
Page 1 of 8

PharmaSUG 2012 - Paper HO07

Using the SAS System as a bioinformatics tool: a macro that
calls the standalone Basic Local Alignment Search Tool (BLAST)

setup

Kevin Viel, Ph.D.
Histonis, Incorporated, Atlanta, GA

ABSTRACT

Aligning DNA and RNA sequences is an integral task in genomics research. For brief and practical
purposes, DNA and RNA can be thought of as character strings comprised of A, C, G, and T (DNA) or U
(RNA). Within the constraints of the SAS System, namely 32,767 bytes for a character variable, patterns
can be matched or “aligned” using, for example, regex expressions (PRXMatch). This size limit typically
suffices even for the state of the art sequencing projects, in which read lengths may be well under 15,000
base-pairs. For larger sequences, a SAS programmer may have to consider calling a perl program or use a
tool like Basic Local Alignment Search Tool (BLAST®), a popular tool for alignments. An example of an
alignment to a sequence larger than the SAS limit might be the need to determine the start position of a
primer within a gene, for instance 186 Kb F8. The National Center for Biotechnology Information (NCBI) of
National Institutes of Health (NIH) provides the blast+ software package. The goals of this paper are to
describe a SAS macro that calls BLASTn using the X statement and demonstrate an example alignment
using the macro.

INTRODUCTION

Genotyping, the determination of the sequence of DNA (deoxyribonucleic acid) or RNA
(ribonucleic acid), is necessary to identify variants that may be associated with human health outcomes. For
instance, alleles of a variant locus may be associated with risk of a disease or with the levels (concentration
or activity) of a protein of interest. Previously, I presented a programmatic approach using the SAS
System®[1] to align or match short sequences within the amplicons of a Sanger Sequencing project that
used the flanks of the locus of interest as the match criterion, allowing for at most one base mismatch in one
flank or the other, and employed regular expressions (regexes, via the PRX functions and calls, such as
PRXMATCH)[2]. A second approach, which is more conventional, is to locally alignment the test and the
reference sequences. One of the most popular local alignment algorithms is the Basic Local Alignment
Search Tool (BLAST®)[3, 4], which is available as a web-tool or as a freely downloadable stand-alone suite
via the National Center for Biotechnology Information (NCBI) of the National Institutes of Health (NIH)
(http://blast.ncbi.nlm.nih.gov/Blast.cgi). The goals of this paper are to describe a SAS macro that calls the
BLASTn program of this stand-alone suite using the X statement and demonstrate an example alignment,
and 3) illustrate how the macro can be used to create primer and amplicon names.

DNA and RNA. For the purposes of this paper, we will consider DNA as the sequence of four nucleotides
(bases): adenine (A), cytosine (C), guanine (G) and thymine (T). In RNA, uracil (U) is present instead of
thymine. The bases may be modified, for example cytosine may appear as 5-methylcytosine or even as 5-
hydroxymethylcytosine, but since these forms are not readily detected in “conventional” sequencing
technologies, such as Sanger Sequencing, I mention them only as a point of interest. DNA is a double-
stranded helix in which hydrogen bonding between A and T and between C and G occurs, hence we
described the length of DNA in terms of base-pairs (bp). The strands of DNA (and double-stranded RNA)
are reverse complimentary and, by convention, we list the sequence in the 5’-3’ direction, which refers to the
positions of the phosphodiester bonds on the ribose rings. Cells transcribe DNA into RNA (transcription or
expression) in their nuclei and may translate the resulting RNA into proteins (translation). Regions of DNA
that code for protein are called genes. Many functions of RNA beyond the messenger RNA (mRNA)
involved in translation have been documented and research into some, such as small interfering RNA
(siRNA), is burgeoning.

A DNA variant may be a single nucleotide substitutions (SNS), an insertion or deletion (collectively,
INDELs), or an inversion (see Table 1). SNSs are the most common and may occur every 300 to 1,000 bp.
In the example in Table 1, the inversion is probably contrived to demonstrate the concept, but such small
inversions may exist. An important, real example of an inversion is the Intron 22 Inversion (I22I) of F8, a

http://blast.ncbi.nlm.nih.gov/Blast.cgi�

Page 2 of 8

recurrent variant that accounts for approximately 40% of all severe Hemophilia A patients. Importantly, I22I
involves approximately 10 kilobases (Kb) and the mechanism likely involves 300-400 Kb of DNA. The
lengths of sequences for which BLAST might be used, at least in this paper, are much shorter.

 Table 1. Types of variants found in DNA.

