
PharmaSUG 2015 – Paper TT13
Looking Beneath the Surface of Sorting

Andrew T. Kuligowski, HSN

1

ABSTRACT

Many things that appear to be simple turn out to be a mask for various complexities. For example, as we
all learned early in school, a simple drop of pond water reveals a complete and complex ecosystem when
viewed under a microscope. A single snowflake contains a delicate crystalline pattern. Similarly, the
decision to use data in a sorted order can conceal an unexpectedly involved series of processing and
decisions.

This presentation will examine multiple facets of the process of sorting data, starting with the most basic
use of PROC SORT and progressing into options that can be used to extend its flexibility. It will progress
to look at some potential uses of sorted data, and contrast them with alternatives that do not require
sorted data. For example, we will compare the use of the BY statement vs. the CLASS statement in
certain PROCs, as well as investigate alternatives to the MERGE statement to combine multiple datasets
together.

SORTING – THE BASICS

sort [sOrt] To arrange into some order, especially numerically, alphabetically or

chronologically. From Old French sortir (“allot, sort”), from Latin sortiri (“draw lots, divide,

choose”).

It is a safe assertion that all but the most novice SAS

®
 users have used PROC SORT in its most

rudimentary form – it is usually covered near the beginning of any introductory course. All that is needed
is the name of the dataset to be sorted and the list of variables it is to be sorted by, in order of priority. In
fact, one doesn’t even actually need the name of the input dataset, as SAS will default to “last dataset
created”. (For the record, this shortcut is frowned upon by most SAS coders. The resulting code lacks
the internal documentation that a specific reference can provide; this can cause difficulties and confusion
during subsequent maintenance on the routine.) This information is inserted into a PROC SORT, with the
source dataset being specified in the DATA= option of the PROC SORT statement, and the variable list
added to the mandatory BY statement – after all, from a logical standpoint, one cannot sort anything
without knowing the conditions by which that sort should occur!

PROC SORT DATA=<DatasetName>;

 BY Variable1 <Variable2 <… VariableN > >;

RUN;

It doesn’t take long for that beginning SAS user to introduce some additional complexities into their
routine. For example, they may decide to use the OUT= option, so that the sorted output is routed to a
new dataset rather than replacing the original unsorted one. The DESCENDING on the BY statement
option is another option that is quickly added to the toolkit of the SAS coder. (Of course, saying that it is
an option of the BY statement is a bit of a misnomer, since it is actually applied to one or more – perhaps
even all – of the variables in the list rather than to the statement as a whole.)

PROC SORT DATA=<DatasetName>

 OUT=<NewDatasetName> ;

 BY DESCENDING Variable1 <DESCENDING Variable2

 <… DESCENDING VariableN > >;

RUN;

This is also the point where some folks’ interest in sorting under SAS comes to an end. Once they know
how to perform a sort on their requested dataset using as many or as few variables as necessary, and
that they can do so in either an ascending or descending direction, they believe they have all the
knowledge that they will ever need on this particular topic. In some cases they might even be right – that
IS everything they will ever need to know. But for many others, stopping there will result in gaps of

2

knowledge that might cause them to insert unnecessary additional code, or even get unpredictable
results!

WHAT IS “NUMERICAL ORDER”?

As a case in point, let us look into the sorting of numeric data. Almost anyone who has gone to school
long enough to have covered decimal places and negative numbers should be comfortable in their own
ability to sort numeric data – I will not insult anyone’s intelligence by reviewing it here. These individuals
– that is, all of us! – would expect a computerized sort utility to produce the same results. However, it is
highly doubtful that any of those folks had the concept of missing data covered in their elementary school
arithmetic classes. Will the infamous dot “.” be treated as the highest or lowest value when sorted? Or,
perhaps it will be analogous to zero, which would fall right between positive and negative numbers?

When addressing questions like these, sometimes the answer can be quickly found online in the
appropriate SAS manual, or by doing an internet search for professional papers such as the one you are
currently reading. However, it is possible that these techniques may not readily produce an appropriate
response – perhaps the answer is hidden among other information, or perhaps it is simply not included in
the material in question. When in doubt, the surest way to research and validate such a point is to set up
and execute an experiment with an interactive SAS session.

