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ABSTRACT 

Statistical models, like many fields of mathematics, rely upon assumptions (postulates). The successful use of these 
tools conventionally involves examination of corresponding statistics that inform the statistician whether violations of 
model assumptions might have occurred. Simulation, enabled by ever increasing computational power, is making 
experimentation a mainstay of statistics and mathematics. Further, the ability to simulate data should be required of 
every student of statistics, much like how the fluency of matrix "language" and the ability to code the likelihood should 
be requisite skills. The goal of this paper is to introduce simulations using the SAS System® and to provide the 
technical (programming) and statistical basis to examine the use of models in time to event data with special 
consideration of recent and important reports of inhibitors in Hemophilia A patients. 

INTRODUCTION 

Two avenues to understanding statistics include the mathematics and the application; respectively, the 
theory and the demonstration in practice.  Both required the art of imagination.  Not infrequently, the statistician gains 
insight into one by exploring the other.  Yet, it might be the case that application often involves "real" data from 
studies that may or may not be close to the requirements (assumptions), whereas the ability to simulate test data, 
and the related ability to write the likelihood directly, often teaches the statistician and student alike. 

 The foundation of simulation is the random number generator.  Not uncommonly, a statistician is asked how 
to determine whether certain data were generated by a given distribution.  Prominent among the answers is that one 
cannot.  To demonstrate both the answer and imagination in mathematics, consider the archetypical example, the 
toss of a fair coin.  With a large number of tosses, the proportion of heads will tend towards the probability of heads 
being p = 0.50.  Actually, given enough tosses, one could accurately report the probability as p = 0.50000, or even 
more significant digits with more tosses.  Imagine, however, what happens with an infinite number of tosses.  One 
aspect of an infinite number of tosses is that a series of (HHH…H∞) occurs.  What if, in our finite human experience, 
or at least during working hours, we find ourselves observing a series of heads that is "never ending"?  Can we 
conclude that the coin is not fair?  Not exactly, but we can be "certain".  With imagination, though boggling, this 
situation must occur within a series of infinite tosses.  In fact, this situation must occur an infinite number of times in 
an infinite number of tosses.  The same is true for (TTT…T∞) and (HTHT…{HT}∞)  and any sequence (combination) 
that one can imagine.  Such is the peril of infinity or imagination, if one can tell difference.  One way to determine if 
data were generated by a given distribution is to examine the mechanism of generation (the code). 

 The SAS System® provides excellent functions and call routines to generate data from a given distribution.  
The heart of the generation of these data is the random number generation (RNG), which technically is pseudo-
random number generation. The focus of this paper is the use of these functions; the mathematics and theory are out 
of scope.  The goal of this paper is to introduce some basic simulations and to analyze the resulting data as an 
investigation or exploration of both the process of simulation and the examination of the statistical models.  We will 
also address how simulation might support an investigation into whether grouping of time-to-event data for analyses 
might or might not be appropriate. 

SEED 

The initial starting point from which the RNG functions in the SAS system generate a stream of pseudo-
random numbers is called the seed.  The seed ranges in value from 0 to 231-1 (2,147,483,647).  Importantly, if the 
seed value is 0, then the computer clock initializes the stream.  If the programmer wishes to replicate the stream, then 
he or she should use a positive value for the seed and record it.  Apparently, the maximum value of this range is the 
maximum number of numbers that can be generated before the sequence begins to repeat.  Presumably, some 
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functions may have shorter periods.  While this may seem to be a large number, the online documentation warns that 
modern computers can exhaust the sequence in minutes in "typically" simulations studies. The more recent RAND() 
function has a reported period of 219937 - 1, which is approximately 106000 and much larger than 10307, the largest 
value that can be represented in eight bytes on most computers that run SAS.  

 Figure 1 shows the results of two nearly identical data steps that generate data from the standard normal 
distribution using the RANNOR() function.  As stated above the values of X are equal; they use the same seed.  The 
values of Y and Z also match, but the values of the seeds are different.  Understanding this behavior is essential; the 
value of the seed in the first function executed determines the stream.  So the streams in the right and left panels are 
the same, regardless of subsequent values of the seed. 