Type DNA Sequence

Wild-type
(WT)

 ATCTGACCGTGATGGCGGCCATTGGCTTGGGCTTCCTCACC
 |||
 ATCTGACCGTGATGGCGGCCATTGGCTTGGGCTTCCTCACC

SNS
 ATCTGACCGTGATGGCGGCCATTGGCTTGGGCTTCCTCACC
 |||||||||||||||||||| ||||||||||||||||||||
 ATCTGACCGTGATGGCGGCCCTTGGCTTGGGCTTCCTCACC

Insertion
 ATCTGACCGTGATGGCGGCCA--TTGGCTTGGGCTTCCTCACC
 ||||||||||||||||||||| ||||||||||||||||||||
 ATCTGACCGTGATGGCGGCCACGTTGGCTTGGGCTTCCTCACC

Deletion
 ATCTGACCGTGATGGCGGCCATTGGCTTGGGCTTCCTCACC
 |||
 ATCTGACCGTGATGGCGG---TTGGCTTGGGCTTCCTCACC

Inversion
 ATCTGACCGTGATGGCGGCCATTGGCTTGGGCTTCCTCACC
 ||||||||||||||||| |||||||||||||||||||
 ATCTGACCGTGATGGCGTACCGTGGCTTGGGCTTCCTCACC

SNS’s may occur in the codons (a sequence of three nucleotides that codes amino acids) of

genes; when alteration of the codon results in an amino acid substitution, the SNS may be referred to as a
non-synonymous single nucleotide polymorphism (ns-SNP) or missense mutation, depending on whether
the variants is found in “normal” subjects of a population or whether the locus is associated with a
deleterious outcome, respectively. The third possibility is that the SNS transforms the codon to one of the
three stop codon sequences, in which case we refer to the variant as a nonsense mutation. The term
polymorphism conventionally refers to a variant that has a minor allele frequency (MAF) of 5% or more, but
some may use the term for variants with MAF of 1%. For instance, the D(1241)E variant of the coagulation
Factor VIII is a typically considered a ns-SNP, but W(0255)C is thought be a missense mutation[5].
D(1241)E was found (consistently) in populations of non-bleeders (non-hemophilia A subjects)[6], whereas
W(0255)C was found in patients with hemophilia A. However, one report[7] associated the E1241 allele with
a loss of FVIII mRNA, highlighting both the difficulties of the genotyping the entire DNA sequence of a 186
Kb gene required to rule out other causes and of concretely elucidating the effect the variant may have on
the mRNA or protein produced. In reality, even with mechanistic studies, determining the “definitive”
effect(s) of a variant may require large samples with whole genome data: DNA, RNA, and epigenetic (control
of expression); a potential limiting factor in the wide-spread adoption of genomics in medicine at this time.

One must always consider the fidelity of the variant discovery investigation (VDI) due to
technological and resource issues, such as technician-hours available for manual review; it may be possible
that another putative disease-causing allele existed, possibly not even in the candidate gene, but was
unidentified. This important point emphasizes the advantage of using the SAS System to call stand-alone
BLAST or the use of regular expressions (regexes) to match the flanks that I presented in a previous
paper[2]: they enable the users to create a database record for every covered target base, even if it
ultimately was not present in the test sequence, in which case the entry should record it as missing. Missing
or poor-quality coverage may result in a “default” call that matches the reference sequence: the question
should not only be whether the VDI uncovered evidence that a variant existed (“true positives”), but also
whether the VDI data supported the fact that sequence indeed matched the reference sequence (“true
negatives”). The potential that in (large scale) projects a failure to document missing or poor-quality
coverage results in miscalled bases is something that is easily avoided and audited using programmatic
approaches involving BLAST or matching by flanks. The creation of records in a relational genomics
database using the results of both the BLAST macro detailed in this paper or the results generated using the
approach of my previous paper (regex/flank matching) will be covered in a separate paper or the reader may
contact the author for details. The issue is not quite trivial; in a project with 1,000 patients and 4X coverage,
an amplicon of 500 bp will generate 2,000,000 records into the projects database and each record will have
several fields. Further, projects typically involve numerous amplicons, amounting to a daunting or even
infeasible task to perform “by hand”.
 To genotype, one has to determine the identity of the nucleotides comprising the test sequence of
interest. Often one is interested in a candidate locus and has a reference sequence to which one can map
or align, although one might be building an unknown sequence, for instance in de novo assemblies. The
focus of this paper is the former, however this macro can be used to established the consensus sequence in
projects without a reference sequence since this macro can align multiple attempts to generate the test

Page 3 of 8

sequence (for instance a forward and reverse pair). The amplicons of a Sanger Sequencing project provide
such a reference sequence since the investigator must flank the region of interest by the primers for the
polymerase chain reaction (PCR), thereby limiting the size of the amplicon to approximately 1,200 bp.
Typically, PCR projects involve genomic regions with completely established sequences, so the investigator
knows the sequence of the amplicon when he or she identifies the proper primers. This sequence can be
the subject sequence against the investigator aligns the test (query) sequence.

