
1

PharmaSUG 2012 – Paper DS06

SDTM Domain Mapping with Structured Programming Methodology

Chengxin Li, Boehringer Ingelheim, Ridgefield, CT

Jing-Wei Gao, Boehringer Ingelheim, Ridgefield, CT

Nancy Bauer, Boehringer Ingelheim, Ridgefield, CT

ABSTRACT

This paper describes the implementation of SDTM domain mapping with structured programming methodology.

Structured design and structured programming make our mapping codes easy to implement, understand, debug, and

maintain. Example codes for domain mapping are provided, with which the readers can easily adapt to meet their

mapping requirements.

INTRODUCTION

CDASH AND SDTM

Clinical Data Acquisition Standards Harmonization (CDASH) [1], Study Data Tabulation Model (SDTM) [2] are the key

components of Clinical Data Interchange Standards Consortium (CDISC)
 1
.

CDASH, harmonized with SDTM, standardizes structure and the metadata for underlying clinical trial data collections

with corresponding domains. It defines clinical data collection standards from the beginning of clinical trials set-up.

The current version CDASH V1.1 provides 16 standard collection domains.

SDTM defines standard structures and model rules of clinical trial data tabulations for submission to regulatory

authority such as FDA. The latest Study Data Tabulation Model Implementation Guide (SDTMIG) v3.1.2 [3] defines

implementation rules for over 30 standard domains. These domains are categorized as special-purpose (DM, CO, SE,

SV), interventions (CM, EX, SU), events (AE, DS, MH, DV, CE), findings (EG, IE, LB, PE, QS, SC, VS, DA, MB, MS,

PC, PP, FA), trial design (TA, TE, TV, TI, TS), and relationship (SUPPQUAL, RELREC).

STRUCTURED DESIGN AND PROGRAMMING

Structured design is the methodology that divides a complex task into smaller conquered modules (procedures) and

interrelate those modules (procedures) [4]. The flowcharts are used to dictate data flow. The structured design is

implemented by structured programming [5].

In SAS®, the structured programming are represented by Macros for repeated blocks, DATA STEP SEQUENCES, IF-

THEN-ELSE or CASE WHEN and DO-LOOP structures, etc.

DESIGN AND IMPLEMENTATION

The philosophy of structured design is from generic to specific, and dividing complex tasks into a series of small

procedures.

Figure 1 shows the process flow we used for domain mapping. Figure 1 consists of three sections. Section I dictates

the overall process flow. Clinical data are collected through data capture tool with CRF (Case Report Form), which

1

http://www.cdisc.org/

2

preferably complies with CDASH. Then the data are stored in Oracle. The SAS mapping program driven by Master

file maps Oracle data (OCVIEWs) to SAS datasets--Domains. The Master file is an excel sheet which holds the

domain components, standardizes meta data of SDTM variables and company specific variables, and provides

mapping specifications. The meta data defines variable attributes by variable and domain. The SDTM variables are

mapped to corresponding SDTM domain, while the company specific variables go to SUPP (supplemental) domain or

FA (Finding About) domain or CO (comment) domain. Before each final domain is generated, the domain meta data

are reviewed by data manager. After the final domain is created, an open source tool, OpenCDISC Validator

(http://www.opencdisc.org/projects/validator), is used for domain compliance check.

The section II of figure 1 shows the framework of mapping. We define six steps for each individual domain mapping.

 Step 1 is preliminary step. It sets up the environment, defines macro variables, loads the Master file, etc.

 Step 2 is for appending Oracle views. One domain may have one or more Oracle views as inputs.

 Step 3 functions to derive domain specific variables such as Date/Time variables (DTC) with ISO8601

format and Study Day variables (--DY) with numeric type. Structure transpose from horizontal to vertical is

also performed in this step like in VS domain.

CDASH

MASTER

File

Oracle

views

START

eCRF

SAS Macro

Oracle

DOMAINS &

Meta data
DM Review

Compliance

Rules
Validator

END

S2: Appending

O*C VIEWS

S1: Preliminary

... ? Deriving Y

N

N

Deriving Y AE ?

I II III

S5: Keeping/Ordering

Domain Variables

S3: Deriving Domain

Specific Variables

S4:Deriving Domain

Common Variables

EX ? Deriving Y

Dropset

Keptset

Warnse

t

Y

V=Final

Final

Domain

Sorted

by Keys

V=Review

?