Note: The Appendix of this paper contains a SAS routine that was used to generate most of the test data
used in the examples in this text. The reader is encouraged to refer to that routine for complete details of
the test data generation. However, each example used in this text will describe the particulars of each
variable applicable to the problem and solution at hand.

In the first example, the variable “OrigOrder” is a variable which shows the order that each observation
was in upon the creation of the dataset, while “RandomPosNegMiss” contains a random integer between
-5 and +5 with some missing values mixed in. (Random500 is simply a random integer between 1 and
500 that was the original variable created in this dataset.) After sorting this dataset by
“RandomPosNegMiss”, we can easily see that missing values bubble up to the top in a sort – they should
be considered the smallest number possible for this purpose.

 Orig RandomPos

Obs Order Random500 NegMiss

 1 1 269 1

 2 3 456 2

 3 8 85 4

 4 11 152 3

 5 14 456 -1

 6 17 106 5

 7 19 428 -3

 8 20 372 .

 9 22 178 -5

10 27 350 -4

11 78 438 -2

 Orig RandomPos

 Orig RandomPos

Obs Order Random500 NegMiss

 1 20 372 .

 2 22 178 -5

 3 27 350 -4

 4 19 428 -3

 5 78 438 -2

 6 14 456 -1

 7 1 269 1

 8 3 456 2

 9 11 152 3

10 8 85 4

11 17 106 5

Alert readers will notice that “OrigOrder” does not contain consecutive numbers; there are a number of
gaps in the sequence. This presentation will address methods to select and exclude values and variables
later in the text. However, the techniques were employed in this early example to prevent the examples
from dominating the text in sheer volume!

Having discussed missing values, an experienced SAS coder might inquire, “What about Special Missing
Values – how do THEY sort?” A second experiment will demonstrate that all missing values, special or
otherwise, bubble to the top of the sequence. Further, we can see that the ordinary “.” dot representation
of the missing value will sort prior to the special missing values represented by A through Z; those special
missing values sort (as expected) in alphabetical order. The “wild card” is that the underscore “_” can
also be used as a special missing value. Unlike A through Z, this character representation of a special
missing value actually sorts prior to the dot when sorting missing values. Based on the results of this


SORT

3

experiment, it can be concluded that the SAS user should not use the underscore as a special missing
value except in the exceptional case when something is needed that will sort prior to the “ordinary”
missing value denoted by the dot.

 Orig RandomPos

Obs Order Random500 NegMiss

 1 1 269 1

 2 3 456 2

 3 8 85 4

 4 10 29 M

 5 11 152 3

 6 14 456 -1

 7 17 106 5

 8 19 428 -3

 9 20 372 .

10 22 178 -5

11 27 350 -4

12 65 313 A

13 78 438 -2

14 85 432 _

 Orig RandomPos

 Orig RandomPos

Obs Order Random500 NegMiss

 1 85 432 _

 2 20 372 .

 3 65 313 A

 4 10 29 M

 5 22 178 -5

 6 27 350 -4

 7 19 428 -3

 8 78 438 -2

 9 14 456 -1

10 1 269 1

11 3 456 2

12 11 152 3

13 8 85 4

14 17 106 5

SORTING ALPHANUMERIC CHARACTERS /
VARIATIONS IN OPERATING SYSTEMS?

We all learned the sort order of alphabetic characters early in our lives – and if we ever forget, there is
that “ABCDEFG …” song to fall back on! As such, we have a clear understanding of what to expect when
sorting alphabetic strings. Unfortunately, those lessons never delved into dealing with special characters,
or with combinations of alphabetic and numeric characters, or the differences between upper and lower
case letters. The librarian at my elementary school advised me that “A” always falls before “B”, and so on
– but in the case of a tie, then the Upper Case should be listed before lower case. Further, special
characters like the ampersand (“&”) should just be ignored. I suspect this advice might have worked for
3

rd
 graders, but would not suffice as a valid programming specification!

Unfortunately, most sort utilities, including SAS’s, do not work this way. Upper case values sort in
sequence, and lower case values sort in sequence – but they do not intertwine. The big question is, of
course, which comes first – upper case letters or lower case letters? The answer is, “it depends”.