From a successful BLAST alignment, one can identify each of the types of variants listed in Table
1. Figure 1 presents the results of a BLAST run for which the subject sequence was AAAGAGGTAATAAA
CCGAGTAATAGAGCTA, which cheekily translates to “KEVIN R VIEL”. The SAS code in the second panel
creates the query sequence. Note that the value of variable Sequence in the data set QUERY_DS is
actually TAGCTCTATTACGTTTATTACCTCTTT. The section PANEL 2 Code below describes this SAS
code in detail.

Figure 1. The results of example BLASTn run.

Panel 1 Panel 2

BLASTN 2.2.25+
Query= Query
Length=27
Subject= KEVIN R VIEL
Length=30

Score = 36.2 bits (19), Expect = 8e-009
Identities = 27/30 (90%), Gaps = 3/30 (10%)
Strand=Plus/Minus

Query 1 TAGCTCTATTAC--G-TTTATTACCTCTTT 27
 |||||||||||| | ||||||||||||||
Sbjct 30 TAGCTCTATTACTCGGTTTATTACCTCTTT 1

Lambda K H
1.33 0.621 1.12

Gapped
Lambda K H
1.28 0.460 0.850

Effective search space used: 598

Matrix: blastn matrix 1 -2
Gap Penalties: Existence: 0, Extension: 2.5

01 Data Query_DS (Keep = Query Sequence) ;
02 Retain Query "Query" ;
03 File "C:\Subject.fas" ;
04 FP = "AAAGAGGTAATAAAC" ;
05 M = "CGA" ;
06 TP = "GTAATAGAGCTA" ;
07 Length AA $ 20 ;
08
09 Do I = 1 To 5 ;
10 AA = CatS(AA
11 , Put(SubStr(FP , (I - 1) * 3 + 1 , 3) , $C2AA.)
12) ;
13 End ;
14
15 AA = CatX(" " , AA , Put(M , $C2AA.)) ;
16 AA = CatX(" " , AA , Put(SubStr(TP , 1 , 3) , $C2AA.)) ;
17
18 Do I = 2 To 4 ;
19 AA = CatS(AA
20 , Put(SubStr(TP , (I - 1) * 3 + 1 , 3) , $C2AA.)
21) ;
22 End ;
23
24 Put "> " AA ;
25 Put FP +(-1) M +(-1) TP ;
26
27 Sequence = Upcase(Strip(Reverse(Translate(Upcase(CatS(FP , TP))
28 , "a" , "T"
29 , "c" , "G"
30 , "g" , "C"
31 , "t" , "A"
32)
33)
34)
35) ;
36 Run ;
37
38 %BLASTn (Query_DS = Query_DS
39 , Subject = C:\Subject.fas
40 , Out_DS = BLASTn
41 , Option = %Str(,) " -evalue 1000 -word_size 7"
42 , FDelete = 0
43)

OVERVIEW OF THE MACRO

The BLASTn macro has three basic parts. The first is a data step the reads a SAS data set and write a text
file for each observation and writes subsequent SAS code upon its execution. By virtue of a EXECUTE call
routine, the data step makes a system call of the BLASTn program, which writes its results to a text file. The
second part of the macro reads this text file and creates a SAS dataset of the parsed contents. The third
part of the macro conditionally cleans up the directory by deleting the input and result files.
 By examining a possible run of BLASTn as a command line submission, one may gain a better
understanding of the macro. In Panel 2 of Figure 1, the command line would be:

blastn –subject C:\Subject.fas –query C:\Query.fas –out C:\Query.blastn evalue 1000 -word_size 7

EXPLANATION OF SAS CODE

PANEL 2 Code

The DATA statement (Line 01) begins the data step that creates a temporary SAS data set called
QUERY_DS. The data set KEEP= option restricts the variables that the data step outputs to Query and
Sequence. The RETAIN statement (Line 02) creates the variable Query and assigns it the value “Query”.
By virtue of this assignment, Query is a character variable of length 5. The FILE statement (Line 03) opens
a new text file C:\Subject.fas. The extension “.fas” denotes a FASTA file, which is a text file containing a
nucleotide or peptide sequence in single character format. The format is typical 60 or 80 bytes per line and
the first line may be a descriptor if it starts with a greater than (>) sign. The input files for BLAST must
adhere to this format. The next three lines (Lines 03-05), create the character variables FP, M, and TP and
assign their values. The LENGTH statement (Line 07) creates the variable AA (short for Amino Acid). A

