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ABSTRACT  
The emergence of big data, as well as advancements in data science approaches and technology, is providing 
pharmaceutical companies with an opportunity to gain novel insights that can enhance and accelerate drug research 
and development. The pharmaceuticals industry has seen an explosion in the amount of available data beyond that 
collected from traditional, tightly controlled clinical trial environments. Investing in data enrichment, integration, and 
management will allow the industry to combine real-time and historical information for deeper insight as well as 
competitive advantage.  On the other hand, pharmaceutical companies are faced with the unique big data challenges 
collecting more data than ever before. There has never been a greater need for efficient data analytical approach.  

Together, SAS and Teradata provide a combined analytics solution that helps big data analysis and reporting. This 
paper will introduce, based on real study experience, how to connect to Teradata in SAS and how to conduct analysis 
with SQL in a more efficient way. 

INTRODUCTION  
Value-based drug development refers to the pharmaceutical companies striving to create value for patients with new 
therapies. There is an increasing need to maximize usage of real world data (as well as randomized clinical trials data) 
along with predictive analytics so that development program planning and execution can be achieved with maximum 
efficiency. From a data analyst’s perspective, accelerating value-based drug development means exploring and 
adapting new and suitable approaches to delivery of big data analysis. A key approach to analysis big data is to use 
SAS in conjunction with Teradata to support faster decision-making then accelerate drug development.  
SAS/ACCESS® offers two methods of passing SQL to Teradata for data processing: implicit and explicit SQL pass-
through. Implicit SQL pass-through can be identified by the use of a SAS LIBNAME statement pointing at a relational 
database. As the name suggests, SAS will attempt to convert such code to SQL that the target database can process.  
On the other hand, explicit SQL pass-through is a coding syntax that allows the user to write and submit database-
specific SQL that SAS will pass untouched to that database. These queries execute entirely on the DBMS and return 
results back to SAS. 
This paper will describe those scenarios, as well as how to use SQL Pass-Through more efficiently from a data 
analyst’s perspective in pharmaceuticals. 

ABOUT TERADATA 
Teradata is very efficient in handling large amounts of data, owing to its parallel architecture. It uses Massively 
Parallel Processing (MPP) to provide linear scalability of the system by distributing the data across a number of 
processing units (AMPs). Each record in a table is placed on an AMP. The more evenly the data is distributed across 
the AMPs for all tables, the better the system performs, because each AMP does an equal amount of work to satisfy 
a query. When the data is unevenly distributed, the AMPs with the most records work harder, while the AMPs with the 
fewest records are underutilized. Improper distribution of table rows in AMP’s will results in skewed data. Data skew 
causes space wastage and also weakens the parallel processing capabilities of Teradata. So there’re some relational 
database concepts that you need to know before working with Teradata. 

§ Primary Index 

The primary index (PI) distributes the records in a table across the AMPs, by hashing the columns that make up the 
PI to determine which records go to which AMP. If no PI is specified when a table is created, the first column of the 
table will be used as the PI. When creating a table, care needs to be taken to choose a column or set of columns that 
evenly distribute the data across the AMPs. A PI that distributes data unevenly will at the very least impact the 
performance of the table, and depending on the size of the table, has the potential to negatively impact the entire 
system. 

Even distribution of the PI isn’t the only criteria to use when choosing a PI. Consideration should also be given to how 
the data will be queried. If the data can be evenly distributed using different sets of columns, then the determination 
of which columns to use should be based on how the data will be queried and what other tables it will be joined to. If 
two tables that are frequently joined have the same PI, then joining them doesn’t require the records to be 
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redistributed to other AMPs to satisfy a query.  

Figure 1 is an simple example of choosing primary index: 

 
Figure 1. Choosing Primary Index  

The PI (usubjid) is unique - rows are distributed more evenly across the AMPs. 

§ Skew Factor 

A perfectly distributed table (same amount of data on each AMP) will have a skew factor of 0%. While a table which 
has all of its data assigned to a single AMP will be 100% skewed. The higher the skew factor is, the more unevenly 
data in a table is distributed. As a general rule, tables with a skew factor higher than 50% should be evaluated to 
determine if a different primary index would distribute the data better, and thereby improve performance. 

QUERYING TERADATA USING SAS® 
SAS/ACCESS® provides a way to interact with Teradata either through SQL pass-through facility or by using 
LIBNAME statement. The interaction of SAS® and Teradata to handle large amounts of data is often necessary for 
data analysis and reporting. This interaction usually involves creating tables in Teradata through SAS® and vice 
versa. There are notable differences in architecture and data types of SAS and Teradata. So the following part will 
introduce the two methods of connecting to Teradata using SAS separately.  

Implicit SQL Pass-Through 

The first method is known as implicit SQL pass-through. As the name suggests, the programmer using this coding 
method implicitly expects SAS to convert that code to SQL and pass it to the target relational database for execution. 
Implicit SQL pass-through can be recognized by virtue of the fact it contains a SAS library reference pointing at the 
target relational database. For example, the following library reference points at a Teradata-resident database 
tdwork. 
   

