PharmaSUG 2017 - Paper AD22

A novel method to track mapping of all CRF variables into SDTM datasets
Aishhwaryapriya Elamathivadivambigai, Seattle Genetics, Inc., Bothell, WA

ABSTRACT

A common approach to ensure mapping of all CRF variables into SDTM datasets is by manually
comparing annotated CRF pages with mapping documents. However, this approach is highly time
consuming, error prone and more tedious, especially in situations when new variables are added to CRFs
as the study progresses. Hence, a user-friendly automated approach or a technigue that could facilitate
evaluating whether all CRF variables are successfully mapped to SDTM domains is highly desirable. So,
in an attempt to provide a solution, this paper introduces a method that can automatically evaluate
whether or not all CRF variables are properly mapped to SDTM datasets and also report a list of CRF
variables that are yet to be mapped to the user. This approach accurately captures all the CRF variables
from the CRF document and compares each variable with the SDTM program log files. The programming
techniques used for this approach and a working example will be described in this paper.

INTRODUCTION

A case report form (CRF) is a data collection tool in clinical trials which accurately represents the data to
be obtained in a protocol of a clinical trial. The patient information is appropriately captured in each page
of a CRF. The variables captured in the CRF are mapped into SDTM (Study Data Tabulation Model)
datasets. This is crucial because all patient information has to be entered into SDTM datasets so they will
be available when they are required in the analysis.

Data Management Raw datasets SDTM datasets
Annotated CRF

Y

TLF for various . ADAM datasets
analyses

r

Figure 1: Flow of clinical trial process from eCRF to TLF (Table, Listing, Figure) generation

Figure 1 explains the work flow of a typical clinical trial process, right from the availability of eCRFs to TLF
generation. The data collected in each CRF page are captured in an appropriate raw dataset by the Data
Management team, which inturn are used for SDTM datasets generation. The CRFs annotated by the
Data Management team are available as eCRFs for the programmers’ review. As a next step, the
aforementioned work flow eCRFs are further annotated by programmers to accurately denote how each
variable would be mapped to appropriate SDTM domain(s). As new data may be captured as the study
progresses it may become increasingly diffcult to check if all the variables have been mapped into SDTM
datasets. So, this paper attempts to propose a technique to evaluate whether or not all CRF variables are
mapped into SDTM datasets.

Enroliment/Screening [ENROLL]

Screening 1D <system-generated, see note below:
| SCREENID (num, 8)

Do not enter unless patient has signed informed consent.

Patient Initials
SUBJINIT (char, 3)

Patient ID
| PTID (char, 8)

Figure 2 Sample eCRF (Data Management team annotated CRF)

Figure 2 shows the Sample Data management annotated CRF. The variables highlighted in red represent
the eCRF variables.

SC.SCORRES
SC.SCTEST="Screening ID"
SC.SCTESTCD='SCREENID'

Screening ID / <system-generated, see note below>

SCREENID (num, 8)

Enroliment/Screening [ENROLL]

Do not enter unless patient has signed informed consent.

SC.SCORRES
Patient Initials SC.SCTEST="Subject Initials’
SUBJINIT (char, 3) SC.SCTESTCD='SUBJINIT'
SC.SCORRES

Patient ID SC.SCTEST='Patient ID' [-generated, see note helow=
PTID (char, 8) |SC.SCTESTCD="PTID'

Figure 3 Programmer annotated CRF

Figure 3 shows how the CRF variables would be mapped into SDTM datasets. With the programmer
annonated CRFs in hand, SDTM domains are developed by adhering to SDTM guidelines.

METHODOLOGY
CAPTURING OF ALL ECRF VARIABLES IN A SAS® DATASET

1. The eCRFs annotated by the data management were available in .pdf format. eCRFs were first
converted from .pdf to .txt format and later imported using PROC IMPORT procedure in SAS to
produce a dataset that contained entire information available in an eCRF distributed as variables.

proc import datafile="C:\path\05.txt" out=mydata dbms=dim replace;
getnames=no;
run;

2. Each mydata variable was concatenated to a single variable in a pre-processing step. The regex
pattern search was adopted to look for actual CRF variable names in the variable obtained by
concatenation.

3. A regex pattern was built to recognize and capture CRF variables. The regex below means: a word
boundary followed by two or more capital letters, then follwed by another word boundary. A word
boundary denotes the start or the end of a string of letters, digits and/or underscores.

if _N_ =1 then pattern_num = prxparse("/\b[A-Z, ,0-9]{2,\b/");
retain pattern_num;

The following piece of code was executed to capture both the starting position and the length of the
CRF variables. Thus the string matching the regex patter was detected and extracted.

call prxsubstr(pattern_num, var, mypos, mylength);
if mypos "= 0 then word = substr(var, mypos, mylength);

This pattern recognition algorithm captures any word that starts with an uppercase alphabet, has two
or more characters or has a number or an underscore (e.g.: LABEL, LABEL1, AETERM etc.). Apart
from capturing CRF variable names, it also captures information that may not be CRF variable
names. The corrections implemented to counter this are presented in the following steps.