Page 4 of 8

sequence of three codons codes for an amino acid. Five codons comprise FP. The Do-Loop (Lines 09-13)
extracts them and uses the PUT() function (Line 11) to apply the format $C2AA (Codon to Amino Acid,
Figure 3). The contiguous codons start at positions 1, 4, 7, 10, and 13 (1-3: AAA, 4-6: GAG,…). The
second argument to the SUBSTR() function (Line 11) resolves to these proper starting positions for the
given value of the increment I while the third, the constant 3, ensures that the result of the function is strictly
three bytes in length. The CATS() function concatenates the STRIP() results of the previous value of AA
and the results of the PUT() function. At the termination of this Do-Loop, AA has the value “KEVIN”. The
next step is to “translate” the value of M to its amino acid and concatenate it to the value of AA. However,
since the value of AA will be used as a descriptor of the FASTA file, a space before and after the middle
initial will improve legibility. The CATX() function (Line 15) concatenates the value of its arguments after the
STRIP() function has been applied to each, except the first argument, which is the separator, a single space
in this case. After Line 15, the value of AA is now “KEVIN R”. At this point, the translation of the codons of
TP and the concatenation of the resulting AAs could proceed by a Do-Loop similar to the first. However, a
space between the middle initial and last name is necessary for improved legibility. Therefore, the first
codon is extracted and the Do-Loop cycles through codons two through four. Line 16 is analogous to Line
15 but the first argument to the PUT() is the SUBSTR() function. After Line 16, the value of AA is now
“KEVIN R V”. The Do-Loop (Line 18-22) extracts codons 2-4 from TP and concatenates the translated
values to AA. The PUT statement (Line 24) writes the literal string “> “ and the value of AA to the first line of
C:\Subject.fas. (At this point having seen the translation too much, I wish I could have chosen the phrase
“BE SURE TO DRINK YOUR OVALTINE”, but both “RALPHIE” and “FRAGILE” would have been possible.)
The next PUT statement (Line 25) writes the values of FP, M, and TP to the second line of C:\Subject.fas,
but it eliminates the trailing space that occurs by default by explicitly controlling the pointer, which is
instructed to move forward -1, in other words, immediately following the value. One could have
accomplished this a variety of ways, including creating another variable and using the CATX() function.
Finally, to demonstrate the alignment of a reverse compliment sequence, the sequence of interest is
manipulated. Remember that the sequence has a deletion by design, the middle initial is purposely omitted.
To obtain the reverse compliment of a DNA sequence, each nucleotide must be replaced by it
complimentary pair (A->T, C->G, G->C, T->A). To avoid multiple replacements, the TRANSLATE() function
(Line 27) replaces the target base with its replacement lower case compliment (A->t). The results of the
TRANSLATE() function, which is the compliment, are then the argument to the REVERSE() function. Since
trailing blanks become leading blanks in the REVERSE() function, the results of it are then the argument of
the STRIP() function. Finally, these results are the argument to the UPCASE function. The macro call
(Lines 38-43) then takes the FASTA file and the data in the SAS data set to produce the results in Panel 1.
The following section describes the macro and, hence, this macro call.

The BLASTn macro

The MACRO statement that indicates the start of the macro code and names the macro, BLASTN,
uses keyword parameters to give the user flexibility (Lines 1-6). When the user calls the macro, he or she
must provide values for the parameters, except for the parameters OPTION and FDELETE, which have
default values. The default value for OPTION is null or “”, but this requires the use of the %STR() function.
Given that the macro employs a system call, the use of the SAS System Options XSYNC, NOXWAIT, and
XMIN (Line 08) controls the Windows command prompt. In essence, these options keep the process “in the
background”.
 The data step (Lines 10-31) reads the observations in the SAS data set and 1) writes text files and
then call the BLASTn program. The use of the keyword _NULL_ in the DATA statement (Line 10) means
that the data step does not create a data output data set, but is rather writes external files and other SAS
code that follows its execution. The LENGTH statement (Line 11) creates three variables Query, BLASTn,
and Seq that are character variables with lengths 150, 1000, and 60 bytes, respectively. The dollar sign
indicates that they will be character variables (the absence of which would mean that they would be numeric
variables, the only other choice in SAS) and the number of bytes (length) follows the dollar sign. The SET
statement (Line 12) reads the SAS data set to which the SAS Macro variable &Query_DS. resolves. This
value is a macro parameter that the user must specify (Line 1). The next line is an assignment statement
that creates the variable FV (Line 13), which SAS creates as a character variable since its value is the result
of the CATS() function. This assignment names the text file, so the user must provide appropriate values of
Query when he or she creates the data set. The value of FV is the FILEVAR= option to the FILE statement
(Line 14); when the value of FV changes, SAS dynamically close the currently opened output file and
changes to a new physical file.
 The FILE statement (Line 14) instructs the data step to write to the external files, but by virtue of
the FILEVAR= option, the filename Q is simply a placeholder. FV specifies the text file. The PUT statement
in the next line (Line 15) writes the literal “> “ and the value of Query to the text file. Since the format of
FASTA implies a line length of up to 120 bytes and conventionally this is 60 or 80 bytes, the Do-Loop (Lines

