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The Greatest Hits: ODS Essentials Every User Should Know 

Cynthia Zender, SAS Institute Inc., Cary, NC, USA 

ABSTRACT 

Just when you think you know every song (feature) in the ODS hit parade, you discover that there’s an option or 
destination or feature that has you singing its praises because the feature boosted your reports to the next level.  

This paper covers some of the essential features and options of ODS that every user needs to know to be productive. 
This paper shows concrete code examples of the ODS ―Greatest Hits‖. Come to this session and learn some of the 
essential reasons why ODS and Base SAS

®
 rock! 

INTRODUCTION 

The Output Delivery System (ODS) has many features that are well known by now. However, beyond the basic 
sandwich technique, there are some essential features that I consider to be the ODS Greatest Hits. The purpose of 
this paper is to describe these hits and to share some code and my reasons why these are all ODS essentials that I 
could not work without. (Along the way, see whether you can figure out the names of the musical hits that make up 
my major headings.) 

THE NAME GAME: #1 USING ODS OUTPUT OBJECTS 

The output object is the foundation of ODS. Almost every SAS procedure uses output objects. There are two types of 
output objects created by ODS: tabular output objects and graphical output objects. No matter which type of output 
object your procedure creates, you can discover useful information about the object with the ODS TRACE statement.  

It might be true, as Shakespeare said, that a rose by any other name would smell as sweet. However, when it comes 
to output objects created by SAS procedures, an output object has a specific name that cannot be changed, and the 
object cannot be called by any other name. If you use the ODS TRACE statement as shown below, you can see in 
the SAS log that each output object has other attributes in addition to the Name attribute. The five most common 
attributes are Name, Label, Template, Path, and Label Path (although not every output object has or uses every 
attribute).  

ods trace on / label; 

. . . SAS code that produces output . . . 

ods trace off; 

 

Output from the ODS TRACE statement is written to the SAS Log window when only the LABEL option is used as 
shown above. (Output sent to the LISTING destination from the procedures used within the ODS TRACE sandwich 
are not the focus of this topic. Instead, we want to look at the output object information from the SAS log.) 

EXAMINE OUTPUT OBJECT NAME AND OTHER ATTRIBUTES 

The program below uses familiar procedures to illustrate the attributes of ODS output objects.  

ods trace on / label; 

proc sort data=sashelp.class out=class; by age name; run; 

 

ods graphics on; 

proc reg data=class; 

  model age=height; 

run; 

ods graphics off; 

 

proc means data=class min mean max; 

  class age; 

  var height weight; 

run; 

 

proc contents data=class; run; 

 

proc print data=class;  run; 
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ods trace off; 

 

The SORT procedure creates an output data set. However, it does not create any output that can be routed to an 
ODS destination, so no ODS TRACE information is written to the SAS log for the SORT procedure. Output object 
information for the other procedures is shown in Output 1 through Output 4 below. Error! Reference source not 
found. shows the partial tabular and graphical output object information that is created by the REG procedure. 

Output Added: 

------------- 

Name:       NObs 

(LOG lines deleted to fit PROC REG output on one page) 
 

Output Added: 

------------- 

Name:       ANOVA 

Label:      Analysis of Variance 

Template:   Stat.REG.ANOVA 

Path:       Reg.MODEL1.Fit.Age.ANOVA 

Label Path: 'The Reg Procedure'.'MODEL1'.'Fit'.Age.'Analysis of Variance' 
 

Output Added: 

------------- 

Name:       FitStatistics 

Label:      Fit Statistics 

Template:   Stat.REG.FitStatistics 

Path:       Reg.MODEL1.Fit.Age.FitStatistics 

Label Path: 'The Reg Procedure'.'MODEL1'.'Fit'.Age.'Fit Statistics' 
 

Output Added: 

------------- 

Name:       ParameterEstimates 

Label:      Parameter Estimates 

Template:   Stat.REG.ParameterEstimates 

Path:       Reg.MODEL1.Fit.Age.ParameterEstimates 

Label Path: 'The Reg Procedure'.'MODEL1'.'Fit'.Age.'Parameter Estimates' 
 

Output Added: 

------------- 

Name:       DiagnosticsPanel 

Label:      Fit Diagnostics 

Template:   Stat.REG.Graphics.DiagnosticsPanel 

Path:       Reg.MODEL1.ObswiseStats.Age.DiagnosticPlots.DiagnosticsPanel 

Label Path: 'The Reg Procedure'.'MODEL1'.'Observation-wise 

Statistics'.Age.'Diagnostic Plots'.'Fit 

Diagnostics' 
 

Output Added: 

------------- 

Name:       ResidualPlot 

Label:      Height 

Template:   Stat.REG.Graphics.ResidualPlot 

Path:       Reg.MODEL1.ObswiseStats.Age.ResidualPlots.ResidualPlot 

Label Path: 'The Reg Procedure'.'MODEL1'.'Observation-wise 

Statistics'.Age.'Residual Plots'.'Height' 
 

Output Added: 

------------- 

Name:       FitPlot 

Label:      Fit Plot 

Template:   Stat.REG.Graphics.Fit 

Path:       Reg.MODEL1.ObswiseStats.Age.FitPlot 

Label Path: 'The Reg Procedure'.'MODEL1'.'Observation-wise Statistics'.Age.'Fit 

Plot' 

Output 1. Log from the REG Procedure 
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Output Added: 

------------- 

Name:       Summary 

Label:      Summary statistics 

Template:   base.summary 

Path:       Means.Summary 

Label Path: 'The Means Procedure'.'Summary statistics' 

Output 2. Log from the MEANS Procedure 

Output Added: 

------------- 

Name:       Attributes 

Label:      Attributes 

Template:   Base.Contents.Attributes 

Path:       Contents.DataSet.Attributes 

Label Path: 'The Contents Procedure'.'WORK.CLASS'.'Attributes' 
 

Output Added: 

------------- 

Name:       EngineHost 

Label:      Engine/Host Information 

Template:   Base.Contents.EngineHost 

Path:       Contents.DataSet.EngineHost 

Label Path: 'The Contents Procedure'.'WORK.CLASS'.'Engine/Host Information' 
 

Output Added: 

------------- 

Name:       Variables 

Label:      Variables 

Template:   Base.Contents.Variables 

Path:       Contents.DataSet.Variables 

Label Path: 'The Contents Procedure'.'WORK.CLASS'.'Variables' 
 

Output Added: 

------------- 

Name:       Sortedby 

Label:      Sortedby 

Template:   Base.Contents.Sortedby 

Path:       Contents.DataSet.Sortedby 

Label Path: 'The Contents Procedure'.'WORK.CLASS'.'Sortedby' 

Output 3. Log from the CONTENTS  Procedure 

Output Added: 

------------- 

Name:       Print 

Label:      Data Set WORK.CLASS 

Data Name: 

Path:       Print.Print 

Label Path: 'The Print Procedure'.'Data Set WORK.CLASS' 

Output 4. Log from the PRINT Procedure 

Notice that some of the output objects are different from the others. Most notably, the PRINT procedure does not use 
a table or a graph template, so there is no template attribute. Instead, the PRINT procedure has a Data Name 
attribute (which is blank in the above output.) Notice also that in the REG procedure output, the output objects use 
variable information for the Label and Label Path information. However, output objects from the CONTENTS 
procedure do not use the variable names for the Label or Label Path.  

Why go to all this trouble to find out the attributes of the output objects? It is one of those ―chicken and egg‖ 
situations. To do anything more interesting than send your output to an ODS destination, you first need to know the 
names of the output objects. This means that you have to learn about the ODS TRACE statement. When you know 
the names of the output objects, you can select and exclude output objects from ODS destinations. Because one of 
the ODS destinations is the ODS OUTPUT destination, you can use the object’s name to create a SAS data set. 
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USE OUTPUT OBJECT NAME TO SELECT IT 

The program below runs the REG procedure and directs the output to the HTML destination. By default, all output 
objects are sent to the ODS destination, as you can see from Display 1. Display 1 shows the SAS Results window 
and all the output objects. Compare Display 1 to Display 2. Display 2 shows the output from the same program, but 
an ODS SELECT statement has been added that selects only the ParameterEstimates output object. 

ods listing close; 

    

ods html path='.' (url=none) 

         file='get_everything.html' style=sasweb; 

  title 'Get All Output Objects'; 

  ods graphics on; 

  proc reg data=class; 

    model age=height;  

  run; 

  quit; 

  ods graphics off; 

ods html close; 

 

Display 1 shows the Results window from the above program. It shows the tabular and graphic output objects that 
have been routed to the HTML destination.  