1    data _null_ ; 
2      x = rannor( 1 ) ; 
3      put x= ; 
4      y = rannor( 1 ) ; 
5      put y= ; 
6      z = rannor( 1 ) ; 
7      put z= ; 
8    run ; 
 
x=1.8048229506 
y=-0.079915021 
z=0.396576855 
NOTE: DATA statement used (Total process time): 
      real time           0.00 seconds 
      cpu time            0.00 seconds 

9    data _null_ ; 
10     x = rannor( 1 ) ; 
11     put x= ; 
12     y = rannor( 2 ) ; 
13     put y= ; 
14     z = rannor( 3 ) ; 
15     put z= ; 
16   run ; 
 
x=1.8048229506 
y=-0.079915021 
z=0.396576855 
NOTE: DATA statement used (Total process time): 
      real time           0.00 seconds 
      cpu time            0.00 seconds

Figure 1. Seeds and subsequent calls.  The seed in the first function executed determines the stream of pseudo-
random numbers. 

A distinction exists between SAS code and the macro facility with regard to seeds.  Each invocation of a 
data step "resets" the stream for a given seed in SAS code.  However, the macro facility continues the stream and 
only closing and re-opening the SAS System will reset the stream in the macro facility.  Figure 2 demonstrates this 
distinction. 

1    data _null_ ; 
2      x = rannor( 1 ) ; 
3      put x= ; 
4    run ; 
 
x=1.8048229506 
NOTE: DATA statement used (Total process time): 
      real time           0.00 seconds 
      cpu time            0.00 seconds 
 
 
5    data _null_ ; 
6      x = rannor( 1 ) ; 
7      put x= ; 
8    run ; 
 
x=1.8048229506 
NOTE: DATA statement used (Total process time): 
      real time           0.00 seconds 
      cpu time            0.00 seconds 

9    %put %sysfunc(rannor(1)) ; 
1.80482295064194 
10   %put %sysfunc(rannor(1)) ; 
-0.07991502090275 
 

Figure 2. Resetting the Stream.  The behavior of resetting the stream differs between the SAS data step and macro 
facility. 

To this point, we have discussed functions, but CALL ROUTINES are available for the corresponding 
functions.  An important distinction is the ability to control the value of the seed, which must be initialized before the 
first call.  The value of the seed is updated by the call routine, but it can also been explicitly assigned. Figure 3 
demonstrates the flexibility of the seed in call routines.  Notably, assigning the seed to the same value results in the 
same pseudo-random number and changes it affects the pseudo-random number; the sequence of the seed is not 
"anchored" as it is for the corresponding function. 
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1    data _null_ ; 
2      s1 = 1 ; 
3      s2 = 1 ; 
4      call rannor( s1 , x1 ) ; 
5      call rannor( s2 , x2 ) ; 
6      put x1= / x2= ; 
7      put s1= / s2= // ; 
8 
9      s1 = 1 ; 
10     s2 = 2 ; 
11     call rannor( s1 , x1 ) ; 
12     call rannor( s2 , x2 ) ; 
13     put x1= / x2= ; 
14     put s1= / s2= ; 
15   run ; 
 
x1=1.8048229506 
x2=1.8048229506 
s1=2083249653 
s2=2083249653 
 
 
x1=1.8048229506 
x2=1.3118295938 
s1=2083249653 
s2=2019015659 
NOTE: DATA statement used (Total process time): 
      real time           0.01 seconds 
      cpu time            0.01 seconds

Figure 3.  Call Routines and Control of Seeds.  The value of seeds can be explicitly controlled and the same 
results will result from the same seed. 

The default seed stream of a call routine and its corresponding function appear to be the same.  That is, one can see 
what the next seed in a stream is by viewing the updated seed value after a call.  The program in Figure 4 
demonstrates this informally, but the log is not provided. 

data _null_ ; 
  s1 = 1 ; 
 
  do _n_ = 1 to 5 ; 
    x1 = rannor( s1 ) ; 
    call rannor( s1 , x2 ) ; 
    put x1= @20 x2= @40 s1= ; 
 
    call execute( "data _null_ ;" ) ; 
    call execute( cat( "  s1 = "  
                     , strip( put( s1 , 32. )) 
                     , " ;" 
                     ) 
                ) ; 
    call execute( "  x1 = rannor( s1 ) ; "  ) ; 
    call execute( "  put x1 = ; "  ) ; 
    call execute( "run ; "  ) ; 
  end ; 
run ; 
Figure 4. The Seed Stream. The sequence of seeds revealed by the call routine that corresponds to the function. 

