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ABSTRACT 
In the clinical trials computing environment, data sets come in a variety of shapes and sizes. From laboratory data to 
electrocardiogram (ECG) measurements, transforming raw data to analysis-ready SAS® data sets is often 
complicated. New challenges arise when we receive data collected from quality of life (QOL) questionnaires. With 
these data we often compute scores that measure underlying scales – such as mental or social well-being. There are 
many different types of questionnaires, and it is advantageous to have an arsenal of programming tools when 
calculating the appropriate scores. In this article, we present a mock questionnaire and common techniques to 
achieve appropriate calculations. Depending on the input data structure, we illustrate how to calculate scores using 
various techniques including ARRAY processing, PROC SQL, and simple SAS functions. The techniques we present 
offer a good overview of basic data step programming and SAS procedures that will educate SAS users at all levels.   
 
INTRODUCTION 
Analyzing QOL questionnaire data is commonplace in clinical trials research. The results give investigators a 
quantitative assessment of a patient’s well-being on multiple dimensions. We estimate these dimensions or scales by 
performing calculations on the survey response items, and each questionnaire is designed with particular rules for 
scoring. The variation across each questionnaire and the methods for arriving at the final scores offers a unique 
challenge for SAS programmers.  
In this article, we present common ways of computing scores from a mock questionnaire. These techniques 
developed from our experience in computing scores on some of the more popular QOL questionnaires. In our 
experience, it isn’t the actually scoring that provides the challenge, but the actual imputation methods outlined for 
each questionnaire. Therefore we show how to perform a mean imputation for missing values, which is a standard 
imputation method across questionnaires. Depending on the input data structure, we illustrate how to compute a 
PHYSICAL, MENTAL, and TOTAL score using a variety of SAS programming techniques depending on the input 
data structure. In the first scenario we demonstrate techniques for tackling a vertically structured data set. We use 
PROC SQL to reverse score, find the number of missing values, and calculate the mean response on the non-
missing values. We complete the calculations in a data step in which we impute and calculate the PHYSICAL, 
MENTAL, and TOTAL scores. In the second scenario we illustrate how to arrive at the same calculations when the 
input data set is horizontal using ARRAY processing and SAS functions. 
 
MOCK QUESTIONNAIRE 
Below is the Welch-Rhee Headache Indicator (WRHIND), which is a mock questionnaire that captures data 
measuring physical and mental well-being. The physical and mental scores are calculated by summing across items 
1, 4, 6, 8, 10 and 2, 3, 5, 7, 9 respectively. A mean imputation is performed prior to summation if the number of non-
missing values is greater than two in each scale. Higher numbers indicate poor QOL, and items 3, 8, and 10 are 
reverse scored to keep the ordinal direction the same as the remaining items. 
 

Question 1 = Strongly
Disagree 

2 = Disagree
 

3 = Neutral 4 = Agree 5 = Strongly 
Agree 

1. My headaches have gotten worse 
with age. 

     

2. My headaches interfere with my 
abilities to socialize with others. 

     

3. I tend to worry less because of my 
reduced number of headaches. 

     

4. My headaches are more severe in 
the mornings. 

     

5. I’m less willing to speak in groups 
because of my headaches. 
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6. My allergies adversely affect my 
headaches. 

     

7. Life seems more difficult because of 
my headaches. 

     

8. The frequency of headaches decline 
the more I exercise. 

     

9. My headaches affect my self-
confidence. 

     

10. Prescription pain medication 
relieves my headaches. 

     

 
Table 1. Mock headache questionnaire 

 
COMPUTING THE SCORES 
 
VERTICAL STRUCTURE  
 
IMPUTE BY MEAN SUBSTITUTION 
In this scenario we receive data in a vertical structure. Below is a snapshot (n = 10) of the SAS data set (WRHIND) 
keyed from the WRHIND: 
 
 

Questionnaire 
Item 

Subject 
ID 

Treatment 
Group 

(Numeric) 
Questionnaire 

Response 

P1 001850 2 2 

M2 001850 2 . 