4. The sample eCRF used has a specific fomat to define each page name; pagemanes were enclosed
within square brackets as shown in Figure 2. (Eg: Enroliment/Screening [ENROLL]). The following
code snippet shows how each eCRF page name was capturded.

if find(var,[)>0 and find(var,])>0 then do;
a=find(var,[");
b=find(var,],a+1);

crfpagel=substr(var,a+1,b-1);

if find(crfpagel,l)=length(crfpagel) then substr(crfpagel,length(crfpagel),1)=""
if _N_ =1 then pattern_num = prxparse("/\b[A-Z]{2,}\b/");

retain pattern_num;

call prxsubstr(pattern_num, crfpagel, mypos, mylength);

if mypos "= 0 then crfpage = substr(crfpagel, mypos, mylength);

end;

A VAR & LABEL & PAGE
If cytogenetics have not normalized, describe LBMRD
ABNSPEC If Cytegenetic Type is Abnormal, describe DXDIAG
ACU Acute Care Unit LRMRLU
ACU_RAW Acute Care Unit (Character) LRMRU
ADDSPEC If ancther reason not listed above applies, please specify INTTHER
ADVAGE Advanced Age INTTHER
ADVAGE RAW Advanced Age (Character) INTTHER
AE Related to an Adverse Event that started during the treatment period and is ongoing LRMRU
AEENDTC Condition End Date (DD/MMM/YYYY) AE
AEENDTC_DD Condition End Date (DD/MMM/YYYY) Day AE
AEENDTC_INT Condition End Date (DD/MMM/YYYY) Interpolated AE
AEENDTC_MM Condition End Date (DD/MMM/YYYY) Month AE
AEENDTC_RAW Cendition End Date (DD/MMM/YYYY) (Character) AE
AEENDTC_YYYY Condition End Date (DD/MMM/YYYY) Year AE
AEOUT Outcome of event AE
AEQUT_STD Outcome of event Coded Value AE
AEREL ‘Was this related to Blinded Study Treatment? AE
AEREL2 wias this related to HMA? AE
AERELZ_STD ‘Was this related to HMA? Coded Value AE
AEREL_STD Was this related to Blinded Study Treatment? Coded Value AE

Figure 4 The dataset fromcrf with eCRF page names and variable names captured from eCRF

document

Figure 4 shows the dataset fromcrf that was created in Step 4. The variables shown above do not
always represent the eCRF variables, as all upcased words from the eCRF are captured in the step 4.
The variables var and page represents the word extracted from the eCRF and each page name in the
eCRF respectively.

5. After each eCRF page name along with CRF variables were succesfully captured in a SAS dataset
fromcrf, all the variables from the entire collection of raw datasets were captured to another dataset
called contents. This was achieved through the below attached piece of code.

proc contents data=raw._all_ noprint out=contents;

run;
Ay VAR N LABEL Ay PAGE
If cytogenetics have not normalized, describe LBMRD
ABNSPEC If Cytogenetic Type is Abnormal, describe DXDIAG
ACU Acute Care Unit LRMRLU
ACU_RAW Acute Care Unit (Character) LRMRU
ADDSPEC If ancther reason not listed above applies, please specify INTTHER
ADVAGE Advanced Age INTTHER
ADVAGE_RAW Advanced Age (Character) INTTHER
AE Related to an Adverse Event that started during the treatment period and is ongoing LRMRU
AEENDTC Condition End Date (DD/MMM/YYYY) AE
AEENDTC_DD Condition End Date (DD/MMM/YYYY) Day AE
AEENDTC_INT Condition End Date (DD/MMM/YYYY) Interpolated AE
AEENDTC_MM Condition End Date (DD/MMM/YYYY) Month AE
AEENDTC_RAW Condition End Date (DD/MMM/YYYY) (Character) AE
AEENDTC_YYYY Condition End Date (DD/MMM/YYYY) Year AE
AEOUT Outcome of event AE
AEQUT_STD Outcome of event Coded Value AE
AEREL ‘Was this related to Blinded Study Treatment? AE
AEREL2 Was this related to HMA? AE
AEREL2_STD ‘Was this related to HMA? Coded Value AE
AEREL_STD Was this related to Blinded Study Treatment? Coded Value AE

Figure 5 Proc contents output

Figure 5 shows the proc contents output, this procedure captures all the variables, labels and page
names from each raw dataset. So, this dataset contains all the system generated variables (e.g.:
AEENDTC_DD, AEENDTC_MM etc.) apart from eCRF variables.

