
PharmaSUG 2012 – Paper DG12

- 1 -

Is the Legend in your SAS/Graph® Output Still Telling the Right Story?
Alice M. Cheng, South San Francisco, CA

Justina Flavin, SimulStat Inc., San Diego, CA

ABSTRACT

In clinical studies, researchers are often interested in the effect of treatment over time for multiple treatments or
dosing groups. Usually, in a graphical report, the measurement of treatment effect is on the vertical axis and a
second factor, such as time or visit, on the horizontal axis. Multiple lines are displayed in the same figure; each line
represents a third factor, such as treatment or dosing group. It is critical that the line appearance (color, symbol and
style) are consistent throughout the entire clinical report, as well as, across clinical reports from related studies.

Flavin and Carpenter (2004) showed that the GPLOT procedure, by default, did not guarantee consistency in line
appearances. They provided macro and non-macro solutions to this problem. With the introduction of Statistical
Graphics (SG) in SAS® v9.3, there are multiple approaches to resolve this problem. In this paper, the authors cover
the following topics:

• The Nature of SGPLOT (How are Line Attributes Assigned?)

• Re-visit the Line Inconsistency Problem by means of SGPLOT Procedure

• 5 Solutions to Resolve Line Inconsistency Issues

• Range Attribute Map

Note that this is a revised edition of the WUSS 2011 paper of the same title; however, the content of this paper has
been slightly modified. Detailed discussion of the SGPANEL procedure has been eliminated; more details on
attribute maps have been provided.

KEYWORDS

Legend, SGPLOT, Graph Template Language (GTL), Index option, Attribute Maps

INTRODUCTION

In the analysis of clinical data, often times only a subset of data is required. For instance, a treatment group may be
excluded from an exploratory analysis. Since SAS assigns line attributes (line color, symbol and style) based on the
available data, a subset of the original data may result in inconsistency in the line appearance among treatment
groups. This can cause confusion and make the graphic output difficult to interpret. In this paper, the authors
illustrate 5 approaches to resolve this line inconsistency issue.

THE NATURE OF SGPLOT (HOW ARE LINE ATTRIBUTES ASSIGNED?)
To understand how line attributes are assigned, consider Figure 1A: Average Score over Time for 4 Treatments:
Placebo, Drug A, Drug B and Drug C. The result of each treatment is displayed as a line in the graph.

Figure 1A: Average Scores of 4 Treatments are displayed according to the input DATA order in SGPLOT.

Based on the legend, the

order of Treatment Groups is

based on the order of group

variable (TRT) in the input

data DRUG. This also

affects how treatment groups

are associated with Line

Styles.

In GPLOT, the default order

is ASCENDING order of the

internal values of the group

variable; in SGPLOT (SAS

v9.2) the default is the order

of group values in the INPUT

DATA.

2

Code for Figure 1A: All 4 Treatments with Line Attributes as Defined in STYLES.MYSTYLE

--- Read in source data. ---;

--- Note that in input dataset DRUG, the order of treatments is: ---;

--- Placebo, Drug A, Drug B and Drug C. ---;

data DRUG;

 input TRT & $7. MONTH : 2. AVG_SCORE : 3. @@;

 label TRT=’Treatment:’

 MONTH=’Month’

 AVG_SCORE=’Average Score’;

 datalines;
 Placebo 1 10 Placebo 2 15 Placebo 3 18 Placebo 4 20 Placebo 5 22 Placebo 6 24

 Drug A 1 30 Drug A 2 40 Drug A 3 60 Drug A 4 80 Drug A 5 93 Drug A 6 100

 Drug B 1 20 Drug B 2 30 Drug B 3 45 Drug B 4 70 Drug B 5 80 Drug B 6 90

 Drug C 1 25 Drug C 2 30 Drug C 3 35 Drug C 4 55 Drug C 5 70 Drug C 6 80

 ;

 run;

 --- Define Style STYLES.MYSTYLE. ---;

 proc template;

 define style STYLES.MYSTYLE;
 parent=STYLES.DEFAULT; *- STYLES.MYSTYLE is based on STYLES.DEFAULT, -*;

 - with some changes specified. -;

 --- Re-define Styles for Line Attributes. ---;

 style GraphData1 from GraphData1/linestyle=1 contrastcolor=red

 markersymbol='circle'; *- Line Attributes for 1st Treatment -*;

 style GraphData2 from GraphData2/linestyle=2 contrastcolor=blue

 markersymbol='square'; *- Line Attributes for 2nd Treatment -*;

 style GraphData3 from GraphData3/linestyle=3 contrastcolor=green

 markersymbol='diamond'; *- Line Attributes for 3
rd
 Treatment. -*;

 style GraphData4 from GraphData4/linestyle=4 contrastcolor=orange

 markersymbol='circlefilled'; *- Line Attribute for 4
th
 Treatment. -*/

 class GraphDataDefault/linethickness=4px;

 --- Redefine other Styles to make the graph more readable. ---;

 class GraphFonts / 'GraphLabelFont'=("Arial", 18pt, bold)

 'GraphValueFont'=("Arial", 15pt, bold)

 'GraphTitleFont'=("Arial", 25pt, bold);

 style graphbackground from graphbackground / color=_undef_;

 end; run;

 ods listing style=STYLES.MYSTYLE; *--- Use STYLES.MYSTYLE for the plot. ---*;

 title 'Score Over Time by Treatment';

 proc sgplot data=DRUG;

 series y=AVG_SCORE x=MONTH / group=TRT markers;

 keylegend/noborder title='Treatment: ';run;

SAS introduces SG procedures in SAS v9.2. With these SG procedures, SYMBOLn statements in the GPLOT
procedure are no longer relevant. One way to define line attributes is through the use of style GraphDatan from
GraphDatan statements within PROC TEMPLATE. In addition, the association of line attributes with treatment
groups in SG procedures differs from those in traditional SAS/GRAPH procedures. For the GPLOT procedure, the
association of a group variable with SYMBOLn statements is based on the internal values of the group variable in
ascending order. In other words, the group with the lowest internal values is associated line attributes for SYMBOL1;
second lowest is associated with SYMBOL2, etc. With SAS v9.2, the order of treatments in the SGPLOT procedure
is based on the order of the treatments listed in the input dataset. With SAS v9.3, one can use the following
statement to ensure that the treatments are displayed in ascending order.

 series y=AVG_SCORE x=MONTH / group=TRT grouporder=ascending markers;

GROUP=variable and GROUPORDER = ascending | descending| data options in the SERIES statement specify
the ordering of lines based on the value of the group variable. Since this feature is not available prior to SAS v9.3,
SAS v9.2 users would have to sort the data based on the internal values of the group variables. It is advisable to
explicitly state the value for GROUPORDER options. To be consistent with the GPLOT default results, the authors
have sorted the data in ascending order of the variable TRT and produced Figure 1B.

3

Code for Figure 1B: Sort the data by Treatment Group. Then use SGPLOT procedure.

--- Sort the data by treatment group variable (TRT) so that lines are displayed ---;

--- by its internal values, instead of its order in the input dataset. ---;

 proc sort data=DRUG out=DRUG_BY_TRT;

 by TRT;

 run;

 --- Produce Figure 1B based on the order of the internal value of TRT. ---;

 ods listing style=STYLES.MYSTYLE;

 title 'Score Over Time by Treatment';

 proc sgplot data=DRUG_BY_TRT;

 series y=AVG_SCORE x=MONTH / group=TRT markers;

 keylegend/noborder title='Treatment: ';

 run;

 Figure 1B: After sorting by the group variable TRT, the order of treatments in the

legend and the line attributes have been changed.

After sorting by group variable TRT, the default order of DATA is the same as the ASCENDING order of treatments,
which matches the default order of PROC GPLOT.

THE PROBLEM

In the analysis of clinical data, researchers are often interested in only a subset of the data. What will happen to the
SGPLOT output if one treatment, Drug B, is excluded from analysis? In Figure 2, Drug B has been excluded. Note
without Drug B, Drug A still has the lowest internal value, namely, ‘Drug A’. Hence, the line attributes for Drug A
remain intact. However, Drug C and Placebo, having the second and third lowest internal values, take on the second
and third line attributes, instead of the third and fourth line attributes as they did in the full analysis. Inconsistent line
attributes are confusing and misleading. It makes interpretation of graphic results difficult as illustrated in Figure 2
below.

The order here

reflects the internal

values of the group

valuable, TRT. The

line attributes are

assigned based on

this order.