SIMULATING A COIN TOSS 

The first simulated trial is the well-known coin toss, with a twist.  The probability of a head was set at p = 0.3 
and the number of tosses was set at 10.  Since the expected number of heads is 3, one might prefer exact statistics. 
The code in Figure 5 provides the exact 95% confidence interval (CI) for the trial the results in three heads out of 10 
tosses using the Clopper-Pearson derivation.  If the number of heads is set to 0 and the number of tosses is set to 
25, then the 95% CI is (0.00, 0.1372), which agrees with the results reported by Agresti on Page 18 of "Categorical 
Data Analysis"1.  In our simulated case, the 95% CI for the probability is (0.0667, 0.6525) and for the number of 
heads is (0.667, 6.525).  The FREQ procedure code demonstrates how to obtain the data using ODS OUTPUT 
statements, which are best positioned or "contained" within the procedure to which they apply, and the ZEROS option 
to the WEIGHT statements, which is essential to obtain the results for 0/25.  The code in the right panel simulates 
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1000 trials of ten coin tosses, which follow a binomial distribution.  The RANBIN() function derives the variate from 
the random binomial. 

%let heads  =  3 ; 
%let tosses = 10 ; 
 
data heads ; 
  heads  = 1  ; 
  freq   = &heads. ; 
  output ; 
  heads  = 0 ; 
  freq   = &tosses. - &heads. ; 
  output ; 
run ; 
 
ods listing close ; 
 
proc freq data  = heads 
          order = data 
          ; 
  ods output BinomialCLs = bcls 
                              ( keep   = lowercl 
                                         uppercl 
                              ) 
             ; 
  tables heads 
       / binomial 
         ( exact ) 
         ; 
  weight freq / zeros ; 
run ; 
 
ods listing ; 

%let seed = 23 ; 
%let p    = %sysevalf( &heads. / &tosses. ) ; 
 
data bin_&seed. ; 
  retain seed &seed. 
         p    &p. 
         ; 
 
  do sim = 1 to 1000 ; 
      heads = ranbin( Seed 
                    , &tosses. 
                    , p 
                    ) ; 
      output ; 
  end ; 
 
  stop ; 
 
run ; 
 

Figure 5. Simulating Coin Toss Trials. 

EXLORING CONFIDENCE INTERVALS WITH SIMULATIONS 

Figure 6 shows the histograms of two simulations using the code in the right panel of Figure 5 with Seed = 
23 (left panel) and Seed = 500 (right panel).  This figure provides empirical evidence that the confidence interval 
actually contains 95% of the results, that is the 95% confidence bounds appear to contain at least 95% of the number 
of heads resulting from the trials.  Actually, for Seed = 23 and Seed = 500, the results are 96.0% and 95.9%, 
respectively. 

 

Figure 6. Histograms of 1000 Simulated Coin Toss Trials.  Both trials have p = 0.3 and 1,000 simulated trials of 
ten tosses.  The solid line is the expected number of heads (3.0), the dotted line is the mean number of observed 
heads (3.026 and 3.087 for Seed = 23 and Seed = 500, respectively).  The bold dashed and medium dashed lines 
are the lower and upper bounds, respectively, of the 95% CI for the number of heads expected from a single trial of 
10 coin tosses with p = 0.3, (0.667, 6.525). 
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A point that can be lost when considering the confidence intervals of continuous, symmetric distributions such as the 
normal distribution is that the upper bound of the confidence interval is not the value above which the cumulative 
probability is /2.  Rather it is the mean (and standard deviation) of the distribution for which the mean of interest is 
the lower bound of its 100*(1-)% confidence interval.  For a symmetric, continuous distribution these values 
coincide.  For a discrete distribution, such as the binomial, this is more complex and the standard deviation, and, 
thus, the values of the bounds of the confidence interval, depends on the mean.  Consider the upper bound of the 
Clopper-Pearson exact confidence interval for p = 0.3 in a trial of 10 ten tosses, p = 0.6525.  In a simulation of 1,000 
trials of 10 tosses with p = 0.6525, the number trials with the number of heads less than 3.0 (p = 0.3 for 10 tosses), 
should be less than 2.5% (/2).  Simulations allow the student (this author included in that class) to explore and 
experiment. Table 1 presents the proportion of trials for which the number of heads was greater than 3.0 for Seeds 
23 and 500. 

