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ABSTRACT 

Biomarker assessment has become an essential tool for evaluating treatment effects in subpopulations of potential 

drug responders in oncology studies. It is believed that treatment effects can differ between patient subgroups with 

different genotypes, and therefore biomarkers may help predict treatment effects in these subpopulations. There are 

many statistical methods for selecting biomarkers as candidate classifiers when identifying subgroups. One approach 

is to transform each continuous biomarker into a binary covariate by selecting a threshold with certain optimal 

properties and fit it in the survival model, one biomarker at a time. Selection of a threshold can be done by using 

maximally selected chi-square statistic, as proposed in Miller and Siegmund, 1982.  

In this paper, we demonstrate how to implement the maximum chi-square method with a SAS macro that fits 

proportional hazards Cox regression models on time-to-event endpoints, determines the biomarker threshold to 

classify patients into subgroups, and then performs analysis to test for the biomarker effect and treatment effect 

within and between the biomarker patient subgroups using Kaplan-Meier and Proportional Hazards models. This 

macro can be applied more broadly to evaluate treatment effects in subgroups formed by a set of continuous 

covariates in the context of survival analysis. It can also be easily modified to fit logistic models for binary and ordinal 

outcomes. 

INTRODUCTION 

Many biomarkers are continuous variables; for example, H-score of an immunohistochemistry assay. Continuous 

biomarkers are sometimes converted into categorical variables by grouping values into two categories to select 

genomic patient subgroups. One approach was proposed by Miller and Siegmund, 1982, who derived asymptotic 

distribution of the maximal chi-square statistic that arises when selecting the cut point to maximize the value of the 

“standard” chi-square statistic.  

This theory can be applied to dichotomize continuous biomarkers into two subgroups when evaluating prognostic and 

predictive effects of candidate biomarkers. For a given biomarker, patients are initially classified into two groups: “low” 

as those with biomarker values smaller than a cut point and “high” as those with equal or larger values. The initial cut 

point is chosen using the ordered biomarker values so that at least a certain proportion, for example, 25%, of patients 

is in the “low” group. Our strategy is to identify optimal cut points for each biomarker, so as to evaluate their 

prognostic and predictive effects. To this end, two Cox regression models, one with main effects of treatment and 

biomarker group (to evaluate prognostic biomarker effect), and the other with additional treatment-by-biomarker 

group interaction (to evaluate potential predictive biomarker effect), are constructed. For the two models we retain 

chi-square statistics for the main biomarker effect and treatment by biomarker interaction effect, respectively. Then 

for each model we optimize the cut point, by repeatedly setting it equal to every observed value and computing the 

chi-square statistics until the percentage of subjects in the low group reaches to a certain pre-specified upper limit, for 

example, 75%. In the end, for each model, the maximum value across all the calculated chi-square statistics is 

identified, and the corresponding cut point is selected as the final dichotomization threshold to select patient 
subgroups. The final thresholds are used to fit the same two models and the biomarker effect (from the first 

prognostic model) and treatment effects between the two patient subgroups (from the second predictive model) are 

tested. Results from both models are generated and stored in a data set ready for reporting. 

 To implement the above strategy, we developed a macro called %am_maxchi_coxreg ( ). 
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MACRO PARAMETERS AND ASSUMPTIONS 

The macro parameters are listed in Table 1. 

Table 1. Macro Parameters 

Name Default Description  

inset none 
The input data set with biomarker value and time-to-event variable and censoring 
indicator.  

mrkvar PARAM 

The name of the biomarker name/description variable. An example would be the 
variable of the names of immunohistochemistry biomarkers such as EGFR, TS, TTF 
etc. 

mrknm &&marker&i 
The distinct value of the biomarker name extracted from &mrkvar. It is the description 
of the biomarker name that appears on the report.  

mrkscr AVAL 

The name of the biomarker value variable that is used to determine dichotomization. 
This is assumed to be a numerical variable that is measured in ordinal scale. An 
example would be the variable of the H-Score for immunohistochemistry biomarkers. 

startpct 0.25 

The minimum fraction of patients in the “low” biomarker group when starting to search 
for the threshold for dichotomization. The initial cut point is determined based on this 
percentile. 

endpct 0.75 

The maximum fraction of patients in the “low” group when stopping to search for the 
threshold for dichotomization. The final cut point in the search for the optimal threshold 
is determined based on this percentile 

 

The macro assumes that the input data set contains one record per patient per biomarker, with columns for the 

biomarker variable, the time-to-event and censoring indicator variable. To reduce the number of macro parameters, it 

also assumes that the time-to-event variable is named as TTERN and the censoring indicator is TTECENSFLG, with 

1 being the censored value. The name of the treatment variable is assumed to be TRTSORT with numerical values 

coded as “1” for the active treatment arm and “0” for the control.  