4

Figure 2: The same line inconsistency issues in the GPLOT procedure

 now re-appears in the output for SGPLOT procedure when Drug B is excluded.

Code for Figure 2: SGPLOT procedure

 --- Subset data ordered by TRT to exclude Drug B. ---;

 Data DRUG_noB;

 set DRUG_BY_TRT (where=(TRT ne ‘Drug B’));

 run;

 --- Produce Figure 2 without Drug B. ---;

 --- Order is still based on the internal values of TRT. ---;

 ods listing style=STYLES.MYSTYLE;

 title 'Score Over Time by Treatment';

 proc sgplot data=DRUG_noB;

 series y=AVG_SCORE x=MONTH / group=TRT markers;

 keylegend/noborder title='Treatment: ';

 run;

Flavin and Carpenter (2004) addressed this issue with the GPLOT procedure. They provided macro and non-macro
solutions to the line inconsistency problem. So will the same solutions for the GPLOT procedure be applicable to the
problem in the SGPLOT procedure?

THE SOLUTIONS

5 solutions are provided below. The first 2 are analogous to the solutions suggested by Flavin and Carpenter (2004)
to resolve this issue in the GPLOT procedure. A third solution is suggested by the authors and is also applicable to
both the GPLOT and SGPLOT procedures. The last 2 approaches take advantages of new features in Statistical
Graphics for SAS v9.2 and beyond.

1. Use Dummy Data

Will the Dummy Data Approach work for the SGPLOT procedure? In SAS v9.2, treatment groups are to be displayed
according to its order of the input data. So it is important that after adding the dummy data to the original input data
set, the combined data set will retain the same DATA order for treatment. While the line attribute now appears to be

Errors!!!

 Inconsisitency in line

attributes. Drug C

should have been

GREEN and Placebo

should have been

ORANGE!

5

consistent, the legend still displays the non-existent treatment, Drug B. Hence the Dummy Data Approach still
remains to be the less desirable! See Figure 3A, output from the Dummy Data Approach

Figure 3A: The Add Dummy Data Approach ensures line consistency.

However, the excluded treatment group Drug B remains in the legend.

Code for Figure 3A: (Add Dummy Data Approach.)

- Create DUMMY dataset so that all treatment groups are represented.-;

data DUMMY;

 length TRT $7.;

 TRT='Drug A'; MONTH=.; AVG_SCORE=.; output;

 TRT='Drug B'; MONTH=.; AVG_SCORE=.; output;

 TRT='Drug C'; MONTH=.; AVG_SCORE=.; output;

 TRT='Placebo'; MONTH=.; AVG_SCORE=.; output;

run;

--;

* Note: There is no need to sort DRUG_WT_DUMMY because: *;

* As long as Drug A, Drug B, Drug C and Placebo are ordered first, *;

* second, third and fourth in INPUT data, sorting is not necessary. *;

* DUMMY dataset has already had the correct order. *;

--;

DATA DRUG_WT_DUMMY;

 set DUMMY

 DRUG_noB;

run;

--- Generate Figure 3A. ---;

--- STYLES.MYSTYLE as defined in Code for Figure 1A. ---;

ods listing style=STYLES.MYSTYLE;

title 'Average Score Over Time by Treatment';

proc sgplot data=DRUG_WT_DUMMY;

 series y=AVG_SCORE x=MONTH / group=TRT markers;

 keylegend/noborder title='Treatment: ';

 run;

Drug B is not supposed to be

in this figure and hence, it

should not be in the legend!

This can be confusing to

readers!

6

2. Re-map Line Attributes

Flavin and Carpenter (2004) provided detailed examples on how to dynamically modify the SYMBOLn statements to
ensure line consistency when using the GPLOT procedure. Their approach relies heavily on %SCAN to re-map the
treatment attributes to the correct treatment. The same approach can be used to modify the style GraphDatan from
GraphDatan statements within the TEMPLATE procedure. Here, the authors illustrate how this can also be
accomplished by means of a macro named %lineattr. Instead of %scan, CALL SYMPUT will be applied.

 Figure 3B: 3 remaining treatments are represented by lines consistent in appearance

as those seen in Figure 1B. Legend reflects only the lines displayed in the figure.