 

Display 1. Expanded Results Window Showing All Output Objects 

 

The following example is the same as the preceding example, except that I’ve added a SELECT statement. (The 
LISTING destination is still closed when this program runs.) 

ods html path='.' (url=none) 

         file='sel_parm.html' style=sasweb; 

  title 'Use ODS SELECT'; 

  ods html select ParameterEstimates; 

  ods graphics on; 

  proc reg data=class; 

    model age=height;  

  run; 

  quit; 

  ods graphics off; 

ods html close; 

 

Display 2 shows the output of this code. Only the tabular output object for the ParameterEstimates results from the 
REG procedure is shown in the SAS Results window. 

Reporting and Information VisualizationSAS Global Forum 2 11

 
 



ODS Greates Hits, continued 

 

5 

 

Display 2. Expanded Results Window Showing the ParameterEstimates Output Object 

In addition to the ODS SELECT statement, there is also an ODS EXCLUDE statement. This means you can select 
output objects for some destinations while excluding them from other destinations. A very powerful feature, indeed. 
But wait, the hits just keep on coming! Now that you know the output object name, you can create an output data set 
from the output object. 

USE OUTPUT OBJECT NAME TO CREATE AN OUTPUT DATASET 

Most people know about the report destinations ODS HTML, ODS RTF, and ODS PDF. There are many other report 
destinations such as ODS CSV, ODS TAGSETS.EXCELXP, ODS TAGSETS.RTF, and so on. However, the ODS 
OUTPUT destination is a data or output destination. Many SAS procedures already have syntax for creating an 

output data set from the procedure output, but each procedure has its own method of creating a data set. Some 
procedures use an OUT= option and some use an OUTPUT statement, to name just a few possibilities. The ODS 
OUTPUT destination enables you to use the same syntax to create an output data set, and all you have to know (in 
the simplest mode) is the output object name that you want to select. The syntax model is: 

ODS OUTPUT <obj-name> = <SAS-libref-and-dataset-name>; 

 

A review of the documentation on the ODS OUTPUT statement shows that you can use the Name, Path, or Label 
Path attributes to select output objects in the ODS OUTPUT statement as well as ODS SELECT and ODS EXCLUDE 
statements. For illustration purposes, the program below uses the Name for the ParameterEstimates and FitStatistics 
output objects. This means that two SAS data sets are created from the following PROC REG step: 

ods listing; 

title 'Use ODS OUTPUT'; 

ods output ParameterEstimates=work.parmest FitStatistics=work.fitstat; 

 

proc reg data=class; 

  model age=height;  

run;  

quit; 

 

Display 3 shows the SAS Results window after the REG procedure is finished.  

 

Display 3. Expanded Results Window Showing the Output Data Sets 
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You can see that, in addition to all of the LISTING destination output icons, the two result nodes for 
ParameterEstimates and FitStatistics show the icon for a SAS data set. The PRINT procedure views of these data 
sets are shown in Display 4 and Display 5. 

 

Display 4. PRINT Procedure Output of WORK.PARMEST 

 

 

Display 5. PRINT Procedure Ouput of WORK.FITSTAT 

Each data set created with the ODS OUTPUT statement has its own structure. This structure might or might not be 
the same as the structure created by using a procedure’s own output syntax. For example, the ParameterEstimates 
data set has variable (column) names that correspond to statistic names (such as Estimate and StdErr). However, the 
FitStatistics data set can have two statistics per observation. The first observation in this output contains Root MS 
and R-Square statistics. Since Root MS is the value for the Label1 variable on the first observation, all the columns 
ending in 1 on the first observation are also Root MS-related. There is a character variable for the Root MS statistic 
(cValue1), if you need a less precise, character version of the value for reporting. There is also a numeric variable 
(nValue1), which shows more numeric precision and allows this Root MS value to be used in subsequent 
calculations. 

In addition to using the Name of the output object, you can also use different combinations of the object Name, Path, 
Label, or Label Path to select output objects when you are creating a data set. I usually use the unquoted strings 
because the unquoted strings are shorter and require less typing. For example, the ODS OUTPUT syntax below 
creates three different versions of the ANOVA output object by using the Name, the full Path, and a partial Path. 

ODS OUTPUT ANOVA=work.usename 

           Reg.MODEL1.Fit.Age.ANOVA=work.usepath 

           Fit.Age.Anova=work.partial; 

 

proc reg data=class; 

  model age=height; 

run; 

quit; 

 

The three data sets created by the example above all contain the same ANOVA information for the PROC REG step.  
The ViewTable display of the first data set (WORK.USENAME) is shown in Display 6. Note that the ability to use 
different attributes to select output objects also works with the ODS SELECT and ODS EXCLUDE statements. 

 

Display 6. PRINT Procedure Output of WORK.USENAME 

Another feature of the ODS OUTPUT destination is the ability to get output from multiple RUN groups or output from 
multiple runs of the same procedure into one data set by using the PERSIST= option. The example below shows the 
use of the PERSIST=RUN statement with a PROC REG statement and two MODEL statements. 

ods output ParameterEstimates(persist=run)=work.multPE; 
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proc reg data=class; 

  var height weight; 

  model age=height;  

run;  

            

  model age=weight;  

run;  

quit; 

ods output clear; 

 

Display 7 shows the results from the above code. The first two observations in the data set represent the parameter 
estimate information for the AGE=HEIGHT model, and the last two observations in the data set represent the 
parameter estimate information for the AGE=WEIGHT model. 

 

Display 7. PRINT Procedure Output of WORK.MULTPE 

Knowing about ODS output objects and how to use their names (and other attributes) enables you to perform tasks 
such as selecting the PROBT statistic for a particular model and using it in other ODS reports. So learn how to play 
the name game with ODS output objects the next time you want only a few objects or you need to create SAS data 
sets from a procedure. 

PLEASE MR. POSTMAN: #2 SENDING ODS RESULTS BY EMAIL 

The ability to send ODS result files by e-mail is possible with the FILENAME EMAIL engine. It has been possible to 
send e-mail with SAS since the early mainframe days. With the advent of ODS, one way to use the EMAIL engine is 
to follow a two-step process. First, create your ODS result file. Second, generate an e-mail that sends the ODS result 
file as an attachment. The program code below follows this two-step approach. 

** Step 1: Create ODS Result File; 

ods rtf body='c:\temp\class.rtf' rs=none style=sasweb; 

  

   proc print data=sashelp.class; 

       title 'ODS RTF Report'; 

   run; 

  

ods rtf close; 

 

** Step 2: Use Email Engine to send RTF file as an attachment; 

filename doemail email  

    to=('one.person@sas.com' 'another.person@sas.com') 

    from='ima.programmer@sas.com' 

    cc=('also.interested@sas.com') 

    subject='Look at this ODS RTF report' 

    attach='c:\temp\class.rtf'; 

                                    

data _null_; 

    file doemail; 

    put 'This is a test email with an RTF attachment.'; 

run; 

 

Because the e-mail addresses above are for illustration purposes only, this e-mail code will not work if you submit this 
code exactly as shown. To use the code, you need to change the TO, FROM, and CC options appropriately. Also, 
depending on the e-mail client that you use and the setup configuration for e-mail that you have, you might need to 
work with your SAS administrator to make sure that the proper system options are in place for sending e-mail. For 
example, the default access method on Windows is EMAILSYS=MAPI, but you might want or need to use SMTP as 
the access method (which requires other configuration settings). 
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When I use the above program to send an e-mail to myself from a backup machine (which uses Microsoft Outlook 
2007 on Windows XP) to my work machine (which uses Microsoft Outlook 2010 on Windows 7), Outlook 2007 
displays the message shown in Display 8.  

 

Display 8. Popup Window from Outlook 2007 

When I respond by clicking the Allow button, the e-mail is sent. Then, when I open the mail on my work machine, 
Outlook 2010 displays the message shown in Display 9. 