The two datasets fromcrf and contents were appropriately merged by data page name and variable
name to produce a dataset containing all the CRF page names and their eCRF variables; thus
eliminating all the system generated variables which were originally absent in the eCRF pages but
present in the raw datasets. This step also eliminated the unnecessary variables in the dataset
fromcrf which were not part of the raw dataset and thus the resultant dataset crfvar contained only the
variables present in both fromcrf and contents which were only eCRF variables.

4y PAGE N LABEL A NAME
Condition End Date (DD/MMMYYYY) AEENDTC
RLAE Outcome of event AEOUT
R.AE ‘wias this related to Blinded Study Treatment? AEREL
F.AE ‘was this related to HMA? AERELZ
R.AE AE# AESEQ
R.AE ‘Was this serious? AESER
R.AE NCI Common Toxicity Grade AESEV
FL.AE Onset date (DD/MMM/YYYY) AESTDTC
R.AE Condition/Event Description AETERM
R.AE |s the condition related to a protocol procedure? (Response reguired if event started after Informed Consent and before 1st Dose) RELATED
R.AE Onset Period START
R.AE Onset time relative to HMA STRTTIM1
R.AE Onset time relative to Blinded Study Treatment STRTTIME
R.AEYN Has the patient experienced an Adverse Event or Pre-existing condition? AEYM

Figure 6 Dataset with all the CRF variables and page names

Figure 6 shows the dataset crfvar that contains only the eCRF variables. Name represent the variables
name and page represents the page name.

CONVERTING SDTM LOG FILES INTO A SAS DATASET AND PRE-PROCESSING

7.

SDTM log files are text file which contain the entire SAS code along with notes, warning and
comments. As the next step SDTM log files were imported to SAS using the following piece of code.

proc import datafile="C:\path\ae.log" out=sdtm1 dbms=dIim replace;
getnames=no;
run;

The sdtml dataset obtained from the above procedure contained many variables, then all variables
were concatenated to a single variable to perform pre-processing. By concatenating all the variables
into a single variable the entire SAS log was converted into a single variable in the dataset sdtm1.
This facilitated the removal of all unnecessary segments in sdtm1.

The dataset created in step 8 were cleaned to eliminate unwanted information captured in the log
files. Comments in SAS can be in any formats. E.g.: /*This is a comment*/ or *This is comment; or comment
This is a comment. The following code snippet was used to accomplish this task.

/*deleting all the comments in the sdtm log*/
slashl=find(var,'/*)>0; slash2= find(var,"*/");len=length(var);
if slash2=(len-1) and slash1>0 then delete;
if slash1=1 and slash2=0 then delete;
if slash2=(len-1) and slash1=0 then delete;

midl=find(var,'/*");mid2=find(var,*/");

if mid1>0 and mid2>0 and length(var)-1 ne mid2 then
del=scan(var,1,/*)||' '||scan(var,3,"*/");

if mid1 > 0 and mid2=0 then add1=scan(var,1,'/*);

if mid2 > 0 and mid1=0 then add2=scan(var,2,"*/");

slash11=find(var,*")>0; slash21= find(var,';");len1=length(var);
if slash21=(len1-1) and slash11>0 then delete;
slash12=find(var,'comment’)>0; slash22= find(var,";);len2=length(var);
if slash22=(len2-1) and slash1>0 then delete;
{.:'-}. VAR |
254 DM LOG CLEAR:
295 PROC DATASETS LIB = WORK KILL MOLIST
296 RUN;
297 QUIT;
300 PROC SORT DATA = RAE QUT = AE_ (DROP = STUDYID SITEID AESTOTC AEENDTC AESER) TAGSORT,
301 BY SUBJECT:
302 RUN;
302 PROC SORT DATA = R.AEYM OUT = AEYN_ (DROP = STUDYID SITEID) TAGSORT:
304 BY SUBJECT;
305 RUM:
306 PROC SORT DATA = REQS QUT = EQOS_ (DROP = STUDYID SITEID AESPID RENAME={SUBJECT=SUBJMD))} TAGSORT.
307 BY SUBJECT;
308 RUN;
309 PROC SORT DATA = R.EXOUT = EX1 (DROP = STUDYID SITEID) TAGSORT:
310 BY SUBJECT:
311 RUN;
312 PROC SORT DATA = R EXAOUT = EXAT (DROP = STUDYID SITEID) TAGSORT;
213 BY SUBJECT:
34 RUN:

Figure 7 SAS log converted into a dataset

10. Figure 7 shows the SAS code, where R.AE, R.AEYN etc were used as the input datasets. R

11.