 Code for Figure 3B: (Re-map Line Attribute Approach)

 - Establish a LOOKUP dictionary for line attribute for each drug. -;

 data LOOKUP;

 input ID & $7. LINESTYLE : 3. COLOR : $6. SYMBOL : $12.;

 cards;

 Drug A 1 red circle

 Drug B 2 blue square

 Drug C 3 green diamond

 Placebo 4 orange circlefilled

 ; run;

 - Define LINEATTR macro to create Style Template with line attribute. -;
 %macro lineattr (indata= /* Enter Input Data Set Name. */

 ,lookup=LOOKUP /* Enter Lookup Data Set. */

 ,idvar=ID /* ID variable in Lookup Data Set. */

 ,groupvar=TRT /* Enter Group Variable. */

 ,style=STYLES.MYSTYLE2 /* Enter Style name to be output */

 ,parent_style=STYLES.MYSTYLE /* Enter Parent Style. */

)/des='To create line attributes in Style Template';

 %local i;

 --- Get the line attribute for treatment groups from LOOKUP. ---;

 --- Note: only line attributes for the treatment groups in the dataset ---;

 --- specified in &indata will be kept. ---;

Note: Even without

Drug B, the 3 other

treatments still have the

same line attributes.

This is the goal of this

paper!

7

Code for Figure 3B: (Re-map Line Attribute Approach) (Continued)

proc sql noprint;

 create table LINEATTR as

 select distinct L.*, D.&GROUPVAR

 from &indata D

 left join

 &LOOKUP L

 on D.&GROUPVAR = L.&IDVAR

 order by D.&GROUPVAR;

 quit;

 - Assign value for the line style, colors and symbol of each treatment.-;

 data _null_;

 set LINEATTR;

 call symput('LINESTYLE'||strip(put(_n_, 3.)), LINESTYLE);

 call symput('COLOR'||strip(put(_n_, 3.)), COLOR);

 call symput('SYMBOL'||strip(put(_n_, 3.)), strip(SYMBOL));

 run;

 --- Re-define your line attributes in a new style. ---;

 proc template;

 define style &STYLE;

 parent=&parent_style;

 %do i=1 %to &sqlobs;

 style GraphData&i from GraphData&i/linestyle=&&LINESTYLE&i

 contrastcolor=&&COLOR&i markersymbol="&&SYMBOL&i";

 %end;

 end;

 run;

 %mend lineattr;

 --- Invoke %lineattr to create STYLES.MYSTYLES2 with the correct line styles. -;

 --- Generate line plot using this new style. -;

 %lineattr(indata=DRUG_noB, style=STYLES.MYSTYLE2);

 ods listing style=STYLES.MYSTYLE2;

 title h=20pt 'Score Over Time by Treatment';
 proc sgplot data=DRUG_noB;

 series y=AVG_SCORE x=MONTH / group=TRT markers;

 keylegend/noborder title='Treatment: '; run;

3. Re-Code Internal Values of Group Variable

In Figure 1B, Placebo is listed last in the legend because its internal value ‘Placebo’ is behind the internal values of
other treatments, namely, ‘Drug A’, ‘Drug B’ and ‘Drug C’. If Placebo, instead of Drug B, has been excluded from that
figure, the line appearance for the remaining groups would have been unaffected. Hence, a third solution is to re-
code so that the treatment groups to be excluded would have higher group order than those for the groups that are to
stay. When using PROC GPLOT, the group order is the internal value of the group variable. For PROC SGPLOT in
SAS v9.2, the group order is based on the order of the group variable in the input data. As an example, please
consider the following code which can also generate Figure 3B.

Code for Figure 3B (Using Re-code Internal Values Approach)

 --- Define formats for re-coding group variable, TRT. ---;

 proc format;

 invalue INTRTF ‘Drug A’ = 1

 ‘Drug B’ = 4

 ‘Drug C’ = 2

 ‘Placebo’= 3;

 value TRTF 1 = ‘Drug A’

 2 = ‘Drug C’

 3 = ‘Placebo’

 4 = ‘Drug B’;

 run;

8

Code for Figure 3B (Using Re-code Internal Values Approach) (continued)

 -- Re-coded the value from TRT to TRT2 so that treatment groups to be dropped -;

 --- have higher internal values and will be listed last. -;

 data DRUG_RECODED;

 set DRUG_noB;