S6: Generating

Domain Dataset
N

Y

Figure 1 Domain Mapping Process Flow

SDTM Domain Mapping with Structured Programming Methodology,continued

3

 Step 4 is for deriving common variables dynamically for all the domains to reduce code redundancy. Those

variables are DOMAIN, --SEQ, etc.

 Step 5 is where we conduct keeping and dropping variables. We work off from two sets, Set A and Set B.

Set A contains all the variables of a specific domain defined in Master file; Set B contains all the variables

derived and populated in Oracle View(s) for the same domain in Set A. The figure 2 VENN graph shows the

set operation results between the set A and set B.

KEPTSET (brown)= Set A and Set B; KEPTSET is the set of all shared variables by Set A and B and will be

populated in the final domain, or go to SUPP (supplemental) domain or FA (Finding About) domain or CO

(comment) domain.

DROPSET (pink)=Set B and not Set A; DROPSET is the set of all the variables which will be dropped from the Oracle

view(s), including CDASH specific variables and administration variables.

WARNSET (green)=Set A and not Set B; WARNSET is the set of all the variables defined in Master file but neither

collected nor derived in the trial.

 Figure 2 VENN Graph

 Step 6 is where the final domain generation occurs. Step 6 attaches domain label, snapshot, and the date

of domain generation. The final domain is sorted by KEYs. Although SDTM IG v3.1.2 gives KYE

recommendation at p18-19, we define our KEY set according to our business model.

The general rules for KEYs are to use REQ and EXP variables as KEY options. Three level keys are defined.

Identification variable STUDYID and USUBJID as the first level keys; the date and timing variables (e.g., visitnum, --

STDTC, --ENDTC) as the second level keys; topic or qualifier variables as the third level keys (--TERM, --DECOD,

etc). In most cases, the third level keys are not going to take effects after sorting by the second level keys. SEQ will

be generated accordingly by the sequences per subject after sorting by the keys.

The section III of figure 1 details step 3 and step 6 with the derived flowchart structures.

For data review purpose, we output meta data of dropset, keptset, and warnset for each domain into REVIEW library

in step 6. After review, the final domain is output into SDTM library.

There also exist dependencies among domains (Oracle views). For instance, to derive --STDY and --ENDY variables,

DM.RFSTDTC and DM.RFENDTC are needed. Therefore, DM domain (Oracle view) should be generated first.

Figure 3 exhibits this kind of dependencies.

WARNSET KEPTSET DROPSET

Set A Set B

SDTM Domain Mapping with Structured Programming Methodology,continued

4

EXAMPLE CODES FOR MH DOMAIN MAPPING

We implemented the domain mapping with SAS MACRO. The macro has three parameters:
 trgt: the target domain, which will be produced as an output;

src : the source Oracle view(s), which contributes to the target domain;

ver: either review or final. When ver=review, the kept variable set (KEPTSET), dropped variable set (DROPSET),

warning variable set (WARNSET), and the interim domain will be output to REVIEW lib for data manager's review.

After review, re-run mapping program with ver=final, and the final produced DOMAIN will be sent to SDTM lib.

Here gives MH as an example showing how the macro works and how the structured programming implemented. The
macro call for mapping MH domain are:

%mapping(trgt=%str(MH), src=%str(ocview.DMMHTD ocview.MHBCON),ver=review)

%mapping(trgt=%str(MH), src=%str(ocview.DMMHTD ocview.MHBCON),ver=final)

The above calls indicate there are two Oracle views contributing to MH domain, DMMHTD and MHBCON. The
generated target domain is MH with review version for data manager, and with final version for programmer.

/* Step 1: prelimitary. */

 PROC IMPORT OUT=&trgt._master

 DATAFILE= "v:\Master.xls"

 DBMS=EXCEL REPLACE;

 RANGE="&trgt.$";

 GETNAMES=YES;

 MIXED=NO;

 SCANTEXT=YES;

 USEDATE=YES;

 SCANTIME=YES;

 RUN;

 DATA &trgt._selectM;

 SET &trgt._master;

 KEEP MVarName MOrder MKey MType MLength MFormat MLabel;

 RUN;

The above codes load MH sheet of Master file and keep required variables (variable name, variable order, variable
key, variable type, variable length, variable format, and variable label) into SAS dataset MH_selectM. It may also
subset key variables from MH_selectM by proc contents and proc sql into macro variable &key.