 

 

Display 9. View of E-mail With RTF Attachement 

Keep in mind that sending an attachment is not just subject to your e-mail system, but the recipient’s e-mail system 
as well. For example, even though ODS can create RTF, PDF, HTML, and even XML output files, it is possible that 
some recipients might not be able to receive XML or HTML attachments for security reasons. So you might want to 
investigate a bit more about this feature of SAS and ODS.  

Other papers have been written about sending e-mail with SAS, so this hit is not meant to be an exhaustive treatment 
of how to e-mail ODS output with SAS. A search of Technical Support notes and user group papers reveals other e-
mail methods, including SMTP methods. However, with the ability to e-mail ODS results under your belt, you can 
bring your company closer to the ―paperless office‖. 

 
 

STEP BY STEP: #3 CONTROLLING ODS RESULT FILES  

The ways to control the style of your ODS result files is an upcoming hit. This hit, or this group of related hits, show 
how to use options to affect your ODS result files. You can create multiple result files using the NEWFILE= option, or 
you can create multiple instances of output for the same destination using the ID= suboption. If you want to generate 
a Table of Contents, all three primary destinations support the use of the CONTENTS= option. With the ODS RTF 
and ODS PDF destinations, a separate Table of Contents page is inserted into the result output file. For the ODS 
HTML destination, the appropriate HTML frameset navigation structure is created or a separate CONTENTS file is 
created, depending on which syntax you use. Once you learn score for these options, I’m sure you’ll find the one 
most useful for you. 
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USING THE NEWFILE= OPTION 

The NEWFILE= option defines a breakpoint or starting point at which a new result file is generated and automatically 
named. Normally, with one ODS sandwich, all your output from one SAS procedure or multiple SAS procedures goes 
into the single result file that is named in the FILE= or BODY= option. You can change this default behavior by 
specifying the starting point for each new file. 

 

ods html file='report1.html' style=sasweb newfile=proc; 

 

  title '1) Proc Report Summary'; 

  ** proc report step; 

 

  title '2) Proc Tabulate Summary'; 

  ** proc tabulate step; 

 

  title '3) Proc Freq Report'; 

  ** proc freq step; 

 

ods _all_ close; 

 

To see the effect of using the NEWFILE= option, instead of looking at the output from each procedure, Display 10 
shows the three output files created by ODS.  

 

 

Display 10. Windows Explorer View of ODS HTML Results Files 

 

Note that the output files are named REPORT1.HTML, REPORT2.HTML, and REPORT3.HTML because the 
breakpoint for each new file occurred with the start of each procedure. ODS named the files by incrementing the 
right-most number in the original FILE= option. If we had originally used a name of REPORT40.HTML in the FILE= 
option, then with three procedures, the output files would have been named REPORT40.HTML, REPORT41.HTML, 
and REPORT42.HTML. If we has specified , Y2010Rep1.HTML as the value for the FILE= option, the output files 
would have been named Y2010Rep1.HTML, Y2010Rep2.HTML, and Y2010Rep3.HTML because it is the right-most 
number that gets incremented.) 

On the other hand, in the code shown below, the NEWFILE= option specifies that a new file is generated for each 
BYGROUP (assuming that the data are sorted for use with the BY statement).  

ods rtf file='report1.rtf' newfile=bygroup; 

 

  ** proc report step; 

    by employee_country; 

  

ods _all_ close; 

 

In Display 11, we see that one RTF file was created for each of the ten unique values of EMPLOYEE_COUNTRY. 
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Display 11. Windows Explorer View of ODS RTF Results Files 

 

The breakpoints that you can use with the NEWFILE= option are NONE (default), BYGROUP, OUTPUT, PAGE, and 
PROC. Not all ODS destinations support the use of the NEWFILE= option, but the three major destinations (HTML, 
RTF, and PDF) all support this option as do other destinations such as ODS CSV, ODS CSVALL, and ODS PS. The 
best place to find out whether your destination of interest supports the NEWFILE= option is to look in the ODS 
documentation. 

USING THE ID= SUBOPTION 

ODS allows you to have multiple different destinations open at the same time, but it does not allow you to have 
multiple instances of the same destination open at the same time. For example, you cannot do this in your code: 

ods html file='use_sasweb.html' style=sasweb; 

ods html file='use_analysis.html' style=analysis; 

. . . more code . . . 

ods _all_ close; 

 

If you tried to use the above code, the second ODS HTML result file (USE_ANALYSIS.HTML) would contain all of the 
output, while the first file (USE_SASWEB.HTML) would appear to be empty. This happens because, behind the 
scenes, each open destination has a manager whose job it is to direct output to the FILE= (or BODY=) location. The 
fancy name for the manager is an Output Destination Agent (ODA). When you use the form of syntax above, the 
ODA does not know which of the two specified result files should get the procedure results. If there is no way to 
identify or distinguish between the two files, the ODA sends the procedure output to the second, or last, ODS HTML 
file referenced.  

This is where the ID= suboption comes into play. Using the ID= suboption gives you (and the ODA) a way to 
distinguish between the multiple output files that you want to create for the same destination. When you specify the 
ID= suboption on your ODS invocation statement, each ID= specification causes a separate ODA to be invoked to 
handle the output that SAS is sending to ODS result files. The fancy description for what happens is that a new ODA 
is instantiated for every ID= suboption. For the code below, three ODAs are instantiated to manage the output. 

ods html(id=1) file='file1.html' style=sasweb; 

ods html(id=two) file='file2.html' style=ocean; 

ods html(3) file='file3.html' style=harvest; 

  proc report data=employees nowd split='#'; 

    title 'Report 1 ID= Behavior'; 

  run; 

 

ods html(two) close; 

 

  proc report data=employees nowd split='#'; 

    title 'Report 2 ID= Behavior'; 

  run; 

 

ods html(id=1) close; 

ods html(3) close; 
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In this code, three result files are created. Suboptions always go in parentheses on an ODS invocation statement. So 
immediately after the ODS HTML invocation, the ID= text strings are placed inside parentheses. The ID= suboption 
must be placed immediately after the destination specification. The text string that you specify does not need quotes. 
You can specify a number, such as ID=1, or you can specify a word, such as ID=TWO. Note in Display 12 how the 
NOTE message in the SAS log echoes the file information back to you. 

 

 

Display 12. SAS Log Messages With the ID= Suboption 

 

The ID= suboption specification itself is not shown in the note. You only see the suboption value. ODS knows that the 
string inside the parentheses is the ID= string for the ODA. Technically, you do not need the ID= option specification 
at all (as shown in several places in the code above).  

As shown above, selectively opening and closing instances of the same destination enables you to do things like use 
three different styles, send the output from only one PROC REPORT step (ID=two) to one file, and send the output 
from both PROC REPORT steps (ID= 1 and 3) to the other files. . Display 13 shows what the three outputs look like 
when each is viewed in a browser. 

 

Display 13. ODS HTML Resuts Files for All Three Invocations 

Another good example of using the ID= suboption would be using it to create output both on a local drive and on a 
network drive as a backup copy. Using the ID=suboption, you can create two files on different drives with only one 
run of your procedure step(s). 