Page 5 of 8

16-19) calculates the number of times the Sequence must wrap. The use of the CEIL() guarantees the
needed number of lines; this function returns the next largest integer functions: for instance, if the sequence
length was 61 bp, the number of lines would be 2 (61/60 = 1.0167, the next largest integer is 2). The
starting index for the SUBSTR() function would be 1, 61, 121 corresponding to the strings 1-60, 61-120,121-
180, et cetera. With each iteration of this Do-Loop, the substring is written to the text file (Line 18).
 The value of BLASTn is assigned in Lines 20-29. Importantly, this value is the argument to the
CALL EXECUTE() call routine, which effectively writes SAS code upon execution of the data step in which it
is called. The SAS code thus written is executed after the execution of the completion of the execution of
the data step in which was called has completed. The value of BLASTn is the result returned from the
CAT() function with strings, SAS functions, or SAS variables as arguments, with the exceptions of the macro
variable &OPTION. Notably, no comma proceeds this variable (Line 27). Instead, the user must provide the
comma in the value he or she writes for the parameter. If so, the he or she must “hide” the comma from the
macro parser. One way would be to use the %STR() function (Line 5). Once the FASTA file is written and
the value of BLASTn is assigned, the data step uses the CALL EXECUTE() routine (Line 30) and the data
step either implicitly loops or the data steps terminates (Line 31).
 By virtue of the XSNYC option (Line 8), SAS does not continue until the Windows operation system
returns control to it. The system call via the X statement runs the BLASTn program, which writes to the
output files specified in line 26. Note that the user must ensure that the values of Query in &Query_DS. are
unique. Upon receiving control, SAS then executes the data step that reads the BLASTn output (text) files
(Line 34-153).
 This data step creates a temporary SAS data set named blastn. Between calls of this macro, the
user must save this data step or it will be overwritten. Use of the APPEND procedure is one method to save
the results. The data set option DROP= (Line 34) instructs SAS to not write the listed variables to the
output data set. The effected variables are Line, explicitly listed, and any variable beginning with “__”, by
virtue of the colon following “__”.
 A series of variables found in the results are listed in the LENGTH statement (Line 35). Depending
on the project, the user may wish to increase the size of the “sequence” variables (Line 37). If so, the user
may wish to convert this constant to a macro parameter. Lines 43-51 create a series of “temporary”
variables that hold the return codes (RC) for the PRXParse() functions. These functions compile the perl
regular expression and return the numeric pattern identifier that can then be the argument to subsequent
PRX functions. Note that in other data step structures, the user may wish to RETAIN these values if the
data step loops. This data step implicitly loops once, but rather uses Do-Until Loops to read the entire data
set and the subsequent entire raw text files.
 The Do-Until Loop (Lines 53-151) iterates until the last observation of the SAS data set specified in
the macro variable specified in the parameter Query_DS is read. This is indicated by the END= option to the
SET statement (Line 54), which SAS assigns as zero (0) until it reads the last observation of the data set.
The Query sequence may align multiple times within the Subject sequence. If so, it is important to track the
number of times. It may also not align at all. The variable Hit is initialized to zero (0) to count the number of
times (Line 55), as indicated by the number of times the term “Score =” is encountered in the output.
 The value of Query is again used but this time to create the name of the input raw data file. Lines
13 and 56 differ only in their third argument to the CATX() function, “fas” and “blastn”, respectively. The
INFILE statement (Line 57) then uses the value of FV as the argument to the FILEVAR= option and IF is
again a place holder. Two additional options to the INFILE statement appear, END= and LENGTH=. The
former is an indicator variable of the last record of the external file and the latter stores the line size for the
variable record length raw text file.