MACRO IMPLEMENTATION DETAILS 

The macro reads in a SAS data set that contains one record per patient for a particular biomarker, possibly with 

multiple biomarkers. It extracts a subset of data for a specific biomarker of interest, sorts the records by the biomarker 

values in ascending order. It then determines the initial and final cut points to ensure the fraction in the low group is 

between &startpct and &endpct .  

Extract the subset of records for the biomarker of interest and compute the total number of patients in the data set. 

The number of patients is the number of observations in the extracted data set.  

%*-- extract individual markers -; 

PROC SORT data=&inset out=indmrk_; 

  by &mrkscr; 

  where &mrkvar = "&mrknm"; 

RUN; 

 

DATA _null_; 

  set indmrk_ nobs = obs; 

  %*-- initialize the total number of observation into a macro variable -; 

  CALL SYMPUT("total", compress(put(obs,best12.))); 

RUN; 

 

Determine the start and end points based on &startpct and &endpct, the minimum and maximum fractions of patients 
allowed in the low group, respectively.  If the cut points are calculated incorrectly so that the end point is less than the 
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start point, or if there are too few subjects in the data set, then the macro will terminate and write a message in the 
log file. The macro also terminates if the cut-points associated with &startpct and &endpct are identical.  

 
%*-- define the start and end points of the observation number -; 

%*-- the start point is determined to have a MINIMUM of &startpct fraction of records 

in the low group -; 

%*-- the end point is determined to have a MAXIMUM of &endpct fraction of records in 

the low group -; 

%LET start = %SYSEVALF(&total * &startpct + 1, ceil); 

%LET end =  %SYSEVALF(&total * &endpct + 1, floor); 
 

 

%*-- in the case where the start and end points do not make sense, or if there are too 

few samples, terminate analysis -; 

%*-- Experience tells us that if there are only 12 or less total patients there is no 

need to perform such an analysis -; 

%IF &start > &end or &total<12 %THEN %DO; 

%PUT for marker=&marker, start and end point not making sense (start=&start 

end=&end), or not enough records (n=&total), terminate analysis; 

  %LET stoprun = 1; 

  %GOTO exit; 

%END; 

 

%*-- get the record number immediately prior to the start point -;  

%IF %EVAL(&start-1)>0 %THEN %LET prevrec = %EVAL(&start-1); 
 

DATA _null_; 

  set indmrk_ nobs = obs; 

  %*-- get the marker value of the previous record -; 

  if _n_=&prevrec then CALL SYMPUT("previous",compress(put(&mrkscr,best32.))); 

  %*-- get the marker value at the end of the cut point -; 

  if _n_=&end then CALL SYMPUT("post", compress(put(&mrkscr,best32.))); 

RUN; 

   

%*-- in case where the search starts and ends at the same value, terminate analysis -; 

%IF %SYSEVALF(&previous eq &post) %then %do; 

%PUT For marker=&mrknm, start and end results (&previous, &post) are equal,   

terminate analysis; 

  %LET stoprun = 1; 

  %GOTO exit; 

%END; 

 
Dichotomize patients into “low” and “high” biomarker groups based on the initial cut point, and fit the two Cox 

regression models: the “main effects model” and the “interaction model”. The chi-square statistic associated with the 

interaction term from the interaction model and the chi-square statistic associated with the biomarker effect from the 

main effects model are retained. The cut point is incremented to the next observed value, and the same steps are 

repeated until the cut point reaches to the upper limit, retaining the two chi-square values each time. The chi-square 

statistics associated with all the cut points evaluated from the same Cox model are compared and the cut points 

corresponding to the maximum chi-square values are passed to macro variables, &intthold and &mainthold, as the 

final optimal thresholds for the models to dichotomize the patient population into “low” and “high” biomarker groups. 