M3 001850 2 2 

P4 001850 2 1 

M5 001850 2 3 

P6 001850 2 3 

M7 001850 2 4 

P8 001850 2 2 

M9 001850 2 4 

P10 001850 2 3 

 
Output 1. Vertically structured data set 

 
For each questionnaire item, P denotes those questions related to physical attributes; whereas, M denotes those for 
mental. 
 
The first step prior to summation is to reverse score items 3, 8, and 10 and calculate the mean on the non-missing 
values per scale. Here we use PROC SQL to calculate the number of missing values, reverse score, and mean of 
coded values per subject ID and type of scale: 
 
   *IMPUTATION METHOD 1 - CALCULATE MEAN OF RECODED VARIABLE, IMPUTE, THEN SUM; 
   PROC SQL noprint; 
     create table getmean as 
     select *,  
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     /*CREATE GROUPING FOR TWO CONSTRUCTS*/ 
     case  
       when index(quesc,'P') then 'PHYS' 
       when index(quesc,'M') then 'MENT' 
       else '' 
     end  
     as type, 
 
     /*GET NUMBER OF MISSINGS PER CONSTRUCT*/ 
     nmiss(respn) as missresp, 
 
     /*REVERSE SCORE ITEMS*/ 
     case  
       when quesc in ('P8' 'P10' 'M3') then 6 - respn 
       else respn 
     end  
     as r_respn,  
 
     /*GET MEAN OF RECODED VARIABLE*/ 
     mean(calculated r_respn) as meanresp 
 
     from wrhind 
     group by id, type 
     order by id, type 
     ; 
   QUIT; 
 
OUTPUT 
Here is a snapshot of the resulting output data set (n = 5) from PROC SQL: 
 

Questionnaire 
Item 

Subject 
ID 

Treatment 
Group 

(Numeric) 
Questionnaire 

Response Scale 

Number 
of 

Missings

Reversed 
Scored 

Item 
Mean 

Response

M2 001850 2  MENT 1  3.75 

M3 001850 2 2 MENT 1 4 3.75 

M5 001850 2 3 MENT 1 3 3.75 

M7 001850 2 4 MENT 1 4 3.75 

M9 001850 2 4 MENT 1 4 3.75 

 
Output 2. Output from PROC SQL 

 
Now we have all the necessary pieces to calculate the PHYSICAL, MENTAL and TOTAL scores. We do this in a data 
step by using RETAIN and summation. 
 
   DATA vscore1; 
     set getmean; 
     by id type; 
 
     retain phys ment; 
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     *IF NUMBER OF MISSINGS < 3 THEN IMPUTE; 
     if      missing(r_respn) and missresp < 3  then r_respn = meanresp; 
     else if missing(r_respn) and missresp >= 3 then r_respn = .; 
 
     if first.id then do;  
       phys = .; 
       ment = .; 
     end; 
 
     if index(quesc,'P') and not missing(r_respn) then phys = sum(phys, r_respn); 
     if index(quesc,'M') and not missing(r_respn) then ment = sum(ment, r_respn); 
 
     if last.id then do; 
       if nmiss(phys, ment) = 0 then total = sum(of phys, ment); 
       output; 
     end; 
 
     keep id phys ment total trtn; 
 
   RUN; 
 

OUTPUT 
 
First five patients: 

Subject 
ID 

Treatment 
Group 

(Numeric) 
Physical 

Score 
Mental 
Score 

Total 
Score

001651 1 13.75 10.00 23.75 

001850 2 13.00 18.75 31.75 

002240 1 15.00 14.00 29.00 

002244 1 13.00 5.00 18.00 

002746 1 15.00 15.00 30.00 

 
Output 3. Output for vertical data set summary 

 
PROC MEANS or PROC SUMMARY similarly calculates the means on the non-missing values prior to the data step. 
Consequently we merge on to VSCORE1.  
 