The Do-Until Loop (Line 58-139) reads the external text file until the last record. Each line of the
external text file is read (Line 59) and parsed for the keyword in the BLAST output. Although the BLAST
output does not track the number of hits, the number of times that they are encountered is used. An
important aspect of genetics is the number of repetitive sequences that might be found (LINEs and SINEs,
for instance). One should not be surprised to find exact sequences of length 30 or even 50 that match in
both orientations multiple times in a gene. If one has a reference amplicon, one can determine the length of
shortest sequence that matches uniquely within it[2]. Using this, one may provide an option to the BLASTn
program via the BLASTn macro parameter Option.
 Due to the explicit looping of the data step, the values of the variables should be reset to missing
manually. The CALL MISSING routines (Lines 64 and 143) perform this task. After all lines of the text files
are read and for each observation in the data set, the data step ends (Line 153).
 The user must decide with to keep the text files created by this macro. If the names of the files are
unique, then it may be sensible to keep them as they are typical small. If the user chooses to delete them,
however, setting the macro parameter FDelete to 1 (Line 5) will allow the macro to write the SAS code in
lines 160-169. The effect of these lines is to delete the query FASTA file and its associated output from the
BLASTn program.

Page 6 of 8

DISCUSSION

As we learn more about the role of genomics in health outcomes, the SAS programmer may be
required to moonlight as a bioinformatician to obtain the necessary data for analyses. Many bioinformatics
programs already exist and calling external programs from SAS is common. This paper described a macro
that builds a “command line” for the BLASTn program available in the stand alone suite of BLAST programs
from the NCBI. BLAST is a very popular alignment algorithm with a wealth of publications to support it.
BLAST Documentation is available from this website and the email help desk to is very informative and
prompt (blast-help@ncbi.nlm.nih.gov).
 This macro also provides the ability to parse the contents of the output and creates a temporary
SAS dataset. This data set can be used to enter data into a genomics database or the user can parse the
output files using a custom written approach. The macro can handle single or multiple test (query) or
reference (subject) sequences with a single use of the macro, given the appropriate structure of the SAS
data set.
 The use of this macro in investigations that generate DNA sequence files, such as Sanger
Sequence projects, is rapid and the result allow for the easy creation of a genomics database that is
auditable and includes an entry for every target base in the sequence. This approach is complimentary to
the matching of flanks approach I previously reported, but has two advantages. The first is that BLAST is
extremely popular and recognized. The results are easy to explain. The second is that this approach
handles deletions much more efficiently than attempts to match by flanks, even if one secondarily uses the
data from the database instead of attempting to construct the flanks from the reference sequence.

ACKNOWLEGEMENTS

This work was supported in part by the following grants: NIH-5RC2HL101851-02, NIH-5R01HL072533-04,
and NIH-5K08HL071130-05.

I am indebted to a great number of people who have provided sequencing projects, criticism, and
information. I would like to thank Tom Howard of the Greater Los Angeles Veteran Administration Hospital
and Shelley Cole, Margie Britten, and Vanessa Ayala of the Texas Biomedical Research Institute (formerly
the Southwest Foundation for Biomedical Research) for collaborative efforts on projects and input
concerning files and process. I would like to thank Tao Tao of the NCBI User Services for answering
questions and providing guidance. Finally, I am indebted to the countless members of both the SAS-L
(http://www.listserv.uga.edu/archives/sas-l.html) and ABRF (www.abrf.org) listservs.

Contact Information
Your comments and questions are valued and encouraged. Contact the author at:

Name: Kevin Viel
Enterprise: Histonis, Incorporated
City, State ZIP: Atlanta, GA 30342
E-mail: kviel@histonis.org, genepistat@gmail.com
Web: www.histonis.org

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

BLAST is a registered trademark of the National Library of Medicine.

Other brand and product names are trademarks of their respective companies.

mailto:blast-help@ncbi.nlm.nih.gov�
mailto:genepistat@gmail.com�
http://www.histonis.org/�

Page 7 of 8

Figure 2. The BLASTn macro.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

%Macro BLASTn (Query_DS =
 , Subject = /* C:\F8.fas */
 , Out_DS = /* BLASTn */
 , Option = %Str() /* "%Str(,) -evalue 1000 -word_size 7" */
 , FDelete = 1
) ;

 Options XSync NoXWait XMin ;

 Data _null_ ;
 Length Query $ 150 BLASTn $ 1000 Seq $ 60 ;
 Set &Query_DS. ;
 FV = CatS("C:\" , CatX("." , Query , "fas")) ;
 File Q Filevar = FV ;
 Put "> " Query ;
 Do I = 1 To Ceil(Length(Sequence) / 60) ;
 Seq = SubStr(Sequence , 1 + (I - 1) * 60) ;
 Put Seq ;
 End ;
 BLASTn = Cat("X 'blastn "
 , " -subject "
 , Strip("&Subject.")
 , " -query "
 , Strip(FV)
 , " -out "
 , Strip(TranWrd(FV , ".fas" , ".blastn"))
 &Option.
 , "' ;"
) ;
 Call Execute(Blastn) ;
 Run ;

