaps = False
 .AllCaps = False
 .Superscript = bSuper
 .Subscript = bSub
 End With
 selection.Find.Replacement.ClearFormatting
 With selection.Find
 .Text = stxt
 .Replacement.Text = rtxt
 .Forward = True
 .Wrap = wdFindContinue
 .Format = True
 .MatchCase = False
 .MatchWholeWord = False
 .MatchWildcards = False
 .MatchSoundsLike = False
 .MatchAllWordForms = False
 End With
 selection.Find.Execute Replace:=wdReplaceAll
End Sub

Automating Title and Footnote Extraction Using Visual Basic for Applications (VBA) and SAS™, continued

11

Sub AutoTitlFoot()
 Dim oDoc As Word.Document
 Dim oSec As Word.Section
 Dim oPageStart As Word.Range
 Dim story As Word.Range
 Dim iPage As Integer, iTotalPages As Integer, iSection As Integer
 Dim sHeader As String, sFooter As String, sFileName As String

 Dim fso As Object
 Set fso = CreateObject("Scripting.FileSystemObject")
 Dim oFile As Object
 Set oFile = fso.CreateTextFile("C:\PATH\FILENAME.txt", True, True)

 Application.ScreenUpdating = False

 Set oDoc = ActiveDocument

 For Each story In oDoc.StoryRanges
 Do
 If story.StoryType = wdPrimaryHeaderStory Or _
 story.StoryType = wdPrimaryFooterStory Or _
 story.StoryType = wdFirstPageHeaderStory Or _
 story.StoryType = wdFirstPageFooterStory Then
 Debug.Print "In story loop= "; story.StoryType
 ReplaceScripts story
 End If

 Set story = story.NextStoryRange
 Loop Until (story Is Nothing)
 Next

 iTotalPages = oDoc.ComputeStatistics(wdStatisticPages)

 With oDoc

 iSection = 0

 For iPage = 1 To iTotalPages
 Set oPageStart = oDoc.GoTo(what:=wdGoToPage, _
 Which:=wdGoToAbsolute, Count:=iPage)
 Set oSec = oPageStart.Sections(1)

 If (iSection < oSec.Index) And _
 (oSec.PageSetup.DifferentFirstPageHeaderFooter) Then
 sHeader = oSec.HeaderS(wdHeaderFooterFirstPage).Range.Text
 sFooter = oSec.Footers(wdHeaderFooterFirstPage).Range.Text
 Else
 sHeader = oSec.HeaderS(wdHeaderFooterPrimary).Range.Text
 sFooter = oSec.Footers(wdHeaderFooterPrimary).Range.Text
 End If

 iSection = oSec.Index

 sHeader = Replace(sHeader, Chr(7), "")
 sFooter = Replace(sFooter, Chr(7), "")

 sFooter = Replace(sFooter, ChrW(8805), "^R'\ {\uc2\u8805 >=}'")

Automating Title and Footnote Extraction Using Visual Basic for Applications (VBA) and SAS™, continued

12

 sFooter = Replace(sFooter, ChrW(8804), "^R'\ {\uc2\u8804 <=}'")

 sHeader = Replace(sHeader, "``{", "^{")
 sFooter = Replace(sFooter, "``{", "^{")

 oFile.WriteLine "Page~" & iPage & "~Section~" & iSection
 WriteHeadFootLines sHeader, oFile, "Header~"
 WriteHeadFootLines sFooter, oFile, "Footer~"
 Next

 oFile.Close
 Set fso = Nothing
 Set oFile = Nothing
 End With

 Application.ScreenUpdating = True
End Sub

	Abstract
	Introduction
	SHELL ASSUMPTIONS
	GENERAL ASSUMPTIONS

	VISUAL BASIC FOR APPLICATIONS (VBA)
	VBA DOT NOTATION
	MSDN LIBRARY

	PROGRAMMING TITLE FOOTNOTE EXTRACTION
	SETTING UP THE EXTRACTION PROCESS
	CONVERTING SUPERSCRIPTS AND SUBSCRIPTS
	LOOPING THROUGH EACH PAGE AND HEADER SECTION
	CHECKING FOR SPECIAL CHARACTERS
	OUTPUTTING UTF-8 ENCODED TEXT FILE

	POST PROCESSING WITH SAS™
	FURTHER DEVELOPMENT
	Conclusion
	Contact Information
	Appendix 1: VBA AutoTitlFoot() Code:

