
 1

PharmaSUG2012 – Paper PO15

Automate Validation of CDISC ADaM Variable Label Compliance
Wayne Zhong, Octagon Research Solutions Inc.

ABSTRACT

A sometimes overlooked feature of the CDISC ADaM Implementation Guide is that it specifies label names for each
ADaM variable. To improve quality of delivery and reduce the tedious task of checking variable labels, this paper
presents techniques for producing a quick compliance report.

Details include how to check ADaM variables with placeholders like xx and *, and how to detect at the dataset

metadata level a few cases of ADaM non-compliance. The latest CDISC ADaM metadata can be stored in an EXCEL
spreadsheet, and easily updated with future ADaM label rules.

INTRODUCTION

The Clinical Data Interchange Standards Consortium (CDISC) publishes the Analysis Data Model (ADaM)
Implementation Guide (ADaMIG), a document that standardizes dataset structures and variables. This paper
primarily covers checking for the correct application of labels to variables specified in the ADaMIG, however the
following checks can be seamlessly included: correct variable type (ADaM variables only), variable name length (≤8),
variable label length (≤40), and variable length (≤200).

The ADaMIG specifies three types of variables: the simplest are completely defined like USUBJID and AGE, some
variables like RACEGRy and TRTxxP have placeholders (xx, y, or zz) for numeric values, and lastly variables like
*DT and *SDT can have any prefix. The last two types of variables require care to identify from dataset metadata and

check for label compliance.

METADATA

SAS® offers many ways to get a list of variable names and labels from a dataset. Suppose a quick check of all
analysis datasets in the library DERLIB is desired, the following code accomplishes this and Display 1 shows the
result. Some quick checks of variable name and label lengths using the LENGTH() function and variable length using
variable LENGTH can be added here.

 libname derlib ' your path here… ';

 data metadata;

 set sashelp.vcolumn;

 where libname='DERLIB' and memtype='DATA';

 keep memname name type length label varnum;

 run;

Display 1

ADaM Label Data

A repertoire of ADaMIG label information is needed, EXCEL is the presented method here however any SAS
readable file will do. Display 2 shows a sample of label information entered, please note that “…” was replaced with *
to avoid a quirk with EXCEL.

 2

Display 2

Calling the IMPORT procedure turns this spreadsheet into a SAS dataset. The addition of the suffix A to column
names allows easier joining later on.

 proc import datafile=' your excel file path here.xls '

 out=alabel replace dbms=xls;

 run;

LIKE OPERATOR

In order to compare dataset metadata against ADaM label data, ADaM variables must first be identified. The LIKE
operator found in the SQL procedure helps accomplish this. The LIKE operator recognizes two wildcard characters:
„_‟ which matches any character and „%‟ which matches any sequence of 0 or more characters , all other characters
must match that character. For example, “AL_” matches “ALP” but does not match “AL” or “ALPS”. “AL%” matches
“AL”, “ALP”, and “ALPS”.

Two source datasets, an SQL INNER JOIN using the LIKE operator, and the resulting dataset are presented below.
Some variables are not shown.

 Dataset: METADATA Dataset: ALABEL

 Variable: (NAME) Variable: (NAMEA)

 Values: USUBJID Values: USUBJID

 TRT01P TRTxxP

 TRTACP *DT

 TRTSDT *SDT

 proc sql;

 create table check1 as

 select a.*, b.*, length(b.namea) as len from

 metadata a inner join alabel b on

 a.name like translate(b.namea,'___%','xyz*')

 order by memname, varnum, len;

 quit;

 Dataset: CHECK1

 Variable: (NAME) (NAMEA) (LEN)

 Values: TRT01P TRTxxP 6

 TRTACP TRTxxP 6

 TRTSDT *DT 3

 TRTSDT *SDT 4

 USUBJID USUBJID 7

In the SQL procedure, the TRANSLATE function is used to convert ADaMIG wildcard characters “ xyz* ” to either “_”
or “%” LIKE operator wildcards. Another variable LEN is created, its purpose is evident from dataset CHECK1: joining
using the LIKE operator with wildcards will cause a many-to-many Cartesian join so the length LEN of the ADaM
name variable helps determine which match is best: the longest.

While no requirements are made for the prefix for *DT and the like, the same is not true for variables such as TRxxP
where xx is required to be two integers so we see that TRACP needs to be flagged as an non-ADaM variable. This is
visited in the next section.

 3

CHECKING INTEGERS

A reduced CHECK1 dataset is used for the example in this section. As a reminder, the variable LABELA holds the
ADaMIG specified labels. In the DATA step, first the best match from the previous step is kept, then if any of (“xx” “y”
“zz”) is found in the ADaM name, the correponding characters in the variable NAME receives the COMPRESS
function to remove digits. If the result is not missing, then the variable is determined to be not ADaM. If the result is
missing, then those corresponding characters (now determined to be numbers) are added to the ADaMIG label using
the TRANWRD function.

 Dataset: CHECK1

 Variable: (NAME) (NAMEA) (LABELA)

 Values: TRT01P TRTxxP Planned Treatment for Period xx

 TRTACP TRTxxP Planned Treatment for Period xx

 TR01PQ2 TRxxPQy Planned Pooled Treatment y for Period xx

 data check2;

 set check1;

 by memname name len;

 if last.name;

 if index(namea,'xx')>0 then do;

 if compress(substr(name,index(namea,'xx'),2),,'D') ne '' then delete;

 else labela=tranwrd(labela,' xx',' '||substr(name,index(namea,'xx'),2));

 end;

 if index(namea,'y')>0 then do;

 if compress(substr(name,index(namea,'y'),1),,'D') ne '' then delete;

 else labela=tranwrd(labela,' y',' '||substr(name,index(namea,'y'),1));

 end;

 if index(namea,'zz')>0 then do;

 if compress(substr(name,index(namea,'zz'),2),,'D') ne '' then delete;

 else labela=tranwrd(labela,' zz',' '||substr(name,index(namea,'zz'),2));

 end;

 run;

 Dataset: CHECK2

 Variable: (NAME) (NAMEA) (LABELA)

 Values: TRT01P TRTxxP Planned Treatment for Period 01

 TR01PQ2 TRxxPQy Planned Pooled Treatment 2 for Period 01

Rather than deleting non-ADaM variables, it may be preferable to output them separately in a report. The new ADaM
labels are ready for a direct comparison with metadata labels except for…

WILDCARD LABELS

An opportunity to check labels such as Date of * and Start Date of * existed in the SQL step earlier in the paper but
was omitted for clarity. The LIKE operator is used again and this time on LABEL and LABELA to check all metadata
labels for ADaM compliance.

 proc sql;

 create table check3 as

 select *, case

 when label like translate(labela,'%','*') then 'Y'

 else 'N'

 end as compliant from check2;

 quit;

A check for variable type compliance (Char or Num) can be added either here or in the previous step. As a challenge,
this step can be eliminated altogether and folded into the two previous steps. For non-compliant labels as well as any
other error check findings, an output XLS file or a simple print can be produced.

 4

CONCLUSION

With the techniques presented in this paper, ADaM label checking can be done with a few clicks. Label checking is
just one of many generic checks that can be implemented to improve the quality of ADaM datasets, the code shown
can be run independantly but can also become a macro as a part of a larger suite of ADaM compliance and quality
assurance tools.

CONTACT INFORMATION:

Your comments and questions are valued. Contact the author at:

Author Name: Wayne Zhong
Company: Octagon Research Solutions Inc.
Address: 585 East Swedesford Road, Wayne, PA
Work Phone: (610) 535-6500 x5535
Email: wzhong@octagonresearch.com
Web: www.octagonresearch.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
registered trademarks or trademarks of their respective companies.

