
1

PharmaSUG 2012 - Paper AD06

A SAS® Tool to Allocate and Randomize Samples to Illumina Microarray Chips
Huanying Qin, Baylor Institute of Immunology Research, Dallas, TX

Greg Stanek, STEEEP Analytics, Baylor Health Care System, Dallas, TX

Derek Blankenship, Quantitative Sciences, Baylor Health Care System, Dallas, TX

ABSTRACT

DNA/RNA Microarray has become a common tool for identifying differentially expressed genes under different
experimental conditions. Several microarray platforms exist and differ by probe implementation and target-labeling
strategies. When it comes to sample allocation, Illumina BeadChip is most unique because each chip can hold 12
samples, while for other platforms, each chip holds one sample or a combination of 2 paired samples. This adds
complexity to sample randomization because each chip serves as a block and often the number of samples for each
study group is not balanced, ie. each group does not have the same number of samples. The SAS PROC PLAN
procedure is able to aid in the design and randomization of sample allocation for balanced studies but is limited for
unbalanced studies. This paper describes a SAS macro tool we developed to implement an optimizing algorithm to
allocate and randomize samples to Illumina chips for unbalanced study designs.

INTRODUCTION

It is important to randomly assign samples to different treatment groups in order to reduce the likelihood of bias due
to factors other than treatment. SAS PROC PLAN or PROC SURVEYSELECT can be used for balanced design or
when a fixed allocation ratio exists. To randomly allocate samples of different groups to fill in spaces has similar
implication as assigning samples to treatment groups. However, the filling in space problem can be more complicated
in real situation because often the sample size in each group is not the same and there is no fixed allocation ratio,
especially when the block factor is involved.

Microarray experiments involve loading samples to microarray chips where DNA probes are embedded. These chips
then go through hybridization step followed by a stream of work. Most microarray platforms use one chip for one
sample or a mixture of two samples. However, Illumina BeadChip Human V4 is very unique in its capacity to hold 12
samples on one chip, which has great advantage in cost-effectiveness. But this also presents great challenge in
sample allocation, because each chip serves as a block. We try to avoid scenarios where samples from the same
study group are all allocated to same chips and want to maximize the number of study groups represented on each
chip. For most studies the sample size of each group is not divisible by the number of chips needed. In the past, our
collaborators used EXCEL to manually randomize the samples by trial and error until a desired sample allocation was
obtained. The process can be very time consuming without consistently applying an algorithm. The SAS tool in this
paper uses the macro language and PROC SQL to implement a fixed algorithm to optimize the randomization. This
greatly simplifies the sample allocation problem for researchers.

PROGRAM FLOW

Two major steps are involved in the use of the tool:

1. Calculate total number of chips needed and fill in all spaces. This requires determining the number of chips
for each study group and the number of samples from each group for each chip.

2. Randomize chips and sample locations within each chip.

1. Calculating Total Number of Chips

We developed an algorithm using linear programming to solve for 5 parameters:

1. Total number of chips needed.
2. Chips and each sample group need to be divided into 2 subgroups so that one subgroup of samples

can be evenly assigned to the first group of chips and the other subgroup can be evenly assigned to the
remaining chip group.

 ���������� 	 ����
����
 � ��
��� �����
 ����� � ����
 � 1
 ����� 	 ����
 � ���� �����

2

 �����: ����� � ������� ������ !"#$%
!&'� !"#$% (

With some algebra we obtain the following equations that are integrated in the code to capture the unknown values:

 ����� � ��
��� ����� 	 ���� �����)1 � �����*,
 ����
 � ����� � 1 ��,
 ����
 � ���� ����� � �����

As an example, Table 1 contains a microarray study data that will process 185 samples for 4 groups, which requires
16 Illumina chips (ceiling[185/12]) since each chip holds 12 samples. Table 2 contains the calculated chips for each
site necessary based upon the algorithm for the assignment and randomization within each chip.