USING THE CONTENTS= OPTION 

Even in the paperless office, there might be a need for a Table of Contents (TOC) for your reports. TOC generation 
happens differently for destinations that create paginated output like RTF and PDF versus destinations like HTML 
that do not create paginated output. Compare Display 14, which shows how the TOC would look for RTF and PDF 
output, with Display 15, which shows the CONTENTS= file for ODS HTML.  
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Display 14. RTF Table of Contents Page 

 

Display 15. HTML Table of Contents Web Page 
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Display 16. Table of Contents Shown in HTML Frame Structure  

The TOC for PDF output would look essentially like the RTF file, and the invocation for PDF and RTF destinations is 
essentially the same—the CONTENTS=YES option. The HTML destination, on the other hand, requires that you 
provide a filename for the TOC file. Then, you have to decide whether you want to show the TOC in an HTML 
frameset structure. If you only want a separate TOC file to incorporate into a Web site, then specify only the 
CONTENTS= option together with the BODY= or FILE= option. If you want an HTML frameset structure, then you 
have to specify the BODY= or FILE= option together with both the CONTENTS= and FRAME= options. The ODS 
statements that created Displays 14, 15, and 16 are shown below. 

ods rtf file='toc.rtf' contents=yes toc_data; 

ods pdf file='toc.pdf' contents=yes; 

ods html(id=one) file='body1.html' contents='toc1.html' style=sasweb; 

ods html(id=two) file='body2.html' contents='toc2.html' 

                 frame='frame2.html' style=analysis; 

 

ods proclabel='First Report'; 

  title '1) Proc Report Summary'; 

  proc report data=employees2 nowd split='#' 

       contents="CONTENTS= Option on PROC REPORT statement"; 

  run; 

 

ods proclabel = 'Second Report'; 

  title '2) Proc Tabulate Summary'; 

  proc tabulate data=employees2 f=comma8. 

       contents="CONTENTS= Option on TABULATE statement"; 

  run; 

 

ods proclabel = 'Third Report'; 

  title '3) Summary Report'; 

  proc freq data=employees2; 

  run; 

 

ods proclabel = 'Fourth Report'; 

  title '4) Detail Report'; 

  proc print data=employees2 noobs split='_' 

  run; 

 

ods _all_ close; 
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The main difference between the PDF and RTF invocation is that the RTF file needs to have the appropriate field 
codes created for the major contents sections. The option that turns on the insertion of field codes for RTF is the 
TOC_DATA option. With this option turned on, you can actually see the field codes when the RTF file is opened in 
Microsoft Word if you have the Show/Hide button selected, as shown in Display 17. 

 

Display 17. TOC Field Codes Shown in Microsoft Word 

The PDF options NOTOC or BOOKMARKGEN=NO (or NOBOOKMARKGEN) prevent a TOC from being created 
even if you specified CONTENTS=YES. In fact, if you try to use BOOKMARKGEN=NO with the CONTENTS=YES 
option, the SAS log shows the following message: 

WARNING: CONTENTS=ON and NOBOOKMARKGEN are incompatible options  

The bottom line on this group of greatest hits is that they give you several methods to enhance your ODS result files, 
including whether additional output such as contents information or a separate TOC page is created. 

THE WRITING ON THE WALL: #4 USING ODS ESCAPECHAR 

You can enhance your ODS output by using ODS ESCAPECHAR functions. The ODS ESCAPECHAR functions 
were first introduced in SAS 8.2. The original syntax is described in my paper ―Funny Stuff in My Code‖ 
(http://www2.sas.com/proceedings/forum2007/099-2007.pdf).  

Although ESCAPECHAR syntax changed in SAS 9, the page numbering capability has remained the same. Several 
popular functions generate ―Page X of Y‖ page numbers for RTF and PDF output by using an ODS escape character 
with the {THISPAGE} and {LASTPAGE} ESCAPECHAR functions. If you do not know what I mean by page 
numbering capability, you might know it by a different name: ―Page X of Y‖ page numbering. ―Page X of Y‖ describes 
a page numbering method in which the page numbers can be controlled and customized in the following manner: 

 Page numbers can appear in the TITLE or FOOTNOTE statement (top of page or bottom of page) 

 Page numbers can be left-justified, right-justified, or centered  

 Page numbers can be just the current number, or can be in the form Page 1 of 10, Page 2 of 10, and so on. 

The ODS ESCAPECHAR= statement declares an escape character that is used to introduce special control 
sequences into RTF, PDF, and HTML files. Since HTML is not a paginated destination, the specific page numbering 
controls do not have any impact on HTML-based destinations. However, for RTF and PDF files, the following code 
provides you a way to control page numbering. The PDF page numbering that ODS ESCAPECHAR implements 
works well for output that does not contain graphic images or contains images but does not use the {LASTPAGE} 
function. For more information, refer to the Technical Support note 34573 entitled ―Use of LASTPAGE inline function 
causes images to disappear.‖ The example below works as it does because the code does not produce or use any 
graphic images in the PDF results. 

Reporting and Information VisualizationSAS Global Forum 2 11

 
 

http://www2.sas.com/proceedings/forum2007/099-2007.pdf


ODS Greates Hits, continued 

 

15 

options nodate nonumber center missing=' ' pageno=1; 

ods escapechar='#'; 

 

ods pdf file='pg_xofy.pdf'; 

ods rtf file='pg_xofy.rtf'; 

 

  footnote1 '-- #{thispage} --';  

  footnote2 j=r 'Page #{thispage} of #{lastpage}'; 

 

  proc report data=employees nowd; 

    title 'Page X of Y'; 

    more code     

  run; 

 

ods _all_ close; 

Notice that the ODS ESCAPECHAR statement declares the escape character as the number sign(#). This means 
that every time the # sign is encountered, whatever comes after this sign is treated as a special control function, or 
string, which affects the output. Without describing all of the possible ESCAPECHAR control functions, this example 
shows how to put a single page number in FOOTNOTE1 and a ―Page X of Y‖ set of page numbers in FOOTNOTE2. 
The text inserted by FOOTNOTE1 is centered (the default). The text inserted by FOOTNOTE2 is right-justified 
because of the justification option used before the text string. 

The NODATE and NONUMBER options turn off the regular placement of the date and page number on the first title 
line. The output at the bottom of page 3 and the top of page 4 in the PDF file is shown in Display 18. 

 

 

Display 18. Page Numbers in PDF Output 

Because the RTF output is essentially the same as the PDF output, it is not shown here. There is some overhead 
associated with using the {LASTPAGE} ESCAPECHAR function in PDF files, because the PDF file number of total 
pages must be known before the actual number can be inserted into result file. The two separate functions, one for 
the current page and one for the number of total pages, work in both RTF and PDF destinations.  

For the RTF destination, there is a separate ESCAPECHAR function, the {PAGEOF} function, that inserts RTF-
compliant field codes for page numbers into the result file. For example, when you use the {PAGEOF} 
ESCAPECHAR function for RTF output, as shown in this TITLE statement 

title 'In The Title'  j=r  'Page #{pageof}'; 

 

then the following RTF control stringst are inserted into the RTF result file: 

{Page {\field{\*\fldinst { PAGE }}}{ of }{\field{\*\fldinst { NUMPAGES }}}\cell} 

 

RTF field codes would not be recognized with the PDF destination, so the string would be passed unchanged to the 
PDF (or HTML) destinations into the page number strings. The RTF output from the TITLE statement is shown in 
Display 19. 
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Display 19. Page Numbers in RTF Output 

As you can see from this small preview, ODS ESCAPECHAR bears more study. This functionality is especially useful 
if you need to insert Unicode, superscript, or subscript characters into your output or if you want to perform in-line 
formatting by changing the style for a text string or character variable. 

YOU DON’T KNOW WHAT YOU’VE GOT: #5 SENDING ODS RESULTS TO EXCEL 

One way to export SAS data sets to Excel (or other file formats) is to use the EXPORT procedure or the SAS Excel 
LIBNAME engine. But what if you want the output from the GLM or TABULATE procedures in Excel without creating 
an output data set? Using ODS, you can create three types of files that can be opened and rendered with Excel. 
Several ODS destinations create ASCII text files that can be opened and rendered with Excel: 

 Plain text files: The ODS CSV and ODS CSVALL destinations create ASCII text files with comma-delimited 
values. (In SAS 9, these destinations have a suboption that allows you to choose a different delimiter.) 

 HTML files: The ODS HTML, ODS MSOFFICE2K, ODS TAGSETS.MSOFFICE2K_X, and ODS 
TAGSETS.TABLEEDITOR destinations create HTML files that can be opened and rendered with Excel 
(starting with Microsoft Office 97). 

 XML Spreadsheet Markup Language Files: The ODS TAGSETS.EXCELXP destination creates files that can 
be opened and rendered with Excel (starting with Microsoft Office 2002/2003). 

None of these destinations create true, binary Excel files. Only the EXPORT procedure or the SAS Excel LIBNAME 
engine can do that. When you use ODS, just giving the file an extension of .XLS does not alter what is inside the file. 
In this case, an HTML or an XML file with the file extension of .XLS tricks the Windows registry into launching Excel 
when the file is double-clicked. Otherwise, the HTML file would open in a browser, and the XML file would probably 
open in a browser or XML editor.  