 
Table 1. Empirical coverage of binomial distributions. 

Number of 
tosses 

Percent not covering 3.0 
Seed = 23 Seed = 500 

     10 0.003 0.006 
     30 0.010 0.013 
     50 0.009 0.017 
    100 0.012 0.015 
   1000 0.026 0.027 
  10000 0.026 0.027 

 
Another way to think of this is if more than 2.5% of the trials have the number of heads less than 3.0, then the 
evidence suggest that the probability might not 0.6525, i.e. we reject that hypothesis (and consider a lower 
probability).  One issue is that the binomial distribution is discrete.  Table 1 shows an "improvement" in the percent of 
trials not including the product of p = 0.3 and the number of tosses as the percent approach the Clopper-Pearson 
value of 0.05/2.  One issue is that the RANBIN() function does not adhere to the binomial distribution with increasing 
n or p, but rather the normal approximation takes effect.  The reader is encouraged to study the documentation since 
the detail and scope cannot be covered in this paper. 

SIMULATION: LOGISTIC REGRESSION 

The logical extension to the simulation of binomial distribution might be logistic regression.  The student of 
regression should know the logit function, which is the log odds, that is logit( p ) = log[ p / ( 1 – p )].  To be brief, the 
logistic regression models are general linear models (GLMs) that have a binomial random component with a link 
function that is the logit of the probability.  Figure 7 presents code that simulates logistic regression data in which two 
factors affect the probability. 
 
 
Data _null_ ; 
  Call Symput( "Beta_1"  
             , "Log( 2 )" 
             ) ; 
  Call Symput( "Beta_2"  
             , "Log( 1.2 )" 
             ) ; 
Run ; 
 
Data Log_Sim 
        ( Keep   = Sim 
                   ID 
                   Trt 
                   Factor_1 
                   Disease 
        ) 
     ; 
 
  Seed = 10 ; 
 
  Beta_0 = 0   ; 
  Beta_1 = &Beta_1. ; 
  Beta_2 = &Beta_2. ; 
 
  Do Sim = 1 to 1000 ; 

ODS Listing Close ; 
 
Proc Logistic Data       = Log_Sim 
              Descending 
              ; 
  ODS Output OddsRatios = OR ; 
  Model Disease = 
        Trt  
        Factor_1 
      / ExpB 
        ; 
  By Sim ; 
Run ; 
 
ODS Listing ; 
 
Proc Datasets library = WORK 
              NoList 
              ; 
 
  Modify OR ; 
    Attrib _all_ Label = " " ; 
Quit ; 
 
Data OR ; 
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    ID = . ; 
    Do Trt = 0 to 1 ; 
      Do _n_ = 1 to 50 ; 
        ID + 1 ;  
 
        Call Ranbin( Seed 
                   , 2 
                   , 0.5 
                   , Factor_1 
                   ) ; 
 
        Eta_Prob = Beta_0 
                 + Beta_1 * Trt 
                 + Beta_2 * Factor_1 
                   ; 
 
        p_0 = Exp( Eta_Prob ) 
            / ( 1 + Exp( Eta_Prob )) 
              ; 
 
        If 0 < p_0 < 1 
        Then Call Ranbin( Seed 
                        , 1 
                        , p_0 
                        , Disease 
                        ) ; 
         Else Disease = p_0 ; 
 
        Output ; 
      End ; 
    End ; 
  End ; 
 
Run ; 

  Set OR ; 
  If Effect = "Trt" 
  Then True = LowerCL <= Exp( &Beta_1. ) <= UpperCL ; 
   Else If Effect = "Factor_1" 
   Then True = LowerCL <= Exp( &Beta_2. ) <= UpperCL ; 
Run ; 
 
Proc Means Data = OR 
           n 
           Mean 
           StdDev 
           Median 
           Min 
           Max 
           ; 
  Class Effect ; 
  Var OddsRatioEst 
      LowerCL 
      UpperCL 
      True 
      ; 
Run ; 
 

Figure 7. Simulation of Logistic Regression Data. 