Group Sample Site Sample Count

1 Seattle control 39

2 Seattle patient 38

3 Texas control 44

4 Texas patient 64

Table 1. Study example before calculating chips

Group Sample Site
Sample
Count

Chip
Count

Sample Count/
Chip Count Chip1 Size1 Chip2 Size2

1 Seattle control 39 16 2.4375 7 3 9 2

2 Seattle patient 38 16 2.375 6 3 10 2

3 Texas control 44 16 2.75 12 3 4 2

4 Texas patient 64 16 4 16 4 0 0

5 NULL 7 16 0.4375 7 1 9 0

Table 2. Table sample2 after calculating chips

Table 2 illustrates the 4th group is an ideal since it returns an integer value i.e., its size 64 is divisible by the number of
chips (16) and we can easily assign 4 samples from this group to each chip. The other 3 groups do not return an
integer value and their sizes vary as well, which requires the additional group 5 of 7 null spaces to be defined to
balance out the allocation of samples on the chips for randomization. Given the samples from group 2 to 5 can’t be
evenly assigned to each chip, we need to determine how to divide those samples so that they will be randomly
allocated to those chip spaces as much as possible.

The code is relatively simple where it uses Proc SQL to generate macro variables to be passed thru to the algorithm
to calculate the chip and size variables described in Table 2.

It starts out by reading in the the data from Excel and restricting to the Site and generating the count and Group
variables as shown in Table 1.

 libname Illumina " \\directory\Path\ Samples for randomization.xls" stringdates =yes;

 proc sql;
 create table sample as
 select status as Site label= 'Sample Site' ,
 count(*) as Sample Label= 'Sample Count'
 from Illumina."Sheet1$"n (keep=Status)
 group by 1;
 quit;

 libname Illumina clear;

 data sample;
 set sample;
 Label GRPS='Group' ;
 GRPS=_n_;
 run;

3

The first portion of the Macro (%Sample_Chips) utilizes Proc SQL to generate macro variables to calculate the size
and chip variables in the next step. In the macro variable development we use the calculated function within SQL to
sequentially build variables, the ceil function to capture the largest value for the chips and then assign them to macro
variables.

The second portion of Macro Sample_Chips generates the variables for size and chips as described previously. The
second portion calculates the size and chips for both an unbalanced sample (our example) and a balanced sample.

 %macro sample_chips;
 %global init_samp k chip tot_samp samp_diff;

 proc sql noprint;
 select sum(sample) as init_samp,
 ceil(calculated init_samp/ 12) as chip,
 calculated chip* 12 as tot_samp,
 calculated tot_samp-calculated init_samp as samp_diff,
 strip(put(COUNT(DISTINCT grps), 8.)) as init_grps

 into: init_samp, :chip, :tot_samp, :samp_diff, :k
 from sample;
 quit;

 %put &init_samp &chip &tot_samp &samp_diff &k;

 %if %eval (&samp_diff) > 0 and %eval (&samp_diff) < 12 %then %do;

 data tmp;
 x= 1;
 run;

 proc sql;
 create table sample2 as
 select grps as Group, Site,
 Sample label= 'Sample Count',
 &chip as Chip,
 sample/&chip as grp_ratio label= 'Sample to Chip Ratio' ,
 &chip*(1-ceil(sample/&chip))+sample as Chip1,
 ceil(sample/&chip) as Size1,
 &chip-calculated chip1 as Chip2,
 case when calculated chip1<&chip then ceil(sample/&chip)- 1
 else 0 end as Size2
 from sample
 union
 select &k+ 1 as grps as Group, 'NULL' as Site,
 &samp_diff as Sample label= 'Sample Count',
 &chip as Chip,
 &samp_diff/&chip as grp_ratio label= 'Sample to Chip Ratio',
 &chip*(1-ceil(&samp_diff/&chip))+&samp_diff as Chip1,
 ceil(&samp_diff/&chip) as Size1,
 &chip-calculated chip1 as Chip2,
 case when calculated chip1<&chip then ceil(&samp_diff/&chip)- 1
 else 0 end as Size2
 from tmp;
 quit;

 proc datasets library=work nolist; delete tmp; quit;
 %end ;

Although it might be rare, there are situations where the samples are all balanced and therefore the following code
will deal with the balanced case.

 %else %if %eval (&samp_diff)= 0 %then %do;
 proc sql;
 create table sample2 as
 select grps as Group, Site, sample label= 'Sample Count',

4

 &chip as Chip,
 sample/&chip as grp_ratio label= 'Sample to Chip Ratio',
 &chip*(1-ceil(sample/&chip))+sample as Chip1,
 ceil(samp/&chip) as Size1,
 &chip-calculated chip1 as Chip2,
 case when calculated chip1<&chip then ceil(sample/&chip)- 1
 else 0 end as Size2
 from sample;
 quit;
 %end ;
 %mend sample_chips;
 % sample_chips;

The table sample2 (See Table 2) is the key for sample allocation and provides detailed information on how to divide
the chips and samples. As an example, for the first group, each of the first 7 chips should have 3 samples and the
rest of 9 chips should have 2 samples on each.