/* step2: appending ocviews. */

 DATA &trgt.1;

 SET &src;

 BY USUBJID;

 RUN;

 DM

RFSTDTC RFENDTC

AE SV CM

Figure 3 Domain Dependency

SDTM Domain Mapping with Structured Programming Methodology,continued

5

The &src is resolved to string “ocview.DMMHTD ocview.MHBCON”. Afte step 2, ocview.DMMHTD and
ocview.MHBCON are appended to MH1 dataset. MH1 is transferred to step 3.

/* step3: domain specific variable derivations */

 %if %upcase(&trgt)=MH %then %do;

 PROC CONTENTS data=&trgt.1 out=MHvar (keep=name varnum) noprint;

 RUN;

 PROC SQL noprint;

 SELECT name into: MHvar separated by ' '

 FROM MHvar;

 QUIT;

 %if %index(&MHVAR, &trgt.DAT)>0 %then %do;

 PROC SQL;

 CREATE table &trgt.2(drop=STDATE) as

 SELECT a.*, input(a.&trgt.DAT, yymmdd9.) as STDATE format=date9.,

 CASE

 WHEN length(a.&trgt.STDAT)=8 and calculated STDATE>=b.RFSTDT

 THEN (calculated STDATE)-b.RFSTDT+1

 WHEN length(a.&trgt.STDAT)=8 and calculated STDATE< b.RFSTDT

 THEN (calculated STDATE)-b.RFSTDT

 END AS &trgt.DY length=8 label="Study Day of History Collection" format=8.

 FROM &trgt.1 a, &SDTM..DM b

 WHERE a.USUBJID=b.USUBJID;

 QUIT;

 %end;

 %else %do;

 %put "&trgt.DAT not collected, thus &trgt.DY not derived. ";

 DATA &trgt.2; /* no needs to derive MHDY then. */

 SET &trgt.1;

 RUN;

 %end;

 %end;

Step 3 derives MH specific variables. Here gives how to derive MHDY variable. MHDY is derived only if MHDAT
(CDASH specific variable) is collected. The above codes first get variable list in MH1 and put those variables to
&MHvar. If MHDAT is existing in &Mhvar, then derive MHDY. During deriving MHDY, Reference Start Date in DM
(DM.RFSTDT) is needed. The MH2 dataset is generated and output to step 4.

/* step4: deriving common variables (Domain, --seq) */

 PROC SORT data=&trgt.2;

 BY &KEY;

 RUN;

 DATA &trgt.3;

 SET &trgt.2;

 BY USUBJID;

 DOMAIN=upcase(symget('trgt'));

 RETAIN seq;

 IF FIRST.USUBJID THEN SEQ=0;

 SEQ=(seq+1);

 &trgt.seq=seq;

 DROP seq;

 RUN;

This step is simple. First sort MH2 by MH domain keys, then derive common variables like DOMAIN and MHSEQ.
The generated MH3 is delivered to step 5.

/* step 5: keep BI-CDISC variables */

 /*get the var list to be processed (ocview+derived)--target set */

 PROC CONTENTS data=&trgt.3 out=&trgt._target noprint;

SDTM Domain Mapping with Structured Programming Methodology,continued

6

 RUN;

 /* get the kept var set, droped var set, warning var set */

 DATA &trgt._keptset(KEEP=MVarName MOrder MType MLength Length MFormat Format MLabel

Label MScope)

 &trgt._dropset(keep=MVarName Label)

 &trgt._warnset(keep=MVarName MOrder MType MLength MFormat MLabel MScope);

 MERGE &trgt._selectM (in=a) &trgt._target (in=b);

 BY mvarname;

 if (a and b) then output &trgt._keptset;

 if (not a and b) then output &trgt._dropset;

 if (a and not b) then output &trgt._warnset;

 RUN;

 PROC SORT data=&trgt._keptset SORTSEQ = UCA (NUMERIC_COLLATION=ON);

 BY morder;

 RUN;

The above codes generate MH_keptset, MH_dropset, and MH_warnset for review purpose, and sorts the kept set in
variable sequence order in Master file, i.e., in the MH variable sequences defined in SDTM IG v3.1.2.