A veteran user with experience on multiple operating systems might suspect at this point that there could
be are differences based on operating systems (and novices may have suspected it based on the title of
this section of the presentation!) Indeed, it is necessary to know what operating system is being used;
this is one reason why most of the “SAS Companions for the <fill in the blank> Environment” manuals
have a separate listing for PROC SORT! Those systems that store data in ASCII will sort the data in
ASCII sequence by default, while EBCDIC systems sort in EBCDIC. Alert readers will have caught the
“by default” clause; it is possible to override the default behavior by specifying either ASCII or EBCDIC as
a keyword on the PROC SORT statement. (Alternatively, the keyword SORTSEQ=ASCII or
SORTSEQ=EBCDIC can be used for the same purpose.)

A question may have arisen in some readers’ minds – “How is it possible to sort in EBCDIC on an ASCII
machine, and vice verse?” The short answer is, “you aren’t”. By using the keyword, you are telling SAS
to use the sort sequence employed by the particular character set.

The sort sequence is not the same for these two character sets. The most apparent difference is that
under the English language implementation of EBCDIC, lower case letters sort ahead of upper case
letters, which are sorted ahead of numbers. In ASCII’s English language implementation, that
precedence is reversed; numbers dominate upper case letters which in turn precede lower case letters.
Special characters sort in different orders under each collating sequence, as well. The precise order is
documented under “SORTING ORDERS FOR CHARACTER VALUES” in the SAS Procedures Guide.


SORT

4

Let us try an example to illustrate this point. We will create a temporary dataset containing some
numbers, some alphabetic characters – both upper and lower case – and several special characters
including the space or blank (placed in pre-sort sequence between the right square bracket and the left
curly bracket: a f A F _ [] { } @ # $, . < > ;

PROC SORT DATA=AsciiEbcdic

 ASCII;

 BY OneByte;

RUN;

PROC PRINT UNIFORM;

RUN;

Obs OneByte Obs OneByte

 1 11 >

 2 # 12 @

 3 $ 13 A

 4 , 14 F

 5 . 15 [

 6 0 16]

 7 1 17 _

 8 9 18 a

 9 ; 19 f

10 < 20 {

 21 }

PROC SORT DATA=AsciiEbcdic

PROC SORT DATA=AsciiEbcdic

 EBCDIC;

 BY OneByte;

RUN;

PROC PRINT UNIFORM;

RUN;

Obs OneByte Obs OneByte

 1 11 a

 2 . 12 f

 3 < 13 [

 4 $ 14]

 5 ; 15 {

 6 , 16 A

 7 _ 17 F

 8 > 18 }

 9 # 19 0

10 @ 20 1

 21 9

To emphasize the point - SAS may return different results from PROC SORT depending on whether it is
employed under Z/OS (mainframe) vs. Windows or Unix (server / workstation) because of this operating
system-dependent option. This violates one of the standard assumptions of SAS; that is, the same input
passed through the same routine will return the same output regardless of operating system! If one is
insistent that their sort results always stay the same regardless of operating system, then a standard sort
sequence should be selected and hard coded. However, most users want their sort to be in sync with
their operating system of choice, and only care about this anomaly from a curiosity standpoint.

Alert readers may have caught a specific reference to “English” when referring to EBCDIC and ASCII
earlier in this presentation. The SAS developers are fully aware that there are talented coders out there
who might be using one of the Scandinavian languages. To facilitate their use of PROC SORT, the
keywords “DANISH”, “FINNISH”, NORWEGIAN”, and “SWEDISH” can be used to point to the appropriate
collating sequence. These 4 keywords can also be used with SORTSEQ=, as can “SPANISH” and
“ITALIAN”. Under SAS 9.2, “POLISH” has also been added to the mix as both a separate keyword and in
conjunction with SORTSEQ.

Despite all of these new options, there is a chance that someone may be using a language, or more
precisely a character set, for which a standard sort sequence does not yet exist in SAS. (Perhaps our
Scandinavian friends also need to deal with Icelandic, for example.) The good folks who support base
SAS realized this, and provide an additional procedure called PROC TRANTAB. The TRANTAB
Procedure can be used to create, edit and/or display a customized translation table. Discussion of the
syntax and usage of this procedure is outside of the scope of this presentation; interested readers are
directed to the online SAS documentation for further information.