However, guided by these parameters, there is multiple ways to allocate all samples to fill in the spaces of all chips.
Further work is needed to automate the process for selecting the best way. In this paper, we randomly picked one
combination (Table 3) to implement and a simple Proc SQL step was used to create a dataset according to Table 3.

Table 3. The blueprint for initial allocation of samples to fill in the chips

 data assignment(drop=i j);
 do i= 1 to & chip. ;
 chip=i;
 do j= 1 to 12;
 location=j; output ;
 end ;
 end ;
 run;

 proc sql;
 create table assignment as
 select chip, location,

Number of samples by group

Chip Group1 Group2 Group3 Group4 Group5 Total

1 4 3 2 2 1 12

2 4 3 2 2 1 12

3 4 2 2 3 1 12

4 4 2 2 3 1 12

5 4 2 3 2 1 12

6 4 2 3 2 1 12

7 4 2 3 2 1 12

8 4 2 3 3 0 12

9 4 2 3 3 0 12

10 4 2 3 3 0 12

11 4 2 3 3 0 12

12 4 2 3 3 0 12

13 4 3 3 2 0 12

14 4 3 3 2 0 12

15 4 3 3 2 0 12

16 4 3 3 2 0 12

Total 64 38 44 39 7 192

5

 case when location <= 4 and 1<=chip <=16 then 4
 when location= 5 and 1<=chip <=7 then 5
 when location= 5 and 8<=chip <=16 then 3
 when location in (6, 7) and 1<=chip <=16 then 3
 when location= 8 and 5<=chip <=7 then 3
 when location= 8 and (1<=chip<= 4 or 8<=chip <=16) then 2
 when location= 9 and 1<=chip <=16 then 2
 when location= 10 and chip in (1, 2, 5, 6, 7, 13, 14, 15, 16) then 2
 when location= 10 and chip in (3, 4, 8, 9, 10, 11, 12) then 1
 when 10<location and 1<=chip <=16 then 1 end as GRP
 from assignment
 order by chip;
 quit;

2. Randomize Chips And Sample Locations Within Each Chip

After the first step, all samples of the same group will be clustered with each other, and the next step will be to
randomize the chip ID and sample location within each chip. We use random number generator functions to
accomplish this purpose.

In the codes below, the data set step1 comes from merging between the dataset assignment and the original sample
list from the researcher and it has variables for sample ID, sample group status, chip ID and chip location according
to information in Table 3. First, samples are randomized within each chip using the rand function followed by a few
data manipulation steps.

 proc sort data =step1; by chip location grp; run;

 data step2;
 set step1;
 random_num=rand('uniform');
 run;

 proc sort data =step2; by chip random_num; run;

 proc rank data =step2 out =step3(drop =location rename =(location_new=location));
 by chip;
 var random_num;
 ranks location_new; label location = ' ' ;
 run;

 data step4;
 do i= 1 to & chip. ;
 chip=i;
 random_chip=rand('uniform'); output ;
 end ;
 run;

 proc sql;
 create table step5 as
 select a. *, b.random_chip
 from step3 a left join step4 b
 on a.chip=b.chip
 order by random_chip;
 quit;

It may not be required to randomize the chips every time, but it is a good practice especially when chips from different
batches are used for one experiment.

 data step6 (drop =chip rename =(new_chip=chip));
 set step5;
 by random_chip;
 if first.random_chip then new_chip+ 1;
 run;

6

 proc sql;
 create table final_sample as
 select chip, location, grp, random_chip, random_num as random_order
 from step6;
 quit;

The final_sample list is ready for researchers to implement in the microarray experiment.

CONCLUSION

With the use of SAS macro language and Proc SQL, this tool implements an algorithm to randomize samples to the
Illumina chips for microarray experiments. This makes it possible to avoid tedious manual work of trial and error in
EXCEL. As a result, it greatly saves researchers’ time and allows consistency due to the randomization algorithm. In
addition, it can be applied to other types of experiments besides microarrays as well.

ACKNOWLEDGEMENTS

We would like to thank Esperanza Anguiano and Mamta Sharma from Institute of Immunology Research at Baylor
Health Care System for providing this problem for which we developed the tool.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Huanying Qin
Enterprise: Baylor Institute of Immunology Research
Address: 3310 Live Oak, Suite 400, Dallas, Tx, 75204
Work Phone: 214-820-9064
E-mail: huanyinq@baylorhealth.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