represents the library where the raw datasets were stored. As the raw dataset names and the eCRF
page names were exactly the same; the raw dataset/CRF page names were extracted from the
dataset sdtm1 by looking up for the string ‘r.X’, where X is the raw dataset name. These were stored
in the dataset raw.

if find(var,'r.",')>0;
F/N VAR

[= |

r.aeyn
r.eos
r.ex

r.exa

r.exd

Figure 8 The raw datasets names/eCRF page names extracted from the dataset sdtm1

Figure 8 shows the raw dataset names which were used in the SAS code for the SDTM program log
file which were imported in Step 7. This shows us that the eCRF variables from these raw
datasets/eCRF pages were used in the program. The variables var was renamed as page to facilitate
the next step.

The datasets crfvar and raw were merged by the page to produce a resulting dataset called final with
the CRF variables. These variables were searched across the sdtm1 dataset to search for an exact
match; which represented the usage of the variables in the SDTM program.

& PAGE A LABEL A NAME

Condition End Date (DD/MMMYYYY) AEENDTC
RAE Outcome of event AEOUT
R.AE Was this related to Blinded Study Treatment? AEREL
R.AE \Was this related to HMA? AEREL2
R.AE AE# AESEQ
RAE Was this serious? AESER
R.AE MCI Common Toxicity Grade AESEV
R.EDS If Death, Primary Cause of Death (AEZ) AESPID
REX Primary AEZ causing dose delay AESPIDD
RE¥A Primary AEZ causing dose delay AESPIDD
REXD Primary AE# causing dose delay AESPIDD
REX Primary AEZ causing unplanned dose adjustment AESPIDDA
RE¥A Primary AE® causing unplanned dose adjustment AESPIDDA
R.EXD Primary AEZ causing unplanned dose adjustment AESPIDDA

Figure 9 The dataset final

Figure 9 shows the dataset final where variable name represents the CRF variables to check in the
SDTM (eg: AE) program log.

CAPTURING OF ALL CRF VARIABLES ASSOCIATED TO SDTM DOMAINS

12.

13.

Each CRF variable name captured in the dataset final was extracted and stored in a separate macro
variable, (one macro variable for each variable name), in the following fashion:
Namel = CRF variable namel, Name2 = CRF variable name2, Name3 = CRF variable name3, etc.
This was done to allow search for each of these variables in sdtm1 dataset one by one using a find
function.

The following code snippet was used to evaluate if all the CRF variable names, captured in separate
macro variables, were present in the dataset sdtm1. Here, the macro variable count represents the
number of macro variables generated in Step 12.

%do k=1 %to &count;
varl=find(var,"&&name&k ");

if varl > 0 then variable1="&&name&k";
%end;

Here, the macro variable count represents the number of macro variables generated in Step 12.

@ WVARIABLE
AEOUT
AEREL
AERELZ
AESEQ
AESER
AESEV
AESPID
AESTDTC
AETERM
AEYN
DEATHDTC
EXSTOTC
EXSTTM
RELATED
START
STRTTIM1
STRTTIME

Figure 10 eCRF variables used in AE (SDTM) dataset

Figure 10 shows the eCRF variables that were used to derive SDTM variables in AE dataset.

14. Steps 1 through 13 were run in an iterative do loop, with each loop evaluating different SDTM
domains.

15. The variables used in all SDTM domains collected in Step 14 were compared with the eCRF
variables produced in crfvar to generate a list of CRF variables that were not used in any SDTM
domains.

CONCLUSION

Since it is more likely that much new information may be captured in CRF documents as the study
progresses, it is highly recommended that we adopt a technique or a method to evaluate whether or not
all variables are mapped at SDTM level. With the proposed technique, all the unmapped CRF variables
can be easily captured, thus averting subsequent delays in output generation.

ACKNOWLEDGMENTS

| take this opportunity to thank my supervisors Kiran Cherukuri and Jay Gadhiya for their timely
suggestions and advices. | also would like to extend my sincere thanks to Rajeev Karanam, the Clinical
Programming Team Director for reviewing the paper.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name : Aishhwaryapriya Elamathivadivambigai
Enterprise : Seattle Genetics, Inc.

Address : 21823 - 30" Drive S.E. Bothell, WA 98021
Work Phone : 425-527-2668

E-mail : aelamathivadivambiga@seagen.com

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks
of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:aelamathivadivambiga@seagen.com

	Abstract
	Introduction
	Methodology
	Capturing of all ECrf variables in a sas® dataset
	Converting sdtm log files into a sas dataset and pre-processing
	capturing of all CRF variables associated to sdtm domains

	Conclusion
	Acknowledgments
	Contact Information