   PROC MEANS data = premeans noprint; 
     var respn; 
     class id type; 
     types id*type; 
     output out = getmean_ n     = n 
                           mean  = mean 
                           nmiss = nmiss; 
   RUN; 
 
We prefer PROC SQL because the PROC MEANS/SUMMARY method requires we create the TYPE variable and 
perform the reverse scoring in a previous data step. PROC SQL allows us to calculate all in one step. 
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IMPUTE BY ADJUSTING COMPUTED SCORE 
In the above example we compute the mean of the non-missing values and substitute its value for the missing values. 
Alternatively we arrive at the same summation by modifying the resulting computed score. This allows us to 
supersede using a SAS PROC to compute the mean.  
 
Let m = number of missing values and n = number of non-missing values: 

ܧܴܱܥܵ ൌ  ሺݔଵ ൅ ଶݔ ൅ ڮ ൅ ௡ሻݔ ൅ ሺ݉ሻ ሺ௫భା௫మାڮା௫೙

௡
ሻ . 

 

 
This (above) is the mean substitution method and equates to 

ܧܴܱܥܵ ൌ  ௡ሺ௫భା௫మାڮା௫೙ሻ
௡

൅ ሺ݉ሻ ሺ௫భା௫మାڮା௫೙

௡
ሻ. 

 

Substituting ݔ we have 

൅ ܧܴܱܥܵݔ݉ ൌ ݔ݊ 
 

 

ܧܴܱܥܵ ൌ  ሺ௡ା௠ሻ
௡

Simple algebra yields 
ሺݔଵ ൅ ଶݔ ൅ ڮ ൅ ௡ሻݔ

௡

. 
 
Therefore, calculating the mean value and imputing the missing values is equivalent to adding up the non-missing 
values and multiplying by ሺ௡ା௠ሻ. For example, suppose one patient has values 1, ., 3, ., 5. Using the mean imputation 
method we would calculate the mean of the non-missing values (ݔ ൌ 3) and SCORE = 1 + 3 + 3 + 3 + 5 = (1+3+5) + 
2(3) = 15. Using the derivation above we use  

ܧܴܱܥܵ ൌ  
3 ൅ 2

3
ሺ1 ൅ 3 ൅ 5ሻ ൌ   

5
3

ሺ9ሻ ൌ 15 

 
e illustrate this approach in the following data step: 

  *IMPUTATION METHOD 2 - ADJUST SUMMATION AT THE END; 

   retain phys ment p_nonmis m_nonmis p_miss m_miss; 

   if first.id then do; 
   = .; 

   if index(quesc,'P') then do; 

     *REVERSE SCORE; 
spn) and quesc in ('P8' 'P10') then r_respp = 6 - respn;  

     if not missing(r_respp) then do; 

, r_respp); 

_miss + 1; 

W
 
 
   PROC SORT data = wrhind; by id; 
   DATA vscore2; 
     set wrhind; 
     by id; 
 
  
 
  
       phys     = .; ment  
       p_nonmis = 0; m_nonmis = 0; 
       p_miss  = 0;  m_miss   = 0; 
     end; 
 
  
 
  
       if not missing(re
       else                                                 r_respp = respn; 
 
  
         p_nonmis + 1; 
         phys = sum(phys
       end; 
       else p
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     end; 

   else if index(quesc,'M') then do; 

     *REVERSE SCORE; 
spn) and quesc in ('M3') then r_respm = 6 - respn; 

     if not missing(r_respm) then do; 

, r_respm); 

_miss + 1; 

   end; 

   if last.id then do; 

     *ADJUST IF NON-MISSINGS > 2; 
p_nonmis + p_miss) / p_nonmis) * phys;  

     if nmiss(phys, ment) = 0 then total = sum(of phys, ment); 

   keep id phys ment total trtn; 

 RUN; 

UTPUT 

rst five patients 

 
  