The mean (median) of the Odds Ratio (OR) for FACTOR_1 and TRT is 1.25 (1.19) and 2.24 (2.01), respectively.  The 
95% CI for these ORs correctly contained the true OR in 93.6% and 95.2% of the simulations for FACTOR_1 (OR = 
2.0) and TRT (OR = 1. 2), respectively.  Increasing the number of patients per treatment increases the precisions of 
these estimates.  The reader should now be able to experiment with sample size to explore its effects on accuracy 
and precision.  Further, the code can be adopted to include more covariates and/or to include continuous covariates. 
The detail and scope cannot be covered in this paper. 

SIMULATION: ZERO-INFLATED POISSON MODEL 

The Poisson distribution is another discrete distribution that can model events such as soldiers being kicked 
in the head by horses or the number of hospitalizations of patients in a catchment area.  Notably, distributions may be 
mixed; one might suspect that the number of hospitalizations would be an interesting distribution.  Most people do not 
need to be hospitalized, but others might, unfortunately, may be hospitalized numerous times.  Attempting to model 
such as population might be problematic.  In this case, we might say that the "excess" number of 0 hospitalizations is 
inflated.  We thus have a description of a zero-inflated model.  Another such model is the zero-inflated negative 
binomial.  The author leaves it to the reader to conclude why the zero-inflated binomial is, basically, a contradiction.  
Figure 8 presents the code for a zero-inflated Poisson (ZIP) model, that is, given the probability, the frequency of the 
zero variate exceeds the expectation based on a Poisson distribution. 

Proc Format ; 
  Value ru  
     0.00 - <0.25 = 0 
     0.25 - <0.50 = 1 
     0.50 - <0.75 = 2 
     0.75 -  1.00 = 3 
     ; 
Run ; 
 
/* ZI = Zero Inflation */ 
%Let Beta_ZI_0 = 0.2 ; 
%Let Beta_ZI_1 = 0.3 ; 

ODS Listing Close ; 
 
Proc NLMixed Data = ZIP_Sim ; 
 
  ODS Output FitStatistics      = FS 
             ParameterEstimates = PE 
             Contrasts          = C 
             ConvergenceStatus  = CS 
             ; 
 
  Parms /* parameters for Bernoulli */ 
        Beta_ZI_0 = 0 
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%Let Beta_ZI_2 = 0.0 ; 
 
/* P = Poisson */ 
%Let Beta_P_0 = 0.1 ; 
%Let Beta_P_1 = 0.0 ; 
%Let Beta_P_2 = 1.0 ; 
 
Data ZIP_Sim 
        ( Keep   = Sim 
                   ID 
                   Trt 
                   Con_Factor 
                   H 
                   ZI 
                   p_0 
                   Lambda 
        ) 
     ; 
 
  Seed = 10 ; 
 
  /* parameters for 0 inflation prob */ 
  Beta_ZI_0 = &Beta_ZI_0. ; 
  Beta_ZI_1 = &Beta_ZI_1. ; 
  Beta_ZI_2 = &Beta_ZI_2. ; 
 
  /* parameters for poisson mean */ 
  Beta_P_0 = &Beta_P_0. ; 
  Beta_P_1 = &Beta_P_1. ; 
  Beta_P_2 = &Beta_P_2. ; 
 
  Do Sim = 1 To 1000 ;     
    Do ID = 1 To 1000 ; 
       
      /* Treatment */ 
      Trt = Mod( ID , 2 ) ; 
 
      /* "Continuous" factor: 0 - 3 */ 
      Con_Factor = Input( Put( Ranuni( Seed )  
                             , ru. 
                             ) 
                         , 8. 
                         ) ; 
 
      /* Prob of 0 inflation as a  
         function of Trt and Con_Factor */ 
      Eta_Prob = Beta_ZI_0 
               + Beta_ZI_1 * Trt 
               + Beta_ZI_2 * Con_Factor 
                 ; 
 
      p_0 = Exp( Eta_Prob ) 
          / ( 1 + Exp( Eta_Prob )) 
            ; 
 