LIBNAME tdwork TERADATA SERVER="servername" user="youruserid" 
password="yourpassword"; 

 
In the LIBNAME statement, the USER= option provides the Teradata user name, the PASSWORD= option provides 
the Teradata password associated with the Teradata user name, and the SERVER= option provides the Teradata 
server name as defined in the HOSTS file. 
Behind the scenes, the SAS/ACCESS engine writes SQL code that is passed implicitly to Teradata, causing as much 
work to be done in the database as possible.  
Incorporating this library name, the following code excerpts thus represent two examples of implicit SQL pass- 
through: 
 
Example 1:  PROC PRINT DATA=tdwork.teradata_table (OBS=5); 
Example 2: PROC SQL; CREATE TABLE mydataset AS SELECT * FROM 
tdwork.teradata_table; 
In example 1, the SAS/ACCESS engine writes SQL code on the user's behalf from this PROC PRINT step and DATA 
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step that is passed implicitly to Teradata. While for the second example, there’re sometimes misunderstanding that it 
may be an explicit pass-through, which will be introduced in the second part. 
Once the queries are submitted, SAS via the SAS/ACCESS engine determines the SQL query that is implicitly 
passed to Teradata on the user’s behalf and convert the SAS code to Teradata-specific SQL.  
Here’s an example: 
 

proc sql 
  select pt, start_date, type, 
    sum(call_dur) as call_dur_sum 
  from tdwork.mydata 
  where start_date between "01JAN16"d and "30JUN17“d 
  group by pt, start_date, type; 
quit; 

 
The above code will be converted to Teradata-specific SQL as below: 
 

SQL_IP_TRACE: passed down query: 
select "mydata"."PT", "mydata"."START_DATE",  
       "mydata"."TYPE”, 
SUM("mydata"."CALL_DUR") as "call_dur_sum" from 
"mydata" where "mydata"."START_DATE“ 
   between DATE'2016-01-01' and DATE'2017-06-30‘ 
group by 
"mydata"."PT", "mydata"."START_DATE", "mydata"."TYPE" 

 
By default, there is no indication regarding the success or failure of the SAS/ACCESS engine to generate SQL code 
that is passed to Teradata. To determine the success or failure of implicit pass-through for a query, you must 
examine the SQL that the SAS/ACCESS engine submits to the Teradata by using the SASTRACE= SAS system 
option in the following way: 
 

OPTIONS SASTRACE=',,,d' SASTRACELOC=SASLOG NOSTSUFFIX; 
 

Explicit SQL Pass-Through 

Explicit pass-through is Teradata-specific SQL that passed by SAS directly to the Teradata system through the 
SAS/ACCESS engine. Teradata will parse and optimize the query, there is no SAS intervention such as error 
validation or others. 
Explicit pass-through allows users to leverage full power of Teradata’s massively parallel processing capability and 
the wide range of mathematical, statistical, and data reorganization functions available, via usage of native Teradata 
SQL, combine SAS programming features and Teradata-specific features in your query and save the results of a 
query as a SAS data set or a PROC SQL pass-through view. 
Although explicit SQL pass-through is embedded in PROC SQL code, it is not synonymous with PROC SQL. As the 
name suggests, Explicit SQL pass-through is based on the premise that SAS will not alter or translate the code, but 
rather will submit what the programmer has coded verbatim to the relational database for execution. 
There are two forms of syntax typically associated with explicit SQL pass-through: 
One is the SELECT statements, which produce some outputs to SAS (SQL procedure pass-through queries). For 
example: 
 

proc sql; 
   connect to teradata (user="youruserid" password="yourpassword" 
server="servername" mode=teradata); 
   create table temp as 
   select * from connection to teradata ( 
      TERADATA-QUERY EXPRESSION 
      ); 
  disconnect from teradata; 
quit; 

 
The CONNECT statement establishes a connection to Teradata and retrieves data directly from Teradata. The 
DISCONNECT statement terminates the connection to Teradata. Note that the SELECT statement that embraces a 
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native Teradata-SQL code enclosed in parentheses to be passed to Teradata.  

Another component is the EXECUTE statements, which perform all other non-query SQL statements that do not 
produce output. By default, the Teradata connection is established in ANSI-SQL mode for Teradata, hence after each 
or a series of execute request, an explicit commit request is required to be submitted. 
For example: 
 

proc sql; 
 connect to teradata (user="youruserid" password="yourpassword" 
mode=teradata  server="servername" connection=global); 
 execute( 
 create volatile table temp as ( 
 TERADATA-QUERY EXPRESSION 
 ) 
 with data primary index (id) 
 on commit preserve rows 
 ) by teradata; 
quit; 

 

TERADATA-QUERY EXPRESSION is the SQL statement passed to Teradata. In this example a volatile table 
TEMP was created by using the EXECUTE statement.  

CHOOSEING THE RIGHT METHOD FOR THE RIGHT ANALYSIS 
It was known that the enhancements to implicit SQL pass-through have greatly expanded the variety and quantity of 
SAS code that can be automatically translated to SQL and passed to a database. At the same time, explicit SQL 
pass-through has great value in reducing the risk of an unwanted download of large amounts of data.  
Based on my experience in real study analysis, the difference is that if we use LIBNAME statement, it would be used 
to create a library to store and access the SAS files or datasets in the specified particular folder. We can use this one 
with the DATA and PROC step to run program and to access datasets but should not be used to access the 
databases. If we are trying to join more than one table means multiple tables and looking for only aggregate result, in 
this case explicit SQL pass-through facility is a much better option, which we use as a part of PROC SQL to connect 
to Teradata and passes the statements directly to Teradata for execution.  
So the difference with using LIBNAME engine (implicit pass-through) and explicit SQL pass-through would be from 
few hours to few minutes based on different analysis situation. 

CONCLUSION 
As the increasing needs of analyzing real world data as well as RCT data, new data analysis approaches like the 
integration of SAS and Teradata are used more and more widely. There’re two main querying methods from SAS to 
Teradata, how to choose the right method for the right analysis is a key to enable faster decision-making and data 
interpretation. This paper provided a brief introduction of querying Teradata from SAS and the scenarios of different 
querying methods (implicit SQL pass-through and explicit SQL pass-through) based on current usage of analyzing 
real world data. As the customer demands evolving, we programmers need to explore and adapt more efficient 
methods and ways to meet the needs then to accelerate drug development. 
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