%DO k = &start %TO &end; 

  %IF %SYSEVALF(&cut ^= &previous) %THEN %DO; 

 

   DATA cut_; 

      set indmrk_; 

      by &mrkscr; 

      cutpt=_n_;       

 

      %*-- define a temporary variable for high/low group -; 

      if cutpt ge &k then tempgrp = 1; 

      else tempgrp = 0;     

    RUN;   
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    %*-- interaction model -; 

    ODS OUTPUT parameterestimates=parami_(where=(upcase(variable)='TRT_GRP')); 

    PROC PHREG data = cut_; 

      MODEL ttern * ttecensflg(1) = trtsort tempgrp trt_grp;    

      trt_grp = trtsort * group;     

    RUN; 

 

    %*-- main effects model -; 

    ODS OUTPUT parameterestimates=paramr_(where=(upcase(variable)='TEMPGRP')); 

    PROC PHREG data = cut_; 

      MODEL ttern * ttecensflg(1) = trtsort tempgrp; 

    RUN; 

  

   /** Insert code to stack parami_ and paramr_ from all the iterations together **/ 

 

  %END;   

 

  %LET previous=&cut; 

 

  /** Insert code to compare the chi-square values and pick the maximum one from each   

model. The one from the interaction model is saved as &intthold and the one from the 

main model is saved as &mainthold. **/ 

 

%END;   

 

After identifying the optimal threshold biomarker values under the two models, these cut points are applied to 

dichotomize patient population into “low” and “high” biomarker groups. An output SAS data set is created with two 

variables, igroup and mgroup, assuming values 0 and 1 to designate the “low” and “high” groups based on the 

optimal biomarker cut points from the interaction model and the main effects model, respectively. 

  %*-- data set to feed into the interaction and the main effects models -; 

  DATA anads_; 

    set indmrk_; 

    length expression $5; 

    

    if &mrkscr >= &intthold then do; 

      igroup=1; 

      iexpression='High'; 

    end; 

    else do; 

      igroup=0; 

      iexpression='Low'; 

    end;   

 

    if &mrkscr >= &mainthold then do; 

      mgroup=1; 

      mexpression='High'; 

    end; 

    else do; 

      mgroup=0; 

      mexpression='Low'; 

    end; 

    

    keep ttern ttecensflg trtsort mgroup mexpression igroup iexpression;; 

  RUN; 

 

Two sets of Kaplan-Meier analyses on the time-to-event endpoint are performed, stratified by treatment and 

biomarker group, one for the group from the interaction model and the other for the group from the main effects 

model. The output data sets are created using appropriate ODS statement to get the summary of the event and its 

median estimate. 
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%*-- KM analysis - interaction model; 

ODS OUTPUT quartiles=mediani_(keep=trtsort group percent estimate lowerlimit 

           upperlimit rename = (estimate = median) where = (percent = 50)) 

      censoredsummary=counti_(keep =  trtsort group total censored failed pctcens    

           where = (group in (0, 1))); 

PROC LIFETEST data = anads_ ALPHA = .05; 

  TIME ttern * ttecensflg(1); 

  STRATA group trtsort; 

RUN; 

 

%*-- KM analysis – main effect model; 

ODS OUTPUT quartiles=medianm_(keep=trtsort group percent estimate lowerlimit 

           upperlimit rename = (estimate = median) where = (percent = 50)) 

         censoredsummary=countm_(keep=trtsort group total censored 

           failed pctcens where=(group in (0, 1))); 

PROC LIFETEST data = anads_ ALPHA = .05; 

  TIME ttern * ttecensflg(1); 

  STRATA group trtsort; 

RUN; 

 

The same two proportional hazards Cox regression models as described above are fit using the biomarker groups 

defined based on the optimal cut points.  Treatment effects within biomarker groups and biomarker effects within 

treatment groups are examined under the interaction model. Treatment-independent (prognostic) biomarker effect is 

examined under the main effects model. Output data sets with hazard ratios and associated confidence intervals, as 

well as Wald Chi-square test statistics and p-values are generated using appropriate ODS statements. The following 

table (Table 2) shows how beta coefficients from the proportional hazards interaction model are used to compute 

hazard ratios for the contrasts of interest. 