 TRT2=input(TRT, intrtf.);

 label TRT2=”Treatment: “;

 format TRT2 TRTF.;

 run;

 --- Sort the data based on the internal value of the re-coded variable TRT2. ---;

 proc sort data=DRUG_RECODED out=DRUG_RECODED;

 by TRT2; run;

 * Re-order line attributes to match internal values of the group variable, TRT2.*;

 proc template;

 define style STYLES.MYSTYLE3;

 parent=STYLES.MYSTYLE;

 style GraphData1 from GraphData1/linestyle=1 contrastcolor=red

 markersymbol='circle';

 style GraphData2 from GraphData2/linestyle=3 contrastcolor=green

 markersymbol='diamond';

 style GraphData3 from GraphData3/linestyle=4 contrastcolor=orange

 markersymbol='circlefilled';

 style GraphData4 from GraphData4/linestyle=2 contrastcolor=blue

 markersymbol='square';

 end; run;

- Generate Figure 3B that excludes Drug B with Re-coded variable as the group -;

- variable. -;

 ods listing style=STYLES.MYSTYLE3;

 title ‘Score Over Time by Treatment’;

 proc sgplot data=DRUG_RECODED;

 series y=AVG_SCORE x=MONTH/group=TRT2 markers;

 keylegend/noborder title=’Treatment: ‘;

run;

Based on the Code for Figure 3B, the variable TRT has been re-coded to create another variable, TRT2, which has
internal values of 1, 2, 3 and 4. Moreover, TRT2=1 represents Drug A; TRT2=2 represents Drug C; TRT2=3
represents Placebo and TRT2=4 represents Drug B. The legend in Figure 3B is displayed in the order of the input
data for TRT2 (which is the same order as the internal value of TRT2) and displayed in TRTF. format. Style
GraphDatan statements have been re-arranged so that line attributes for the treatments are consistent with the
internal values of TRT2. This new style STYLES.MYSTYEL3 is used to create Figure 3B, an ideal graph based on
re-coding Internal Value approach. Note that this method can also be applied to PROC GPLOT, in which case the
SYMBOLn statements will be modified.

4. Use INDEX Option in Graph Template Language (GTL)

Graph Template Language (GTL) empowers SAS users with the ability to create high-quality sophisticated statistical
graphics with relative ease. While the SGPLOT procedure provides a quick and easy solution to single-cell plot, GTL
is designed to create complex multi-cell graphics with overlay of multiple plots. With GTL, one first defines a graphic
template to be compiled. Then the graph is rendered by means of the SGRENDER procedure. For the line
inconsistency issue, the INDEX option in the SERIESPLOT statement offers yet another solution.

Consider the code in the following box for this GTL approach. Users first have to create a variable, namely, IDVAL,
to be specified in the INDEX options of the SERIESPLOT statement. The values in this IDVAL variable are
associated with the style GraphDatan statements in the styles definition. This is a relatively painless approach to
resolve the line consistency issue. Unfortunately, the INDEX option is not available in the SGPLOT procedure. If the
GTL code appears complex and formidable, don’t panic. If a graph can be created by means of SGPLOT procedure,
one can easily use TMPLOUT options in SGPLOT to output the corresponding GTL code. Then simply add INDEX
options in the SERIESPLOT statement to create the graph template. This template can then be rendered to create a
graph without the line consistency issue and hopefully, without tears from the developer!

9

Code for Figure 3B (Using INDEX Option in Graph Template Language (GTL) Approach)

 data DRUG_IDVAL;

 set DRUG_noB;

 --- Create variable IDVAL to associate the group variables with ---;

 --- line attributes defined in STYLES.MYSTYLE. ---;

 if TRT='Drug A' then IDVAL=1;

 else if TRT='Drug B' then IDVAL=2;

 else if TRT='Drug C' then IDVAL=3;

 else if TRT='Placebo' then IDVAL=4;

 run;

 proc template;

 --- Template SGPLOT was obtained from TMPLOUT options in PROC SGPLOT. ---;

 --- INDEX options in the SERIESPLOT statement has been added manually. --;

 define statgraph SGPLOT;

 begingraph;

 EntryTitle "Score Over Time by Treatment" / textattrs=(size=2pct);

 layout overlay;

 SeriesPlot X=MONTH Y=AVG_SCORE /

 primary=true group=TRT index=IDVAL display=(markers)