So, now that I’ve told you, you can’t say that you didn’t know what type of files ODS creates for Excel. The fact is that 
each of the ODS destinations above creates output for Excel. Each destination has pros and cons, and you will have 
to experiment to see which method suits your needs. For example, if you need to create multi-sheet workbooks from 
your procedure output, then that is an argument for using TAGSETS.MSOFFICE2K_X or TAGSETS.TABLEEDITOR 
(both of which create HTML result files) or TAGSETS.EXCELXP (which creates a Spreadsheet Markup Language 
result file). If you need procedure output with no formatting, then that is an argument for using the ODS CSV or ODS 
CSVALL destinations.  

The other thing to realize is that Excel has its own way of doing things. For example, you might have a perfectly good 
product number with leading zeros displaying in SAS output. However, when you send a report with the product  
number to Excel, the default format for a numeric column is the General format, which does not respect the SAS 
leading zeros. Luckily, if you use the REPORT, PRINT, or TABULATE procedures, you have direct ways, using either 
the HTMLSTYLE or TAGATTR style attributes, to send a Microsoft format file from SAS to Excel. (These methods are 
the topic of my SAS Global Forum 2011 paper ―Don’t Gamble with Your Output: How to Use Microsoft Formats with 
ODS‖.) 

Here’s another example of how Excel has its own way of doing things. The ODS HTML destination creates HTML 
4.0-compliant HTML tags, which Microsoft Excel really doesn’t like. For example, compare the ODS HTML results 
(opened in Excel) with the ODS MSOFFICE2K results opened in Excel, as shown in Display 20. Both of these steps 
used the SASWEB style. (Excel also ―likes output from the ODS HTML3 destination, which creates HTML 3.2-
compliant tags.) 
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Display 20. ODS HTML Results Compared to ODS MSOFFICE2K Results 

As you can see, Excel interpreted the style used in the ODS HTML tags differently than the style specification for the 
Microsoft HTML tags. This means you get the best results (where the style is concerned) with destinations that are 
Microsoft ―friendly‖. There are a lot of user group papers describing the use of ODS to create output files that can be 
opened and rendered with Excel. Once you understand what you really get from SAS and ODS, you can make Excel 
and SAS output work well together. 

ANY WAY YOU WANT IT: #6 REARRANGING OUTPUT OBJECTS WITH ODS DOCUMENT 

There is too much ODS DOCUMENT (and DOCUMENT procedure) code involved in this hit to include in this paper. If 
you download the zip file of programs that goes with this paper, you can get all of the code. ODS DOCUMENT is not, 
technically, an ODS report destination. An ODS DOCUMENT store is an item store like the SAS registry and the ODS 
template stores.  

The ODS DOCUMENT destination (and the DOCUMENT procedure in batch syntax mode) enable you to create 
document stores, which act as a conceptual freezer where you can store your ODS output objects between the time a 
procedure finishes with the output object and the time the output object is sent to an ODS report destination. The 
ODS DOCUMENT destination has a document store that holds output objects in their original hierarchy and creation 
structures, but you can rearrange the hierarchy and structure of these ouput objects. In this document store, ODS 
documents are saved in a proprietary format and can be viewed only with SAS software. The ODS DOCUMENT 
destination holds the output objects in such a way that they are able to be replayed or rerun to one of the report 
destinations. The ODS DOCUMENT destination is a SAS proprietary destination. To view or modify what is in the 
document store, you have to use either the ODS DOCUMENT window or the DOCUMENT procedure. 

Consider this scenario: You have a job that runs for six hours and performs some complicated analysis. The only 
copy of the report is in HTML form on the company Web server. You can only run the job overnight. But, your boss 
comes in at 9:30 a.m. and says she needs a copy of the report in a PDF version, with page numbers, in landscape 
mode, for a noon meeting. You don't have six hours to rerun the analysis to the ODS PDF destination. What do you 
do? 

If you froze (saved) copies of the analysis output objects in an ODS DOCUMENT store (because the job takes so 
long to run), then you have another option. You can submit a DOCUMENT procedure replay program to replay the 
ODS DOCUMENT output objects to the ODS PDF destination without spending the six hours to rerun the original 
procedure. Pretty neat trick.  

Here's a different scenario: You have a PROC TABULATE step with BY-group processing, followed by a PROC 
UNIVARIATE step with BY-group processing. In the default folder structure created for the job, all of the BY groups 
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for the PROC TABULATE step appear before the BY groups for the PROC UNIVARIATE step. Your boss is tired of 
flipping back and forth from one section to another to compare the TABULATE procedure report with the 
EXTREMEOBS portion of the UNIVARIATE procedure report. She requests that you organize the output report so 
that you have the TABULATE procedure report immediately followed by only the EXTREMEOBS report for the same 
BY group.  

Again, if you save copies of your original output objects from the TABULATE and UNIVARIATE procedures in an 
ODS DOCUMENT store, the document store would look as shown in Display 21. 

 

Display 21. ODS DOCUMENTS Window Showing Original Document Structure 

Given that you have saved the original output objects in the original structure, you can now rearrange the output 
objects in a hierarchical structure that is different from the original procedure-centric structure. Then, you can rerun 
the new ODS document to the destination of your choice. Display 22 shows the rearranged, new ODS DOCUMENT 
structure, and Display 23 shows the PDF bookmarks that reflect the new structure (showing only the TABULATE 
procedure output and the ExtremeObs output object from the UNIVARIATE procedure). 

 

Display 22. ODS DOCUMENTS Window Showing Restructured Output Objects 
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Display 23. ODS PDF Bookmarks Window For Replayed Document 

You might not have an immediate use for the ODS DOCUMENT destination (and the DOCUMENT procedure) based 
on these few scenarios. However, I’m convinced that the ODS DOCUMENT destination is one of those sleeper hits 
that will prove to be very useful sometime in your future as a SAS programmer. 

PICTURES AT AN EXHIBITION: #7 CREATING IMAGES WITH ODS 

Supposedly, a picture is worth a thousand words. I probably can’t say enough good things about the next two pictures 
even if I had 10,000 words. And, although the code that produced these pictures is much less than 1000 lines long, 
I’m not going to show all the code for this hit, partly because the zip file of programs has all the code that produced 
these pictures, and also because the pictures themselves prove my point that ODS GRAPHICS can help you rock out 
your reporting. 

Display 24 shows an example of a forest plot that Sanjay Matange is going to cover in his SAS Global Forum 2011 
paper entitled ―Tips and Tricks for SG Procedures and GTL for Clinical Graphs‖. Display 25 shows a paneled butterfly 
plot, modified from the example that Susan Schwartz demonstrated in her paper entitled ―Butterflies, Heat Maps, and 
More: Explore the New Power of SAS/GRAPH‖. 

 

Display 24. Forest Plot With Overlaid Scatter Plots Using the SGPLOT Procedure  
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Display 25. Paneled Butterfly Plot Using the SGPANEL Procedure 

To entice you to download the zip file of programs, here’s the bottom line on the level of coding needed to produce 
these two images. Display 24 was created by a PROC SGPLOT step with four SCATTER statements, two REFLINE 
statements, two INSET statements, and a statement for each of the main axes: XAXIS, X2AXIS, and YAXIS. Display 
24 used a custom style template to standardize all the fonts and colors as desired. Display 25 was created by a 
PROC SGPANEL step with four HBAR statements and a PANELBY statement. Display 25 used the default settings 
for the ANALYSIS style. And of course, each program had the usual TITLE and FORMAT statements. 

No Annotate statements, no GOPTIONS statements, and no AXIS, SYMBOL, or PATTERN statements were used to 
create two images! Now, don’t get me wrong. I am a control person. I love Annotate, I love the AXIS and SYMBOL 
statements, and I love traditional, device-based SAS/GRAPH. However, the new ODS GRAPHICS capabilities are 
too good to ignore. When I say ODS GRAPHICS, I mean the new SG procedures (SGPLOT, SGPANEL, 
SGSCATTER), the Graph Template Language (GTL) with the SGRENDER procedure, and the new ODS Graphics 
Designer.  