      If 0 < p_0 < 1 
      Then Call Ranbin( Seed 
                      , 1 
                      , p_0 
                      , ZI 
                      ) ; 
       Else ZI = p_0 ; 
 
      If ZI = 1 Then H = 0 ; 
       Else 
         Do ; 
            /* Poisson mean as a function of 
               Trt and Con_Factor */ 
            Eta_Lambda = Beta_P_0 
                       + Beta_P_1 * Trt 
                       + Beta_P_2 * Con_Factor 

        Beta_ZI_1 = 0 
        Beta_ZI_2 = 0 
        /* parameters for poisson mean */ 
        Beta_P_0 =  0 
        Beta_P_1 =  0 
        Beta_P_2 =  0 
        ; 
 
  Eta_Prob = Beta_ZI_0 
           + Beta_ZI_1 * Trt 
           + Beta_ZI_2 * Con_Factor 
             ; 
 
  p_0 = Exp( Eta_Prob )  
      / ( 1 + Exp( Eta_Prob ))  
        ; 
 
  Eta_Lambda = Beta_P_0 
             + Beta_P_1 * Trt 
             + Beta_P_2 * Con_Factor 
               ; 
 
  Lambda = Exp( Eta_Lambda ) ; 
 
  /* Loglikelihood */ 
  If H = 0 
  Then Loglikelihood = Log( p_0 
                          + ( 1 - p_0 ) 
                          * Exp( -Lambda )  
                          ) ; 
   Else Loglikelihood = Log( 1 - p_0 ) 
                      + H  
                      * Log( Lambda ) 
                      - Lambda 
                      - LGamma( H + 1 ) 
                        ; 
 
  Model H ~ General( Loglikelihood ) ; 
 
  /* Test whether the CI for the estimated   
     parameters covers their true parameter     
     values  
  */ 
  /* Parameters for Bernoulli */ 
  Contrast "Beta_ZI_0 = &Beta_ZI_0."  
           Beta_ZI_0 - &Beta_ZI_0.  
           ; 
  Contrast "Beta_ZI_1 = &Beta_ZI_1." 
           Beta_ZI_1 - &Beta_ZI_1. 
           ; 
  /* Parameters for Poisson */ 
  Contrast "Beta_P_0 = &Beta_P_0." 
           Beta_P_0  - &Beta_P_0. 
           ; 
  Contrast "Beta_P_2 = &Beta_P_2." 
           Beta_P_2  - &Beta_P_2. 
           ; 
 
  By Sim ; 
 
Run ; 
 
ODS Output Close ; 
ODS Listing ; 
 
Title1 "Beta_ZI_0 = &Beta_ZI_0.  
        Beta_ZI_1 = &Beta_ZI_1.  
        Beta_ZI_2 = &Beta_ZI_2." ; 
Title2 "Beta_P_0  = &Beta_P_0. 
        Beta_P_1  = &Beta_P_1. 
        Beta_P_2  = &Beta_P_2." ; 



Simulation of Data using the SAS System, Tools for Learning and Experimentation, continued 

8 
 

                         ; 
 
            Lambda = Exp( Eta_Lambda ) ; 
 
            /* Simulation the number of 
               H as a Poisson                   
               with mean Lambda */ 
            Call RanPoi( Seed 
                       , Lambda 
                       , H 
                       ) ; 
         End ; 
 
      Output ; 
    End ; 
  End ; 
 
Run ; 

 
Proc Means Data = PE ; 
  Class Parameter ; 
  Var Estimate ; 
Run ; 
 
Data C ; 
  Set C ; 
  True = ProbF > 0.05 ; 
Run ; 
 
Proc Means Data = C 
           N 
           Mean 
           ; 
  Class Label ; 
  Var True ; 
Run ; 

Figure 8. Simulation of a Zero-Inflated Poisson (ZIP) Model. 

For the model specified in Figure 8, the simulation results agree well with the true values.  Table 2 presents the 
results of this simulation.  For the parameters tested in the CONTRAST statements, the coverage was acceptable, 
that is approximately 95%.  Less than 5% of the simulations resulted in rejection of hypotheses that the differences 
between the estimated values and the parameter (true) values were different from zero. 