 /* write the keptset, dropset, warnset into macro variables */

 PROC SQL noprint;

 SELECT STRIP(mvarname),COUNT(mvarname)

 INTO :kept_set separated by ', ',

 :kept_no

 FROM &trgt._keptset;

 SELECT STRIP(mvarname),COUNT(mvarname)

 INTO :drop_set separated by ', ',

 :drop_no

 FROM &trgt._dropset;

 SELECT STRIP(mvarname),COUNT(mvarname)

 INTO :warn_set separated by ', ',

 :warn_no

 FROM &trgt._warnset;

 QUIT;

 /* generate the domain_set (&trgt.4) with the keptset */

 PROC SQL;

 CREATE table &trgt.4 as

 SELECT &kept_set

 FROM &trgt.3;

 QUIT;

Finally, the dataset MH4 is generated with required variables and the variables kept in proper order.

/* step 6: sort with BI-CDISC keys, generate datasets and domain either for review or

for final with label, date, and snapshot */

 %if %upcase(&ver)=REVIEW %then %do;

 DATA &review..&trgt._keptset (LABEL="The Kept Variables in Target Set for &trgt

Domain ");

 SET &trgt._keptset;

 LABEL MVarname='Variable Name';

 LABEL Morder='Variable Order in Master';

 LABEL Mlabel="Variable Label in Master";

 LABEL Label="Variable Label in OCVIEW";

 LABEL Mtype="Variable Type in Master";

 LABEL Mlength="Variable Length in Master";

 LABEL Length="Variable Length in OCVIEW";

SDTM Domain Mapping with Structured Programming Methodology,continued

7

 LABEL Mformat="Variable Format in Master";

 LABEL Format="Variable Format in OCVIEW";

 LABEL Mscope="Variable Scope in Master";

 RUN;

 DATA &review..&trgt._dropset (LABEL="The Dropped Variables in Target Set for &trgt

Domain ");

 SET &trgt._dropset;

 LABEL MVarname='Variable Name in OCVIEW';

 LABEL Label="Variable Label in OCVIEW";

 RUN;

 DATA &review..&trgt._warnset (LABEL="The Master Variables not in Target Set for

&trgt Domain ");

 SET &trgt._warnset;

 LABEL MVarname='Variable Name in Master';

 LABEL Morder='Variable Order in Master';

 LABEL Mlabel="Variable Label in Master";

 LABEL Mtype="Variable Type in Master";

 LABEL Mlength="Variable Length in Master";

 LABEL Mformat="Variable Format in Master";

 LABEL Mscope="Variable Scope in Master";

 RUN;

 PROC SORT data=&trgt.4 out=&review..&trgt noduplicate;

 BY &key;

 RUN;

 %end;

 %else %if %upcase(&ver)=FINAL %then %do;

 /* final domain generated */

 PROC SORT data=&trgt.4 out=&SDTM..&trgt noduplicate;

 BY &key;

 RUN;

 %end;

With parameter ver=REVIEW, the above codes in step 6 write KEPTSET, DROPSET, WARNSET, and MH domain
as well into REVIEW lib for data manager’s review. It may also add one extra variable (e.g., DIFF) in KEPTSET to
indicate any inconsistency existed between variable attributes in Master and Oracle views.

After data review from data manager is confirmed, the parameter is update to ver=FINAL, and the final MH dataset is
sent to SDTM lib.

CONCLUSION

In our experiences, with structured design and structured programming methodologies for SDTM domain mappings,

our mapping codes bocome easy to implement, understand, debug, and maintain. Whenever adding one domain, the

codes are easily extended only in step 3 for domain specific variable derivations.

The above listed code framework can be easily adapted to meet readers' mapping requirements.

REFERENCES

[1]CDISC CDASH Team. 18 January 2011. Clinical Data Acquisition Standards Harmonization (CDASH) v1.1.

[2]CDISC Submission Data Standards Team. April 28, 2005. Study Data Tabulation Model v1.1.

[3]CDISC Submission Data Standards Team. November 12, 2008. Study Data Tabulation Model Implementation

Guide: Human Clinical Trials V3.1.2.

[4]Errol Pelchat, A Brief Introduction to Structured Design, Feb. 2004,

www.cs.cofc.edu/~bowring/classes/csci 360/presentations/structured design.ppt

SDTM Domain Mapping with Structured Programming Methodology,continued

8

 [5]Structured Programming, http://en.wikipedia.org/wiki/Structured_programming

CONTACT INFORMATION

Author Name: Chengxin Li, Jing-Wei Gao, Nancy Bauer
Company: Boehringer Ingelheim
Address: 900 Ridgebury Road
City State Zip: Ridgefield, CT 06877
Email: chengxin.li@boehringer-ingelheim.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their respective companies.

SDTM Domain Mapping with Structured Programming Methodology,continued