And, as if the pictures and the new capabilities weren’t reason enough to check out ODS GRAPHICS, there’s the way 
that style template information now affects all graphics output – both traditional, device-based output and the new 
template-based output. If I start gushing about all the wonderful things about fonts and font rendering and the 16.7 
million colors…well, I’ll never get to end of the greatest hits. 

Don’t let this hit fall on deaf ears.  
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THE LONG AND WINDING ROAD: #8 UNDERSTANDING STYLE AND ODS RESULTS 

There are many different ways to affect the style of ODS output: 

 STYLE= option in the ODS statement 

 STYLESHEET= option in the ODS HTML statement 

 CSSSTYLE= option in the ODS HTML, ODS RTF, and ODS PDF statements (SAS 9.2) 

 STYLE= statement-level options for the PRINT, REPORT, and TABULATE procedures 

 ODS ESCAPECHAR statement and the {STYLE} function (SAS 9.2) 

 SAS style templates. 
 

Of course, first and foremost, you have to understand that for tabular output, the style information that you want to 
use must be supported by the ODS destination to which you route your procedure output. For example, the ODS 
LISTING destination does not use style information for tabular output. However, for graphical output, the ODS 
LISTING destination does support style information. 

USING THE STYLE= OPTION 

If you don’t know by now, the simple and quickest way to affect style is to use the STYLE= option on your ODS 
invocation statement: 

ods <dest> file='filename.ext' style=<style>; 

 

For graphical output, in addition to the above method, you can affect graphical output from SAS/GRAPH procedures 
for the LISTING destination by specifying: 

ods listing style=<style>; 

 

The list of available style templates is in the SASHELP.TMPLMST item store. In SAS Enterprise Guide, the list of 
style sheets is shown by the Style Wizard. In batch mode, you can display the list of available style templates by 
submitting this code: 

proc template; 

  list styles / store=sashelp.tmplmst; 

run; 

 

Display 26 shows a partial report of the available style templates from the PROC TEMPLATE step as shown in the 
Output window. 

 

Display 26. Partial List of Style Definitions Available For Use with ODS 
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USING CASCADING STYLESHEETS WITH ODS 

The use of the new CSSSTYLE= option with ODS was the topic of my paper entitled: ―CSSSTYLE: Stylish Output 
with ODS and SAS 9.2‖ (available at http://support.sas.com/resources/papers/proceedings09/014-2009.pdf). In 
addition, that paper also discussed the use of the STYLESHEET= option, which has always been available for ODS 
HTML and other HTML-based destinations. Cascading style sheets and style sheet technology is not owned by SAS. 
It is an industry standard for how web pages should use style specifications. For example, let’s say that you work for 
―The Purple Palace,‖ and the corporate style is that all posted tables and reports use purple for the table headings. 

The SASWEB style might be perfect for you to start with, since it only needs a few style properties changed to purple 
in order for your reports to comply with the standards. You do not want to make a style template, since your web 
reports need to go on the corporate Web site. But, you also use RTF and PDF result files for some of your reports. So 
you want to use the new CSSSTYLE= option to create a cascading style sheet that follows the corporate guidelines 
and affects RTF and PDF results in addition to the HTML results. With the STYLESHEET= option, you can make a 
copy of the SASWEB style template in CSS format. Then, you can edit the CSS version of SASWEB to change all  
instances of SASWEB blue (#6495ED) to the Purple Palace shade of purple. A changed version of such a CSS file, 
called SASWEB_PURPLE.CSS, is shown in Display 27. 

 

Display 27. Modified Cascading Style Sheet 

Then, if you use the changed CSS file, as shown in the code below, you get the results shown in Display 28. 

ods pdf file='.\use_cssstyle.pdf' cssstyle='.\sasweb_purple.css'; 

ods rtf file='.\use_cssstyle.rtf' cssstyle='.\sasweb_purple.css'; 

ods html(id=2) path='.' (url=none) file='use_cssstyle.html'  

               cssstyle='sasweb_purple.css'; 

  proc print data=sashelp.class(obs=3); 

  run; 

ods _all_ close; 
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Display 28. Results Files Using SASWEB_PURPLE.CSS STYLE PROPERTIES 

Companies use cascading style sheet (CSS) technology because it gives them a way to specify the same look and 
feel for their corporate Web site. For example, one or two CSS files could control the look and feel for a Web site 
composed of hundreds of linked web pages. This is not meant to be a comprehensive explanation of how CSS 
technology works. For that, the best resource is the W3C schools site, http://www.w3schools.com/css/, where you 
can learn about CSS technology from the folks who invented it. Not every browser supports the most current CSS 
standard, so you will need to design your CSS for HTML files keeping that fact in mind. ODS and SAS, however, use 
a limited subset of all of the possible CSS style properties, as described in the ODS documentation. It’s even possible 
that your company already has a CSS expert who can help you get started understanding your corporation’s CSS 
standards.  

USING THE STYLE= STATEMENT-LEVEL OPTIONS 

The PRINT, REPORT, and TABULATE procedures all support the STYLE= option both in the procedure statement 
and in the procedure’s action statements. This option overrides the style attribute information in SAS style templates. 
These three procedures—PRINT, REPORT and TABULATE—will handle the bulk of your reporting needs (if you are 
not using SAS/STAT procedures). Because these procedures provide a way to directly affect the style of your results, 
including the ability to perform traffic-lighting, it is worthwhile to talk about STYLE= options for these three 
procedures. Note that table templates (for procedures that use table templates) also support the STYLE= option, but 
that is a more advanced topic than what I want to discuss in this hit. 

The syntax for the STYLE= option is fairly similar for the PRINT and REPORT procedures, but the syntax for the 
TABULATE procedure is slightly different. In most statements for the PRINT and REPORT procedures, you specify 
(inside parentheses) the report area or location that you want to change. The general syntax model is: 

STATEMENT / style(<area>)={<attr1>=<value1> <attrn>=<valuen>}; 

 

The areas or report locations that you can specify for the REPORT and PRINT procedures varies a bit for the PRINT 
procedure versus the REPORT procedure. But there are some report areas, such as the HEADER area, that are the 
same. Some style options can appear on multiple statements. For example, for the REPORT procedure, the 
STYLE(HEADER) option can appear in the PROC REPORT statement or in the DEFINE statement. For the PRINT 
procedure, the option for the HEADER area can appear in the PROC PRINT statement or in the VAR statement. 

However, for the TABULATE procedure, the area that is affected by the STYLE= option is based on the statement 
where the option appears, so you do not need to specify an area or report location in parentheses. The general 
syntax model for the TABULATE procedure is: 

STATEMENT / style={<attr1>=<value1> <attrn>=<valuen>}; 

 

For all three procedures, you can also specify the STYLE= option on the procedure statement itself (without using a 
slash as the delimiter). Consider the code below and the corresponding output shown in Displays 29, 30, and 31. 
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ods html file='style08a.html'; 

ods rtf file='style08a.rtf'; 

ods pdf file='style08a.pdf'; 

 

PROC PRINT data=sashelp.class(obs=3) 

    style(header)={background=cx0000ff foreground=cxffffff font_face=Arial} 

    style(data)={background=yellow} 

    style(obsheader)={background=green foreground=white} 

    style(obs)={background=white foreground=green}; 

RUN; 

 

PROC REPORT data=sashelp.class(obs=3) nowd 

     style(header)={background=cx0000ff foreground=cxffffff font_face=Arial} 

     style(column)={background=yellow}; 

  define name / 'Name' 

    style(header)={background=green foreground=white} 

    style(column)={background=white foreground=green font_weight=bold}; 

RUN; 

 

PROC TABULATE data=sashelp.class 

     style={background=yellow}; 

  class age sex / style={background=cx0000ff foreground=cxffffff font_face=Arial}; 

  classlev age / style={background=cyan}; 

  classlev sex / style={background=white foreground=blue}; 

  table  

    sex all, 

    age all={label='Count' style={background=white vjust=b}} 

           *{style={background=purple foreground=white font_weight=bold}} 

     / box={label='Box Area' style={vjust=b background=green 

                                    foreground=white}}; 

  keylabel n=' ' 

           all='Total'; 

  keyword all / style=Header{background=pink}; 

RUN; 

 

ODS _all_ CLOSE; 

 

Display 29. HTML Output for the PRINT Procedure  

 

Display 30. HTML Output for the REPORT Procedure  
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Display 31. HTML Output for the TABULATE Procedure 

Although the colors are somewhat garish, you should be able to trace back from the output to the statement option 

that changed the output. For example, the PRINT procedure program shows that STYLE(OBSHEADER) changed the 

foreground color of the heading ―Obs‖ to white and the background color of that cell (and only that cell) to green. The 
STYLE(OBS) option changed the foreground color of the observation numbers to green and the background color to 

white. Similarly, if you look at the REPORT procedure output, you can see that all of the heading cells are white on 
blue as defined in the STYLE(HEADER) option in the PROC REPORT statement. However, the NAME column has 

white on green for the heading (set by the STYLE(HEADER) option in the DEFINE statement) and green on white for 

the name values (as set by the STYLE(COLUMN) option in the DEFINE statement).  