Table 2. Results of the Zero-Inflated Poisson Simulation 

Parameter True Value Mean Coverage (%)
P_0 0.1 0.098 94.6 
P_1 0.0 -0.002 N/A 
P_2 1.0 1.00 94.0 
ZI_0 0.2 0.192 95.4 
ZI_1 0.3 0.310 95.8 
ZI_2 0.0 0.000 N/A 

This simulation provides that opportunity to emphasize a few points.  The reader who ran the code (and the other 
code) should have notice that it was not instantaneous, despite being a modest run of only 1,000 simulations.  For 
efficiency, it is best to use one procedure (PROC) and analyze the separate simulations using a BY statement.  
Secondly, the author will leave it as an exercise for the reader to reduce this model from a ZIP to a conventional 
Poisson model.  It may be informative, however, to analyze both data sets using both models.  In addition, obtaining 
measure of model fit like the Akaike Information Criteria (AIC) or the Bayesian Information Criteria (BIC) should be a 
useful demonstration.  This point could be true of any of the models; consider, for instance, the effects of categorizing 
age into age groups.  Categorization without motivation from the substantive field is STRONGLY discouraged; 
continuous (quantitative) variable contain more information and inclusion in a model versus the categorized version of 
them should result in a better model with a better fit.  The author is particular found of cubic splines, if the substantive 
knowledge suggests that they are appropriate.  Consider, example, the use of a quadratic formation of age for adults 
(18-75 year old).  The model imposes this relationship, so that the quadratic nature forces the same results from 18-
27 years as for 66-75 years.  Depending on the outcome, this may not be accurate.  Simulating the various 
relationships should help the statistician better under the models. 

SIMULATION: TIME TO EVENT 

Many students have simulated linear and perhaps logistic regression data.  Simulating a zero-inflated model 
is the next plateau, especially if the statistician then can write the log-likelihood equations and experiment with initial 
parameter values.  Though relatively simple compared to a model with mixed distribution, simulating survival data is a 
challenge many statisticians might not encounter unless they seek the challenge.  A slight complicate is simulating 
censored data. Figure 9 presents the code that simulates time to event (survival analysis) data based on the Weibull 
distribution.  For each patient two random variates were simulated.  One of which was the time to event and the 
second was the time to censoring.  If the latter occurred before than former, then patient contributed censored data. 
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%Let Beta1  = Log( 1 ) ; 
%Let Lambda = 20 ; 
 
Data Sim_TTE 
        ( Drop     = Linear_Predict 
                     Time_Censor 
        ) 
     ; 
 
  Beta1  = &Beta1. ; 
  Lambda = &Lambda. ;  
 
  Seed   = 1 ; 
 
  Do Sim = 1 To 100 ; 
    Do Trt = 1 To 2 ; 
      Do _n_ = 1 To 200 ; 
 
        ID + 1 ; 
 
        Linear_Predict = Exp( -Beta1 * Trt ) ; 
        Time = Rand( "WEIBULL" 
                   , Seed 
                   , Lambda 
                   * Linear_Predict 
                   ) ; 
 
        Time_Censor = Rand( "WEIBULL" 
                          , Seed 
                          , Lambda 
                          * Linear_Predict  
                          * 3.00 
                          ) ; 
 
        If Time_Censor < Time 
        Then 
          Do ; 
             Censored = 1 ; 
             Time     = Time_Censor ; 
          End ; 
         Else Censored = 0 ; 
 
        Output ; 
 
      End ; 
    End ; 
  End ; 
Run ; 

ODS Listing Close ; 
 
Proc PHReg Data = Sim_TTE ; 
  ODS Output ParameterEstimates = PE 
             CensoredSummary    = CS 
             ; 
  Model Time * Censored( 1 ) 
      = Trt 
      / RiskLimits = Wald 
        ; 
  By Sim ; 
Run ;  
 
Proc Lifetest Data = Sim_TTE ; 
  ODS Output Quartiles = Q ; 
  Time Time * Censored( 1 ) ; 
  Strata Trt ; 
  By Sim ; 
Run ; 
 
ODS Output close ; 
ODS Listing ; 
 