 
  
       if not missing(re
       else                                           r_respm = respn; 
 
  
         m_nonmis + 1; 
         ment = sum(ment
       end; 
       else m
 
  
 
  
 
  
       if p_nonmis > 2 then phys = ((
       if m_nonmis > 2 then ment = ((m_nonmis + m_miss) / m_nonmis) * ment;  
 
  
       output; 
     end; 
 
  
 
  
 
O
 
Fi
 

Treatment 
Subject 
ID 

Group Physical Mental Total 
(Numeric) Score Score Score

001651 1 13.75 10.00 23.75 

001850 2 13.00 18.75 31.75 

002240 1 15.00 14.00 29.00 

002244 1 13.00 5.00 18.00 

002746 1 15.00 15.00 30.00 

 
Output 4. Output for vertical data se ummary (adjusted score method) 

 

ORIZONTAL STRUCTURE 

RRAY PROCESSING 

ow suppose we receive our input data set in the following structure (first five patients) 

t s

H
 
A
 
N
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Treatment 
Group 

Subject ID (Numeric) P1 P4 P6 P8 P10 M2 M3 M5 M7 M9 

001651 1 . 3 3 4 3 1 1 1 1 2 

001850 2 2 1 3 2 3 . 2 3 4 4 

002240 1 2 2 3 1 3 2 1 2 2 3 

002244 1 3 2 1 1 4 . . 3 . 2 

002746 1 4 . 1 2 . . 2 . 2 3 

 
Output 5. Horizontally structured data set 

 
pon transposing these data, we use the same methods described above. We arrive at the same calculations with 

  *ARRAY APPROACH; 

 

   array pvars (5) p1 p4 p6 p8 p10;  

     *REVERSE SCORE; 
vars{i})) in ('P8' 'P10') and not missing(pvars{i}) then     

     phys     = sum (of pvars(*));  

     *REVERSE SCORE; 
vars{i})) in ('M3') and not missing(mvars{i}) then mvars{i} =  

     ment     = sum (of mvars(*));  

   end; 

   *IF NUMBER OF MISSINGS < 3 THEN ADJUST; 
miss) / p_nonmis) * phys; 

   if nmiss(phys, ment) = 0 then total = sum(phys, ment); 

   keep id phys ment total; 

 RUN; 

U
ARRAY processing without modifying the data structure: 
 
 
   DATA hscore1; 
     set t_wrhind;
 
  
     array mvars (5) m2 m3 m5 m7 m9; 
     do i = 1 to 5; 
 
  
       if upcase(vname(p
       pvars{i} = 6 - pvars{i}; 
 
  
       p_miss   = nmiss(of pvars(*)); 
       p_nonmis = n(of pvars(*)); 
 
  
       if upcase(vname(m
       6 - mvars{i}; 
 
  
       m_miss   = nmiss(of mvars(*)); 
       m_nonmis = n(of mvars(*));  
 
  
 
  
     if p_miss < 3 then phys = ((p_nonmis + p_
     if m_miss < 3 then ment = ((m_nonmis + m_miss) / m_nonmis) * ment; 
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SAS FUNCTIONS – NO ARRAYS 

 *SAS FUNCTION APPROACH; 

 

   *REVERSE SCORE; 
)  then p8  = 6 - p8; 

   phys = sum(of p1, p4, p6, p8, p10); 

   *GET NUMBER OF MISSINGS; 
 p8, p10); 

   *GET NUMBER OF NON-MISSINGS; 
10); 

   if p_miss < 3 then phys = ((p_nonmis + p_miss) / p_nonmis) * phys; 

   if nmiss(phys, ment) = 0 then total = sum(phys, ment); 

   keep id phys ment total trtn; 

 RUN; 

ENERALIZED METHOD 

 practice, QOL questionnaires may have more than two scales of interest. It is often necessary to generalize the 

  %macro Score(Items  =, 

   %*GET NUMBER OF ITEMS; 

can(&Items,%eval(&INum + 1)); 

 + 1); 
m + 1); 