Table 2. Computing Hazard Ratios for the Contrasts of Interests from the Estimated Regression Coefficients 

in the Interaction Model 

Interaction model: treatment group treatment*group

stratum effect β1 β2 β3

treatment=1 1 1 1

treatment=0 0 1 0

treatment=1 1 0 0

treatment=0 0 0 0

group=1 1 1 1

group=0 1 0 0

group=1 0 1 0

group=0 0 0 0treatment=0 exp(β2)

HR for 

contracts

Biomarker effect within 

treatment group = “1”

Treatment effect within 

biomarker group = “low”

Treatment effect within 

biomarker group = “high”

Description

Biomarker effect within 

treatment group = “0”

group=1 exp(β1+β3)

group=0 exp(β1)

treatment=1 exp(β2+β3)

 

 

%*-- interaction model -; 

ODS OUTPUT parameterestimates=main_int_(keep=variable chisq hazardratio HRlowerCL  

           HRupperCL ProbChiSq) 

           testprint1=covmtrx_int_(keep=label col1 col2 rename=(col1=varcov  

           col2=betahd))        

     teststmts=pval_int_(keep=label waldchisq probchisq); 

PROC PHREG data = anads_;                                                                                                                   

  MODEL ttern*ttecensflg(1) = igroup trtsort trt_igrp / ALPHA=0.05 RISKLIMITS;   

  trt_igrp = trtsort * igroup; 

  %*-- testing treatment effect when igroup=high -; 

  TEST1: test trtsort+trt_igrp /e print;    

  %*-- testing group effect when treatment=1 -; 

  TEST2: test igroup+trt_igrp /e print;  

  /* note that: β(trtsort) is the coefficient of treatment effect when  igroup=low,  

     and β(igroup) is the coefficient of group effect when trt=0. */                                                                                

RUN; 
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%*-- main effects model -; 

ODS OUTPUT parameterestimates=main_eff_(keep = variable chisq hazardratio HRlowerCL  

           HRupperCL ProbChiSq);    

PROC PHREG data = anads_; 

  MODEL ttern*ttecensflg(1) = trtsort mgroup /ALPHA=0.05 RISKLIMITS;  

  /* note that: β(trtsort) is the coefficient for testing treatment effect. */                                                                                

RUN; 

 

The final “reporting-ready” output data set is created by processing and combining outputs from Kaplan-Meier and 

Cox regression models. 

THE OUTPUT 

The output from the macro is a SAS data set that is structured for the following reporting table (Table 3). 

The report contains biomarker effects within each treatment group and treatment effect within each biomarker group 

as well as the associated p-values and 95% confidence intervals. The p-values for the biomarker effect in the main 

effect model and the p-values for the treatment by biomarker effect in the interaction model are adjusted for the 

optimal cut point search using methodology in Miller and Siegmund, 1982 (as documented in the footnote “e” of the 

report). 

Table 3. Example of Output Report Produced by the Macro 

 High Biomarker Group a Low Biomarker Group b 

 Treatment A Treatment B Treatment A Treatment B 

Biomarker xxx, threshold x.xxx 

Total number of subjects, N x X x x 

Subjects censored, n(%) x (x.xx) x (x.xx) x (x.xx) x (x.xx) 

Subjects with observed event, n(%) x (x.xx) x (x.xx) x (x.xx) x (x.xx) 

Median TTE, months  x x x x 

95% CI for median TTE (xx.x, xx.x) (xx.x, xx.x) (xx.x, xx.x) (xx.x, xx.x) 

HR d (Within  Expression Level)  x.xxx x.xxx 

95% CI for HR
d
 (x.xxx – x.xxx) (x.xxx – x.xxx) 

Wald chi square x.xxx x.xxx 

p-valuee .xxx .xxx 

HR f Within Treatment A  x.xxx 

95% CI for HR
d
 (x.xxx – x.xxx) 

HRg Within Treatment B  x.xxx 

95% CI for HR
d
 (x.xxx – x.xxx) 

Interaction Wald Chi-square x.xxx 

Interaction p-valuee .xxx 

  

Main effects model threshold Xxx 

Total number of subjects, N x X x x 

Patients censored, n(%) x (x.xx) x (x.xx) x (x.xx) x (x.xx) 

Patients with observed event, n(%) x (x.xx) x (x.xx) x (x.xx) x (x.xx) 