 /*****************/
 Data blastn (Drop = __: Line) ;
 Length Query $ 150 Query_Length 8 Subject $ 60 Subject_Length 8 Score $ 30 Expect 8
 Identities $ 16 Gaps $ 16 Strand $ 11
 Query_Sequence Match_Sequence Subject_Sequence $ 1500
 Line $ 100
 Lambda K H Gapped_Lambda Gapped_K Gapped_H Effective_search_space_used 8
 Matrix $ 50 Gap_Penalties_Existence Gap_Penalties_Extension 8
 FV $ 300
 ;
 __RC_Query_Line = PRXParse("/Query\s*(\d+)\s*([A-Za-z\-])+\s*(\d+)/o") ;
 __RC_Query = PRXParse("/Query=\s*(.*)/o") ;
 __RC_Length = PRXParse("/Length=\s*(.*)/o") ;
 __RC_Subject = PRXParse("/Subject=\s*(.*)/o") ;
 __RC_Score = PRXParse("/Score =\s*(.*),/o") ;
 __RC_Expect = PRXParse("/Expect =\s*(.*)/o") ;
 __RC_Identities = PRXParse("/Identities =\s*(.*),/o") ;
 __RC_Gaps = PRXParse("/Gaps =\s*(.*)/o") ;
 __RC_Strand = PRXParse("/Strand=\s*(.*)/o") ;

 Do Until (End_Query_DS) ;
 Set &Query_DS. End = End_Query_DS ;
 Hit = 0 ;
 FV = CatS("C:\" , CatX("." , Query , "blastn")) ;
 Infile IF FileVar = FV End = End_Infile Length = Len ;
 Do Until (End_Infile) ;
 Input Line $Varying100. Len ;
 If Hit > 0 And PRXMatch (__RC_Score , Line)
 Then
 Do ;
 Output ;
 Call Missing (Score , Expect , Identities , Gaps , Strand , Query_Sequence
 , Match_Sequence , Subject_Sequence , Gapped_Lambda , Gapped_K
 , Gapped_H , Effective_search_space_used , Matrix
 , Gap_Penalties_Existence , Gap_Penalties_Extension
 , Query_Start , Subject_Start
) ;
 End ;

 If PRXMatch (__RC_Query , Line) Then Query = PRXPosN(__RC_Query , 1 , Line) ;
 If PRXMatch (__RC_Length , Line) And Query_Length = .
 Then Query_Length = Input(PRXPosN(__RC_Length , 1 , Line) , 8.) ;
 Else If Subject_Length = .
 Then Subject_Length = Input(PRXPosN(__RC_Length , 1 , Line) , 8.) ;
 If PRXMatch (__RC_Subject , Line)
 Then Subject = PRXPosN(__RC_Subject , 1 , Line) ;
 If PRXMatch (__RC_Score , Line)
 Then
 Do ;
 Score = PRXPosN(__RC_Score , 1 , Line) ;
 Hit + 1 ;
 End ;

 If PRXMatch (__RC_Expect , Line)
 Then Expect = Input(PRXPosN(__RC_Expect , 1 , Line) , 8.) ;
 If PRXMatch (__RC_Identities , Line)
 Then Identities = PRXPosN(__RC_Identities , 1 , Line) ;
 If PRXMatch (__RC_Gaps , Line) Then Gaps = PRXPosN(__RC_Gaps , 1 , Line) ;
 If PRXMatch (__RC_Strand , Line) Then Strand = PRXPosN(__RC_Strand , 1 , Line) ;

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

 If Line = "***** No hits found *****"
 Then
 Do ;
 Query_Sequence = "***** No hits found *****" ;
 Match_Sequence = "***** No hits found *****" ;
 Subject_Sequence = "***** No hits found *****" ;
 End ;
 If Line =: "Query "
 Then
 Do ;
 If Query_Start = . Then Query_Start = Input(Scan(Line , 2 , " ") , 8.) ;
 Query_Sequence = CatS(Query_Sequence , Scan(Line , 3 , " ")) ;
 Input Line $Varying100. Len ;
 Match_Sequence = Cats(Match_Sequence , Line) ;
 If Line ~ =: " " Then Put Line= ;
 Input Line $Varying100. Len ;
 If Subject_Start = .
 Then Subject_Start = Input(Scan(Line , 2 , " ") , 8.) ;
 Subject_Sequence = Cats(Subject_Sequence , Scan(Line , 3 , " ")) ;
 If Line ~ =: "Sbjct" Then Put Line= ;
 End ;
 If Line =: "Lambda"
 Then
 Do ;
 Input Line $Varying100. Len ;
 Lambda = Input(Scan(Line , 1 , " ") , 8.) ;
 K = Input(Scan(Line , 2 , " ") , 8.) ;
 H = Input(Scan(Line , 3 , " ") , 8.) ;
 End ;
 If Line =: "Gapped"
 Then
 Do ;
 Input Line $Varying100. Len ;
 Input Line $Varying100. Len ;
 Gapped_Lambda = Input(Scan(Line , 1 , " ") , 8.) ;
 Gapped_K = Input(Scan(Line , 2 , " ") , 8.) ;
 Gapped_H = Input(Scan(Line , 3 , " ") , 8.) ;
 End ;
 If Line =: "Effective search space used:"
 Then Effective_search_space_used = Input(Scan(Line , 2 , ":") , 8.) ;
 If Line =: "Matrix:" Then Matrix = Strip(Scan(Line , 2 , ":")) ;
 If Line =: "Gap Penalties"
 Then
 Do ;
 Gap_Penalties_Existence = Input(Scan(Line , 3 , ":,") , 8.) ;
 Gap_Penalties_Extension = Input(Scan(Line , -1 , ":") , 8.) ;
 End ;
 End ; /* End_Infile */