   %put; 
MBER OF ITEMS: &INum; 

 
  
   DATA hscore2; 
     set t_wrhind;
 
  
     if not missing(p8
     if not missing(p10) then p10 = 6 - p10; 
     if not missing(m3)  then m3  = 6 - m3; 
 
  
     ment = sum(of m2, m3, m5, m7, m9); 
 
  
     p_miss = nmiss(p1, p4, p6,
     m_miss = nmiss(m2, m3, m5, m7, m9); 
 
  
     p_nonmis = n(p1, p4, p6, p8, p
     m_nonmis = n(m2, m3, m5, m7, m9); 
 
  
     if m_miss < 3 then ment = ((m_nonmis + m_miss) / m_nonmis) * ment; 
 
  
 
  
 
  
 
G
 
In
code to expect more than two scales. The SAS macro language provides ways of making programs more flexible. In 
the following example, we account for more scales, and also add a parameter for an imputation cutoff. For all 
examples above, we use a 50% cutoff.  For brevity we build a macro around the ‘SAS Function’ example. Note we 
transpose the data since the original structure is vertical: 
 
 
             Scale  =, 
             Cutoff =); 
 
  
     %let INum = 0; 
     %let Scroll = %s
     %do %while(&Scroll ne); 
       %let INum = %eval(&INum
       %let Scroll = %scan(&Items,&INu
     %end; 
 
  
     %put NU
     %put; 
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     &Scale.num = &INum; 

   %*MAKE COMMA DELIMITED FOR NMISS FUNCTION; 

INum; 
r(,)%scan(&Items,&i); 

   %let List = %substr(&List,2); %*STRIP OFF LEADING COMMA; 

   &Scale = sum(of &Items); 

   *GET NUMBER OF MISSINGS; 
 

   *GET NUMBER OF NON-MISSINGS; 

   %*ADJUST SCORE IF IMPUTATION NECESSARY; 
) then &Scale = ((&Scale.nms +   

 %mend; 

 *SAS FUNCTION APPROACH - MACROTIZED; 

 

   *REVERSE SCORE; 
)  then p8  = 6 - p8; 

   %Score(Items  = p1 p4 p6 p8 p10,  

  %Score(Items  = m2 m3 m5 m7 m9,  

   %Score(Items  = p6 p8 m2 m3 m5 m7 m9,  

   if nmiss(phys, ment) = 0 then total = sum(phys, ment); 

 RUN; 

tice we apply reverse scoring and compute the totals outside of the macro. In addition, we derive a new scale 

 
  
     %let List = ; 
     %do i = 1 %to &
       %let List = &List%st
     %end; 
 
  
 
  
 
  
     &Scale.ms  = nmiss(&List);
 
  
     &Scale.nms = n(&List); 
 
  
     if &Scale.ms <= %sysevalf(&Cutoff * &INum
     &Scale.ms) / &Scale.nms) * &Scale; 
 
  
 
  
   DATA hscore3; 
     set t_wrhind;
 
  
     if not missing(p8
     if not missing(p10) then p10 = 6 - p10; 
     if not missing(m3)  then m3  = 6 - m3; 
 
  
            Scale  = phys, 
            Cutoff = 0.5); 
  
   
            Scale  = ment, 
            Cutoff = 0.5); 
 
  
            Scale  = mix, 
            Cutoff = 0.2); 
 
  
 
  
 
No
called MIX in which we combine both physical and mental attributes.  
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CONCLUSIONS 
 
As this article illustrates, the SAS system provides many ways to derive summed scores for QOL questionnaires. 
How to attack the problem is a question of preference. PROC SQL or RETAIN in a data step are useful when the 
data set is vertically structured. Conversely, if one favors a horizontal structure (or receives a horizontal data set), 
ARRAYs or SAS functions are available. For generalizing methods, macro processing provides flexibility in 
automating iterative steps. In conclusion, a variety of approaches are available with the many SAS tools at our 
disposal. 
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