Title1 "Beta1 = &Beta1. Lambda = &Lambda." ; 
Proc Means Data = Q 
                   ( Where = ( Percent = 50 )) 
           n 
           Mean 
           MaxDec = 2 
           ; 
  Class Trt ; 
  Var Estimate 
      LowerLimit 
      UpperLimit 
      ; 
Run ; 
 
Data PE ; 
  Set PE ; 
  If Parameter = "Trt" 
  Then 
    Do ; 
       True = HRLowerCL <= Exp( &Beta1. ) <= 
HRUpperCL ; 
    End ; 
Run ; 
 
Proc Means Data = PE ; 
  Class Parameter ; 
  Var HazardRatio 
      True 
      ; 
Run ; 
 
Proc Means Data = CS ; 
  Var PctCens ; 
Run ; 

Figure 9. Simulation of Time to Event (Survival) Data. 

The median survival for patients with TRT = 1 was 14.04 (months) and for patients with TRT = 2 was 13.97.  This was 
by design, the true parameter (Beta1) was Log(1) so that exp(Beta1) = 1.  In fact, the mean hazard ratio (HR) from 
100 simulations was 1.01 and the 95% CI for the estimated HR contained the true value in 96% of the simulations. 

The reader can experiment with several factors, such as the ratio of patients to controls, how unbalanced the 
censoring might be before, for a given effect, the results start to be biased.  The mean proportion of subjects 
censored in this simulation was 25.5%. 
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REAL DATA: HEMOPHILIA A AND EXPOSURE DAYS 

Hemophilia A (HA) patients have deficient or absent activity of coagulation Factor VIII (FVIII), a co-enzyme to Factor 
IX.  Approximately, 1 in 10,000 males will have HA regardless of race or country of origin.2  The average cost per 
year of treating HA patients in the US ranges from $50,000 to $200,000 for mild to severe patients, respectively.  
Treatment of HA patients consists of infusing FVIII intravenously.  If any amount (dose) is injected, then the patients 
had an Exposure Day (ED).  Patients may have an immune reaction to the infused FVIII in some cases the anti-
therapy antibodies (ATA) will neutralize the infused product and be termed inhibitors.  Gouw et alia2 presented the 
results of concerning the time to the development of inhibitors in Hemophilia A patients treated with different types of 
product.  

Suffice it to say that collection of data for studies is complicated; this includes monitoring the patient for the 
development of inhibitors.  Not atypically, the protocol might obtain a blood sample for screening for inhibitors every 
five EDs.  That could be after five days, in the event of a bleeding episode that was difficult to control or prophylaxis 
for a dental procedure or surgery.  One might expect that EDs will be stochastic in patients not undergoing 
prophylaxis or immune tolerance induction (ITI).  Importantly, Gouw et alia "pooled observations over all exposure 
days for all patients into a single sample and then used a logistic-regression model with stratification according to 
number of exposure days to relate the risk factors to inhibitor development."  They cited D'Agostino4 to support the 
statistical methodology.  Recently, a study by Peyvandi et alai5 also analyzed time to inhibitor (event) data using ED 
as the unit of time, i.e. pooling the data. 

With the ability to simulate survival data, such as the code in Figure 9, we can approach this issue with both an 
understanding of mathematics underlying the statistics6-7, which for anyone who has attempted to read the original 
proportional hazard model paper by Cox can attest is not for the user of statistics.  However, simulations might suffice 
to provide an understanding, especially if simulations suggest a major limitation that happens to fit external data or 
expectations, like the stochastic nature of bleeding in HA patients. 

CONCLUSION 

Simulation is a powerful tool to improve the understanding of statistical models and can be included in attempts to 
verify them or to identify weaknesses.  The SAS System provides multiple functions and call routines to generate 
(pseudo-)random numbers that are variates from various statistical distributions.  This paper introduced several of 
such distributions with particular emphasis on the seed (stream or sequence of pseudo-random numbers).  Though 
the models were relatively simple, this paper demonstrated a zero-inflated Poisson model.  Finally, an example from 
real world reports in very respectable journals that peer-review the submissions before acceptance for publication 
demonstrated that thought process to use simulations to examine and explore the potential issues with the statistical 
methodology. 
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