The TABULATE procedure output, on the other hand, shows many different changes, and you have to trace the 
changes back to the TABULATE statement on which the option appeared. For example, the header cells for the 
variables SEX and AGE have a background color of blue and a foreground color of white because of the STYLE 
options in the CLASS statement. The values of SEX and of AGE are each styled differently by the two CLASSLEV 
statements in the PROC TABULATE step.  

As exciting as this ability is, even more exciting is the ability to perform traffic-lighting as shown in Display 32 in 
ourput from the REPORT procedure.  

 

Display 32. HTML Output With Traffic-Lighting from the REPORT Procedure  

Notice how each SALES cell uses a different color background. A user-defined format was created to specify the 
background colors based on the SALES summary values. After the user-defined format is created, it must actually be 
used in the REPORT procedure code, as shown below. 
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proc format; 

   value tlite low -<750000 = 'light red' 

             750000 - 1200000 = 'light yellow' 

             1200000<- 2000000  = 'light green' 

             other = 'cx6495ED'; 

run; 

     

ods html file='Demo08_tlite.html' style=sasweb; 

ods rtf file='Demo08_tlite.rtf'; 

ods pdf file='Demo08_tlite.pdf'; 

proc report data=salesdata nowd style(summary)=Header; 

  column Region Subsidiary Product Sales; 

  define Region/ group center;  

  define Subsidiary / group; 

  define Product/ group 'Product' center; 

  define Sales/ sum 'Sales' f=comma16. style(column)={background=tlite.}; 

  break after Region / skip summarize dol dul; 

run; 

ods _all_ close; 

 

All three procedures support this method–a user-defined format–of performing traffic-lighting. The REPORT 
procedure supports a second method, the CALL DEFINE statement, which is described in the REPORT procedure 
documentation and in many of the user group papers about the REPORT procedure. My PharmaSUG tutorial entitled 
―Practically Perfect Presentations‖ (available at http://www.lexjansen.com/pharmasug/2007/hw/hw03.pdf) shows the 
use of the STYLE= option in a CALL DEFINE statement. 

You do not have to sing the blues (or do your traffic-lighting manually) if you learn to sing along with the the STYLE= 
option hit. 

Understanding How RGB Colors Are Specified 

Now it’s time for a side trip into the world of color. There are many ways to specify color for ODS style attributes. Not 
surprisingly, most of the methods that you can use with SAS/GRAPH options are also supported by ODS. This 
means that you have a wealth of information available about specifying colors for ODS styles. The bottom line, 
however, is that for the most control over your colors, you might want to learn how the RGB (Red/Green/Blue) 
hexadecimal specification for colors works. Almost all of the SAS style templates use RGB colors in the template, and 
it is very easy to understand what the RGB colors mean. 

RGB color names for ODS and SAS/GRAPH are of the form CXrrggbb, where 

 CX indicates an RGB color specification  

 rr is the red component  

 gg is the green component  

 bb is the blue component 

The components are specified as hexadecimal numbers in the range 00 through FF. These numbers correspond to  
decimal (base 10) numbers from 0 to 255. The hexadecimal values are the equivalent of percentages, based on the 
formula shown in Table 1. Therefore, a color specification of CX000000 means 0% red, 0% green, and 0% blue, or 
the absence of all color, which is black. The color CXFFFFFF means 100% red, 100% green, and 100% blue, or the 
presence of all colors, which is white. The color CX6495ED is a mix of almost 40% red, almost 60% green, and 
almost 100% blue. Table 1 shows hexadecimal values, with their corresponding decimal numbers and percentages. 

Hexadecimal Value Decimal Number Color Percent Formula 

FF 255 100% 255/255 = 1 

CC 204 80% 204/255 = .8 

99 153 60% 153/255 = .6 

66 102 40% 102/255 = .4 

33 51 20% 51/255=.2 

00 0 0% 0/255=0 

Table 1. Hexadecimal Numbers and Their Color Percentages 
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When you see a color specification such as CXCCCCFF, though, it is still hard to visualize exactly what color it 
corresponds to. Of course, you can use to a color picker application on the web or write a SAS program to convert 
hexadecimal values to colors. In that case, you can see how that particular color value (CXCCCCFF) is a lovely 
shade of light lavender, as shown in Display 33. 

 

Display 33. Partial Output Showing Color Mapping for RGB Hexadecimal Values 

Display 33 shows the partial output from a program included in the zip file of programs for this paper. You can even 
specify color names as familiar color names, like yellow, blue, pink, and so on. However, these color names are 
translated to their RGB hexadecimal codes by a table that is stored in the SAS registry. To see how color names map 
to hexadecimal values, submit the following REGISTRY procedure code: 

proc registry list startat="COLORNAMES"; run; 

Partial output from the PROC REGISTRY step (as written to the SAS log) is shown in Display 34. 

 

Display 34. Partial Output from the REGISTRY Procedure Showing RGB Hexadecimal Values for Color Names 

So although you could use the color names Chartreuse or CornflowerBlue, know that they are going to be mapped to 
CX7FFF00 and CX6495ED, respectively.  

USING THE ESCAPECHAR {STYLE} AND OTHER FUNCTIONS 

Sometimes, you need to insert superscripts or subscripts into your report output. Other times, you need to put a line 
feed or carriage return into a cell’s contents. Or, maybe you need to underline a particular piece of report output. All 
of these things are possible when you use the ODS ESCAPECHAR statement with the {STYLE} function. Consider 
the output shown in Display 35. It shows ODS HTML output that you do not normally get by default. For example, 
note the superscript in the title and the footnote. This was accomplished with the use of the ESCAPECHAR 
{SUPER} function as shown below. 

title 'Use ESCAPECHAR and {STYLE} ^{super 1}'; 

footnote j=l '^{super 1} The Footnote';  
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Display 35. ODS HTML Output Showing the Use of the ESCAPECHAR Function 

The overall look and feel of the output came from the use of the JOURNAL style (no interior table lines, except under 
the column headings). However, the two underlined headings came from using the TEXTDECORATION style 
attribute with the ODS ESCAPECHAR statement and the {STYLE} function. 

data class(keep=sex name_age ht_wt); 

  length name_age $50 ht_wt $50 namestr agestr htstr wtstr $15; 

  set sashelp.class (obs=3); 

  namestr = 'Name: '||left(name); 

  agestr = 'Age: '||put(age,2.0); 

  htstr = 'Height: '||put(height,4.1); 

  wtstr = 'Weight: '||put(weight,4.1); 

  name_age = catx('^{newline 1}',namestr,agestr); 

  ht_wt = catx('^{newline 1}',htstr,wtstr); 

run; 

 

ods html file='use_ESC_style.html' style=journal; 

ods rtf file='use_ESC_style.rtf' style=journal startpage=no;   

ods pdf file='use_ESC_style.pdf' style=journal startpage=no;   

 

ods escapechar='^'; 

 

proc report data=shoes nowd; 

  title 'Use ESCAPECHAR and {STYLE} ^{super 1}'; 

  column region sales,product; 

  define region / group  

         style(header)={font_face='Courier New'}; 

  define product / across '^{style[textdecoration=underline]Product Underlined}' 

         style(header)={font_weight=bold font_face='Courier New'}; 

  define sales / sum ' '; 

run; 
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footnote j=l '^{super 1} The Footnote'; 

proc report data=class nowd; 

  title; 

  column sex  

    ('^{style[textdecoration=underline]LineFeed in Var Value}' name_age ht_wt); 

  define sex / order; 

  define name_age / display 'Name and Age'; 

  define ht_wt / display 'Height and Weight'; 

run; 

 

ods _all_ close; 

 

Besides the superscript and the underlining, another interesting feature is the fact that the {NEWLINE} 
ESCAPECHAR function has been inserted into the NAME_AGE variable (a concatenation of the NAME and AGE 
variables) and the HT_WT variable (a concatenation of the HEIGHT and WEIGHT variables). These concatenated 
variables were created in a DATA step program before the PROC REPORT step. The {NEWLINE} function inserts a 
carriage return/line feed character into a text string, so that when ODS detects the presence of the {NEWLINE} 
function, it inserts the appropriate control into the result file for HTML, RTF, and PDF destinations. 