Of course, one would not expect to be able to specify multiple sort sequences for the same sort; why
would anyone need to request both Danish AND Finnish simultaneously? It is probably obvious, but for
the record, only one collating sequence is allowed per unique SORT.

Most if not all of the European and European-based languages contain the concept of upper and lower
case letters, so let us return to the original discussion of upper case vs. lower case. Anyone who has
looked at the sort order for characters in either EBCDIC or ASCII will soon realize that PROC SORT will
not handle this situation in the same way for the two collating sequences. The two character

VS.

5

representations do not agree as to whether the upper case sequence dominates over the lower case, or
vice verse. However, at least both handle the entire series of 26 letters by case before addressing the
opposite case of 26 letters! It may be necessary to code a workaround if a traditional English (or other)
language sort is desired.

Our test dataset contains a variable called ThreeLetterMixed. As the name might imply, this contains a 3
character string randomly generated using a combination (potentially) of upper and lower case letters.
When we sort the dataset by this variable, we find that PROC SORT respects case – upper or lower –
more than it does the actual order of the alphabet. (Aside: Note the use of the KEEP option on the
DATA= option of PROC SORT and the WHERE= option on the DATA= option of PROC PRINT – we will
briefly discuss these options later. The intent at this point is to select a small subset of the data in order
to demonstrate the point at hand; the details will be discussed later.)

PROC SORT DATA=TEMP(KEEP=OrigOrder Random500 ThreeLetterMixed)

 OUT=TEMPMIXED;

 BY ThreeLetterMixed ;

RUN;

PROC PRINT

 DATA=TEMPMIXED(WHERE=(UPCASE(SUBSTR(ThreeLetterMixed,1,1))='M'))

 UNIFORM;

RUN;

 Three

 Orig Letter

Obs Order Random500 Mixed

 46 187 348 MEq

 47 20 99 MJv

 48 44 344 MPY

 49 143 276 MWz

 50 4 283 MZx

 51 159 253 Mda

 52 140 117 MfE

187 62 315 mCA

188 42 358 mVX

189 191 416 moU

One quick solution to the problem would be to add an additional variable to the dataset – one that
contains the same contents as ThreeLetterMixed, only converted to Upper Case. (As a caution, we
cannot simply convert ThreeLetterMixed, as it is highly likely that someone might want to see the original
value of the variable at some point!) This variable can be truly transient in nature by using the DROP=
option to remove it – or if preferred, by using KEEP= on every variable except for it.

DATA TEMP2;

 SET TEMP(KEEP=OrigOrder Random500

 ThreeLetterMixed ThreeLetterCaps);

 ThreeLetterCaps = UPCASE(ThreeLetterMixed);

RUN;

PROC SORT DATA=TEMP2 ;

 BY ThreeLetterCaps ;

RUN;

PROC PRINT

 DATA=TEMP2(WHERE=(UPCASE(SUBSTR(ThreeLetterMixed,1,1))='M'))

 UNIFORM;

RUN;

Note that the upper case “M”
bubbles ahead of the lower
case “m” – this indicates an
ASCII sort.

6

 Three Three

 Orig Mixed Letter Letter

Obs Order Order Random500 Mixed Caps

109 62 187 315 mCA MCA

110 159 51 253 Mda MDA

111 187 46 348 MEq MEQ

112 140 52 117 MfE MFE

113 20 47 99 MJv MJV

114 191 189 416 moU MOU

115 44 48 344 MPY MPY

116 42 188 358 mVX MVX

117 143 49 276 MWz MWZ

118 4 50 283 MZx MZX

This quick addition to our routine allows us to satisfy the requirement of a true alphanumeric sort.
However, “quick” is a relative term. From a coding standpoint, it may only take seconds to add the
necessary components to the routine in question. However, there are many factors to consider over and
above the programmer’s time. For example, how much additional testing does this change require
according to the company or agency standards, and does that effort require a separate independent
testing resource? How much extra CPU (and clock) time will the additional step take, and how much
additional disk space will the sort require? The “simple” change may, in fact, be the tip of the iceberg!

Individuals who have upgraded to SAS 9.2 have a new option at their disposal which truly does make the
process trivial. A new option available for SORTSEQ= – sortseq=linguistic – handles mixed case sorts
without the need for jury-rigging ones existing routine and data.