Median TTE, months  x x x x 

95% CI for median TTE (xx.x, xx.x) (xx.x, xx.x) (xx.x, xx.x) (xx.x, xx.x) 

Treatment independent HR
i
 (95% CI) x.xxx 

95% CI for HR
i
 (x.xxx – x.xxx) 

Wald chi square x.xxx 

p-valuee .xxx 
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EXAMPLE OF MACRO CALL 

The following SAS code calls the macro %am_maxchi_coxreg().  The code reads in a data set named admrk with 

one record per patient per biomarker variable. Therefore, multiple biomarker variables are stacked within a single 

SAS data set. The variable in the data set that stores the names of all biomarkers is param and the variable aval  

stores the values of biomarkers. For each biomarker, the macro searches the middle 50 percent of the distribution to 

determine the optimal thresholds for the interaction and the main effects models.  The macro dichotomizes the patient 

population into “high” and “low” groups based on the threshold values and performs Kaplan-Meier and Cox 

Regression analyses. Finally the output data set named “report” is generated that contains the analysis results from 

all the biomarkers. 

%MACRO generator; 

 

  %put NOW EXECUTING MACRO generator; 

 

  PROC SORT data = admrk out = temp0 nodupkey; 

    by param; 

  RUN; 

 

  DATA _null_; 

    set temp0 nobs = n; 

    CALL SYMPUT('nummrk',left(put(n,best12.))); 

    CALL SYMPUT(compress("marker"||put(_n_,best12.)), left(trim(param))); 

  RUN; 

 

  %*-- perform the analysis for all biomarkers -; 

  %DO i = 1 %TO &nummrk; 

 

    %am_maxchi_coxreg_(inset=admrk, mrkvar=param, mrknm=&&marker&i, mrkscr=aval,  

     startpct=.25, endpct=.75); 

  %END; 

 

%MEND generator; 

 

%generator; 

 

Footnotes: 
(a) Subjects with high relative biomarker expression level. 
(b) Subjects with low relative biomarker expression level. 
(c) Biomarker value that is the threshold maximizing the effect of interaction between treatment and biomarker 
groups. A biomarker value at or above this threshold is classified as in the high biomarker group. A biomarker 
value below this threshold is classified as in the low biomarker group. Range of biomarker values assessed for 
threshold: 25 – 75

th
 percentile. 

(d) Hazard ratio for treatment A vs. treatment B within protein expression level. 
(e) * Asymptotic probability of the observed maximum chi-square statistic calculated with formula of Miller and 
Siegmund (1982).  **Probability calculated using the ordinary chi square distribution; because the asymptotic p-
value calculated from the max chi square distribution was inappropriately smaller.  This situation may occur with 
small chi square statistic values, since the max chi square distribution applies asymptotically as the chi square 
statistic approaches infinity (i.e. the asymptotic max chi square distribution is most accurate for those values 
which are most significant). 
(f) Hazard ratio for high vs. low biomarker group within treatment A. 
(g) Hazard ratio for  high vs. low biomarker group within treatment B. 
(h) Threshold H score value identified under a model without an interaction term maximizing the effect of 
biomarker group (i.e. only main effects for treatment and biomarker group were included). Range of biomarker 
values assessed for threshold: 25 – 75

th
 percentile. 

(i) Hazard ratio for high vs. low biomarker group.  
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CONCLUSION/SUMMARY 

The SAS macro has been developed that automates a popular biomarker cut point selection strategy, based on 

maximal Chi-square statistics providing biomarker effects within treatment  and treatment effects within biomarker 

and associated p-values and confidence intervals. The p-values for the biomarker effect and the biomarker-by-

treatment interaction are adjusted for multiplicity inherent in selecting optimal cut points for a given biomarker.  

We note, however, that the macro does not adjust the individual biomarker p-values against multiplicity in selecting 

across biomarkers. It also implements one-biomarker-at a time approach which may be not optimal if the true 

subgroups is formed by a combination of two or more biomarkers. For literature suggesting procedures that 

simultaneously search for groups formed by a combination of markers, while adjusting for multiplicity in the entire 

search process and providing the overall type I error control, see Lipkovich et al, 2012 

http://onlinelibrary.wiley.com/doi/10.1002/sim.4289/pdf 
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