 Output ;

 Call Missing (Query , Query_Length , Subject , Subject_Length , Score , Expect
 , Identities , Gaps , Strand , Query_Sequence , Match_Sequence
 , Subject_Sequence , Line , Lambda , K , H , Gapped_Lambda , Gapped_K
 , Gapped_H , Effective_search_space_used , Matrix
 , Gap_Penalties_Existence , Gap_Penalties_Extension
 , Query_Start , Subject_Start
) ;

 End ; /* End_Query_DS */

 Run ;

 /************/
 %If &FDelete. = 1
 %Then
 %Do ;
 Data _null_ ;
 Set &Query_DS. ;
 FV = CatS("C:\" , CatX("." , Query , "fas")) ;
 RC = FileName("FName" , FV) ;
 If RC = 0 And FExist("FName") Then RC2 = FDelete("FName") ;
 RC = FileName("FName") ;
 FV = CatS("C:\" , CatX("." , Query , "blastn")) ;
 RC = FileName("FName" , FV) ;
 If RC = 0 And FExist("FName") Then RC2 = FDelete("FName") ;
 RC = FileName("FName") ;
 Run ;
 %End ;

%MEnd BLASTn ;

Figure 3. The C2AA format.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Libname Library "C:\Documents and Settings\KViel\My Documents\SAS Formats" ;

Data C2AA ;
 Retain FmtName "C2AA" Type "c" ;
 Infile DataLines EOF = End ;
 Input Start : $3. Label : $4. @@ ;
 Output ;
 Return ;

 End:
 Do ;
 Start = " " ;
 Label = "Err" ;
 HLO = "O" ;
 Output ;
 Stop ;
 End ;
DataLines ;
GCA A GCC A GCG A GCT A TGC C TGT C GAC D GAT D GAA E GAG E TTC F TTT F GGA G GGC G
GGG G GGT G CAC H CAT H ATA I ATC I ATT I AAA K AAG K CTA L CTC L CTG L CTT L TTA L
TTG L ATG M AAC N AAT N CCA P CCC P CCG P CCT P
TAA stop TAG stop TGA stop
CAA Q CAG Q AGA R AGG R CGA R CGC R CGG R CGT R AGC S AGT S TCA S TCC S TCG S TCT S
ACA T ACC T ACG T ACT T GTA V GTC V GTG V GTT V TGG W TAC Y TAT Y
;
Run ;

Proc Format Library = Library CntlIn = C2AA ;
Run ;

Page 8 of 8

REFERENCES

1. SAS® 9.1.3 Language Reference: Dictionary. Fifth ed. Copyright © 2002–2006: SAS Institute Inc.,
Cary, NC, USA. All rights reserved.

2. Viel, K., Creating reference amplicons and genotyping using the SAS System. PharmaSUG 2011
Proceedings, 2011.

3. Altschul, S.F., et al., Basic local alignment search tool. J Mol Biol, 1990. 215(3): p. 403-10.
4. Camacho, C., et al., BLAST+: architecture and applications. BMC Bioinformatics, 2009. 10: p. 421.
5. Viel, K.R., et al., Inhibitors of factor VIII in black patients with hemophilia. N Engl J Med, 2009.

360(16): p. 1618-27.
6. Viel, K.R., et al., A sequence variation scan of the coagulation factor VIII (FVIII) structural gene and

associations with plasma FVIII activity levels. Blood, 2007. 109(9): p. 3713-3724.
7. El-Maarri, O., et al., Lack of F8 mRNA: a novel mechanism leading to hemophilia A. Blood, 2006.

107(7): p. 2759-65.