PROC SORT DATA=TEMP2 SORTSEQ=linguistic;

 BY ThreeLetterMixed ;

RUN;

PROC PRINT

 DATA=TEMP2(WHERE=(UPCASE(SUBSTR(ThreeLetterMixed,1,1))='M'))

 UNIFORM;

RUN;

 Three Three

 Orig Mixed Letter Letter

Obs Order Order Random500 Mixed Caps

109 62 187 315 mCA MCA

110 159 51 253 Mda MDA

111 187 46 348 MEq MEQ

112 140 52 117 MfE MFE

113 20 47 99 MJv MJV

114 191 189 416 moU MOU

115 44 48 344 MPY MPY

116 42 188 358 mVX MVX

117 143 49 276 MWz MWZ

118 4 50 283 MZx MZX

The SAS 9.2 documentation states that the linguistic option on SORTSEQ “are largely compatible with”
the Unicode Collation Algorithms (UCA) – which can also be conversely interpreted to mean that they are
not 100% compatible with UCA, if this is of concern. There are a number of options available for
“linguistic” which are documented in the manual.

One of the options available for “linguistic” does deserve special mention, because it helps to solve
another long-standing problem with sorting. Many programmers, at one time or another, have been
forced with processing address data. This data can be problematic; street addresses are traditionally

This table looks exactly like
the one produced earlier
when we added the extra field
with all capital letters and
sorted by it.

The 3 letter string is now
alphabetized without regard to
whether we are dealing with
upper or lower case.

7

stored as character data, but actually contain a combination of numbers and letters. This can present
problems during sorting; numbers stored in character format are sorted based on a character collation
rather than as numeric values. Most of us have seen a dataset sorted with a sequence such as “1”, “10”,
“2” …. This is easily explainable from a processing standpoint –the sequence “1” and “blank” comes
before the sequence “1” and “0”. However, it is not so easily explainable to non-computer types who
cannot understand any scenario where “10” would come before “2”.

A quick solution to the problem would be to store the street number and the street name in separate
fields, then sort by number then name. This is not a complete solution; one glaring weakness is that it
does not handle the common situation of street names that contain numbers. SAS 9.2 users can expand
upon the options just discussed with “sortseq=linguistic(Numeric_Collation=ON)” to easily address (no
pun intended) this type of data.

Traditional SAS (and other) sort techniques handle the data in a strict character collating sequence, which
may not conform to a numerical order expected by the end user. To illustrate this point, let us take a
dataset containing assorted addresses – specialized addresses using a lot of numeric characters, and
sort it using a traditional character sequence. We will see that the “sorted” data does not respect the
concept of numeric order since all sorting is done on the character representations of those numbers.

PROC SORT DATA=ADDRESSES

 OUT=ADDRESSES_CHAR ;

 BY ADDRESS ;

RUN;

PROC PRINT DATA=ADDRESSES_CHAR

 UNIFORM;

RUN;

Obs ADDRESS

Obs ADDRESS

1 14 12th Street

2 14 121st Street

3 141 12th Street Apt 1

4 141 12th Street Apt 11

5 141 12th Street Apt 2

6 141 121st Street

7 1411 12th Street


SORT

8

The new NUMERIC_COLLATION option allows for a more traditional (from a human standpoint) sort.
Repeating the sort on the same dataset used above, we will find that the street addresses are sorted in
such a way that both numeric street addresses and alphabetic characters are respected. Further, it is not
limited to only the first number in the string; the street number, the street address, and even the
apartment number are treated as numeric values during the sort, while the rest of the field is still handled
as character.