This is just the tip of the iceberg as far as what you can accomplish with the ODS ESCAPECHAR statement and the 
ability to affect the style of your output using these in-line formatting controls. 

USING SAS STYLE TEMPLATES 

SAS style templates might be listed last in this paper, but except for CSS stylesheets, they are the only way to affect 
your output from other procedures, not just the REPORT, PRINT, or TABULATE procedures. Since the advent of 
SAS 9.2, creating style templates has never been simpler. Let’s say that we are working for ―The Purple Palace‖ and 
need to create a style template so that no matter which procedure is used, the output looks the same as SASWEB 
output, except the header cells are purple instead of blue. Using the new CLASS statement, you do not have to worry 
about inheritance or tracing the values for the attributes in use. You only have to know which style element you want 
to change (in this case, the HEADER style element) in order to write your style template. 

ods path work.tmp(update) sasuser.templat(update) sashelp.tmplmst(read);  

proc template; 

  define style styles.purple; 

    parent=styles.sasweb; 

    class Header /     

       background=purple 

       foreground=white;  

  end; 

run; 

Then, once you use the new style template on your ODS destination statement, you can see in Display 36, that the 
headings are purple in all of the output from all of the procedures. (HTML output is shown, but RTF and PDF output 
would be the same.) Only the REG procedure output and partial UNIVARIATE procedure output are shown.. 
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Display 36. Partial HTML Output Showing the Use of the New Style Template 

The code that created the above display is shown below. 

ods html file='demo08_purple_style.html' style=styles.purple; 

ods rtf file='demo08_purple_style.rtf' style=styles.purple; 

ods pdf file='demo08_purple_style.pdf' style=styles.purple; 

   

proc freq data=sashelp.class; 

  tables sex; 

  label sex = 'Gender'; 

run; 

  

ods select fitstatistics parameterestimates; 

proc reg data=sashelp.class; 

  model age=height; 

run; 

 

ods select basicmeasures; 

proc univariate data=sashelp.class; 

  var height; 

run; 

 

ods _all_ close; 

 

With just a little bit of effort, you can design custom style templates for use with your reports. To help get you started, 
I recommend the ODS tip sheet on style templates that is available at  
http://support.sas.com/rnd/base/ods/scratch/styles-tips.pdf. (Note that the URL contains the lowercase letters ―RND‖ 
and not ―MD‖ after ―support.sas.com‖.) 
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IT’S NOW OR NEVER: #9 KNOWING WHEN TO USE THE TEMPLATE PROCEDURE 

The key to knowing when to use the TEMPLATE procedure is to understand 1) what you need to change in your 
output, 2) whether a template change will accomplish what you want, and 3) which template is the right template to 
change. 

ODS has four main types of templates: table templates, style templates, graph templates, and tagset templates. 
(These templates should not be confused with the type of SAS/GRAPH template that is used with the GREPLAY 
procedure.) Consider the output of the MEANS procedure. If you tell me that you want to make all of the heading cells 
in the MEANS procedure output purple, I would tell you that you could change that feature in a table template. 
However, the more appropriate place to change all heading cells to purple is in a style template. If you told me that 
you wanted to apply the DOLLARw.d format to the SUM and MEAN statistics from the MEANS procedure, then I 
would tell you that the most appropriate place to do that is in the table template, BASE.SUMMARY, which controls 
the formats used for the calculated statistics. It is a rare occasion that you need to change or alter a tagset template – 
unless you know that you need to modify the underlying markup language tags or you need to generate custom XML 
tags from a SAS procedure or process. 

However, if you need to accomplish traffic-lighting for MEANS procedure output, then that is a job for the 
CELLSTYLE-AS statement inside a table template. If you need to use an ordered list in HTML output instead of the 
standard <TABLE> tag, or you need to insert some custom Javascript into your HTML, then that might be a job for a 
tagset template. If you use TAGSETS.EXCELXP and you want to insert a line feed into a data cell, that is probably a 
job for the ODS ESCAPECHAR statement and not a template at all. In fact, just because you use the 
TAGSETS.EXCELXP or TAGSETS.MSOFFICE2K_X destinations to create XML or HTML output for Excel, you 
rarely need to alter a tagset template to work with those two destinations. Usually, you need to either use a changed 
style template or use the STYLE= option with the REPORT, PRINT, or TABULATE procedures. 

Graph template usage falls into two categories:  

1) modifying an existing graph template that is used by one of the SAS/STAT procedures to incorporate some 
graphical change that cannot be accomplished with a style template. For example, you might want to 
change the axis tick marks or add an inset box. 

2) generating your own custom graphical output using the Graph Template Language (GTL), which was 
introduced in SAS 9.2. 

For an introduction to the four main template types and an example of modifying each type of template, I recommend 
my 2009 SAS Global Forum paper, ―Tiptoe through the Templates‖ (available at 
http://support.sas.com/resources/papers/proceedings09/227-2009.pdf). For more information about table templates, 
look for papers by Kevin Smith and Phil Holland or refer to this tip sheet on table templates, 
http://support.sas.com/rnd/base/ods/scratch/table-tips.pdf, written by the ODS developers. If you need to modify 
tagset templates, then I call your attention to user group papers written by Eric Gebhart and Chevell Parker. Last, but 
not least, for more information about graph templates and GTL, look for papers by Sanjay Matange, Susan Schwarz, 
and Dan Heath, and for papers and books by Warren Kuhfeld. 

Because the TEMPLATE procedure has a separate syntax for each template type, my recommendation is to start 
slowly, but start now to learn how to use the TEMPLATE procedure. The TEMPLATE procedure gives you a way to 
interact with the infrastructure of the Output Delivery System, and there’s no time like the present to start learning 
how to make the TEMPLATE procedure work for you. 

WHAT’S NEW PUSSYCAT: #10 FINDING OUT NEW ODS FEATURES 

One of the best things about the Output Delivery System is innovation. New features of ODS are continually being 
developed, such as: 

 ODS LAYOUT statement 

 ODS DATA step Object syntax 

 ODS GRAPHICS support for SAS/STAT procedures (more procedures added every release) 

 ODS Graphics Designer 
 

The best places to find out about new features of ODS are to look at previous SAS Global Forum proceedings and  
the main ODS Web site at http://support.sas.com/rnd/base/index.html. Some of the ODS GRAPHICS papers can be 
found at http://support.sas.com/rnd/base/topics/statgraph/, and others can be found in SAS Global Forum and other 
user group papers. 
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CONCLUSION 

(See whether you can identify all the real song titles used in this conclusion. Answers are at the end of the paper.) 

I'm telling you now, that I'm a believer in ODS! And, all I really want to do here at the end of our road, is to get 
everybody talking about the good things in ODS.  

Now that you've got what it takes to sing the praises of ODS, I hope to hear you say, "I'll try something new!" I'm 
leaving it all up to you. 
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Answer: Hits Used in the Conclusion 

I'm Telling You Now by Freddie & The Dreamers (1965); I'm a Believer by The Monkees (1966); All I Really Want To 
Do by Cher (1965); The End Of Our Road by Gladys Knight & The Pips (1968); Everybody's Talkin' by Nilsson 
(1969); Good Thing by Paul Revere and the Raiders (1967); You Got What It Takes by The Dave Clark Five (1967); 
I'll Try Something New by Diana Ross & The Supremes (1969); I'm Leaving It (All) Up To You by Donny & Marie 
Osmond (1974) 
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