PROC SORT DATA=ADDRESSES

 OUT=ADDRESSES_NUM

 SORTSEQ=linguistic

 (NUMERIC_COLLATION=ON);

 BY ADDRESS ;

RUN;

PROC PRINT DATA=ADDRESSES_NUM

 UNIFORM;

RUN;

Obs ADDRESS

Obs ADDRESS

1 14 12th Street

2 14 121st Street

3 141 12th Street Apt 1

4 141 12th Street Apt 2

5 141 12th Street Apt 11

6 141 121st Street

7 1411 12th Street

CONCLUSION

The basics of sorting in SAS can be taught and understood in a manner of minutes. However, like an
onion, there are layers upon layers of details that can be studied and employed if the reader is interested
in doing so. It is not simply sorting that should be examined, but sorted data in general; it is possible to
use data as though it were sorted, even though it is not.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

CONTACT INFORMATION

The author can be contacted via e-mail as follows:
 KuligowskiConference@gmail.com


SORT

9

REFERENCES / FOR FURTHER INFORMATION

Clifford, Billy. (2005) “Frequently Asked Questions About SAS

®
 Indexes”. Proceedings of the Thirtieth

Annual SAS Users Group International Conference. Cary, NC: SAS Institute, Inc.

First, Steven. (2006). Class Notes: Introduction to SAS

®
. Madison, WI: Systems Seminar Consultants,

Inc.

First, Steven. (2006). Class Notes: SAS

®
 Efficiencies. Madison, WI: Systems Seminar Consultants, Inc.

Langston, Rick (2007). What’s Coming in Version 9.2 of Base SAS Software. Lecture presented as
Opening Session at Fifteenth Annual Conference of the SouthEast SAS Users Group, November 2007.

Raithel, Michael. (2005) “The Basics of Using SAS

®
 Indexes”. Proceedings of the Thirtieth Annual SAS

Users Group International Conference. Cary, NC: SAS Institute, Inc.

Raithel, Michael. (2006) The Complete Guide to SAS

®
 Indexes. Cary, NC: SAS Institute, Inc.

SAS Institute, Inc. (2006). SAS

®
 Online Documentation, Version 9. Cary, NC: SAS Institute, Inc.

SAS Institute, Inc. (2008). What's New in Base SAS

®
 9.2. Cary, NC: SAS Institute, Inc.

Wiktionary contributor(s), uncredited. (2009) Sort. http://en.wiktionary.org/wiki/sort

ACKNOWLEDGMENTS

I would like to thank Lisa Eckler for suggesting the topic and issuing the necessary invitations and
acceptances, and Tony McClay for providing a second opinion or two along the way.

10

APPENDIX – Sample Data Generation Routine

The routine below was used to generate most of the test data used for the examples in this paper.

%LET LoopLen = 250;

DATA TEMP(KEEP=OrigOrder RandomBool Random500 RandomPosNegMiss

 ThreeLetterUpOnly ThreeLetterMixed);

 LENGTH Alphabet $ 52. ;

 RETAIN Alphabet 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz';

 MISSING A M Z ;

 DO OrigOrder = 1 TO &LoopLen;

 RandomBool = INT(RANUNI(0)+ .5);

 Random500 = INT(RANUNI(0)*500) + 1;

 IF MOD(OrigOrder, 5) = 0 THEN DO;

 RanMiss = RANUNI(0) ;

 IF RanMiss < .25 THEN RandomPosNegMiss = . ;

 ELSE IF RanMiss < .50 THEN RandomPosNegMiss = .A ;

 ELSE IF RanMiss < .75 THEN RandomPosNegMiss = .M ;

 ELSE RandomPosNegMiss = .Z ;

 END;

 ELSE DO;

 RandomPosNegMiss = INT(RANUNI(0)*5) + 1;

 IF RANUNI(0) > .75 THEN

 RandomPosNegMiss = RandomPosNegMiss* -1 ;

 END;

 ThreeLetterUpOnly = SUBSTR(Alphabet, INT(RANUNI(0)*26)+1, 1) ||

 SUBSTR(Alphabet, INT(RANUNI(0)*26)+1, 1) ||

 SUBSTR(Alphabet, INT(RANUNI(0)*26)+1, 1) ;

 ThreeLetterMixed = SUBSTR(Alphabet, INT(RANUNI(0)*52)+1, 1) ||

 SUBSTR(Alphabet, INT(RANUNI(0)*52)+1, 1) ||

 SUBSTR(Alphabet, INT(RANUNI(0)*52)+1, 1) ;

 OUTPUT;

 END;

RUN;

PROC SORT DATA=TEMP;

 BY RandomBool RandomPosNegMiss ;

 /*** replace with other variables as needed ***/

RUN;

PROC PRINT DATA=TEMP UNIFORM;

RUN;