 LegendLabel="Average Score" NAME="SERIES";

 DiscreteLegend "SERIES" / Location=Outside Title="Treatment: "

 Border=false;

 endlayout;

 endgraph;

 end; run;

 --- Use PROC SGRENDER to render the graph from the stored graphics ---;

 --- template SGPLOT. ---;

 ods listing;

 proc sgrender data=DRUG_IDVAL template=SGPLOT; run;

5. Use of SG Attribute Map (Available in SAS Version 9.3)
SAS Institute released the 9.3 version of its product on July 11, 2011, its 35th Anniversary Date. This new release
has a powerful feature to ensure consistency in line appearance --- Attribute Map. Attribute map is applicable to both
SG procedures and GTL, though the coding in SG procedures differs from that using GTL.

5A. SG Attribute Map
With the SG Attribute Map dataset, users specify ID variable values, group variable values and line attributes in one
dataset. This dataset and its ID variables are then referred to in the SGPLOT procedure. As an illustration, the
authors provide the following code to demonstrate yet another effortless method to produce Figure 3B in the brave
new world of SAS v9.3.

Code for Figure 3B (Using SG Attribute Map Approach)

-- Create Attribute Map Data Set named MYATTRMAP. --;
data MYATTRMAP;

 retain ID "MYID";

 input VALUE & $7.LINEPATTERN : $3. LINECOLOR : $6. MARKERSYMBOL : $12.

 markercolor : $6.;

cards;

Drug A 1 red circle red

Drug B 2 blue square blue

Drug C 3 green diamond green

Placebo 4 orange circlefilled orange

; run;

--- Reference to MYATTRMAP to define the line attributes. ---;

ods listing;

title 'Score Over Time by Treatment';

proc sgplot data=DRUG_noB dattrmap=MYATTRMAP;

 series y=AVG_SCORE x=MONTH / group=TRT attrid=MYID marker;

keylegend/noborder title='Treatment: '; run;

10

5B. Attribute Map with GTL

For more sophisticated graphics, such as multi-cell graphs, most likely GTL will be applied. In that event, attribute
maps are also available in GTL. Below is an example of how Figure 3B can be produced by means of discrete
attribute map in GTL.

Code for Figure 3B (Using Discrete Attribute Map with GTL Approach)
-- Define a template named SGPLOT with Discrete Attribute Map Data Set --;

proc template;

 define statgraph SGPLOT;

 begingraph;

 Entrytitle “Score Over Time by Treatment” / textattrs=(size=2 pct);

 -- Define the attribute map and assign the name “lineattr”. --;

 Discreteattrmap name=”lineattr” / ignore=true;

 value “Drug A”/lineattrs=(pattern=1 color=red)

 markerattrs=(color=red symbol=circle);

 value “Drug B”/lineattrs=(pattern=2 color=blue)
 markerattrs=(color=blue symbol=square);

 value “Drug C”/lineattrs=(pattern=3 color=green)

 markerattrs=(color=green symbol=diamond);

 value “Placebo”/lineattrs=(pattern=4 color=orange)

 markerattrs=(color=orange symbol=circlefilled);

 EndDiscreteattrmap;

 -- Associate the attribute map with input data column ID and --;

 -- assign the name GROUPMARKERS to named association. --;

 Discreteattrvar attrvar=groupmarkers var=TRT attrmap=”lineattr”;

 -- Define the series plot. --;

 Layout overlay;

 Seriesplot x=MONTH y=AVG_SCORE / primary=true group=groupmarkers display=(markers)

 Legendlabel=”Average Score” Name=”SERIES”;

 DiscreteLegend “SERIES”/Location=Outside border=false Title=”Treatment: “;

 Endlayout;

Endgraph;

End; run;

-- Use PROC SGRENDER to render the graph from stored graphics template SGPLOT.--;

ods listing;

proc sgrender data=DRUG template=SGPLOT;

 where TRT ne “Drug B”; run;

Additional Comments

Range Attribute Map (Available in SAS Version 9.3)

The attribute maps we have discussed so far are discrete attribute maps. For discrete attribute maps, discrete values
are associated with certain attributes. In our previous examples, the distinct values are the 4 treatment groups.
However, clinical data can be continuous and grouped into categories. For instance, based on a subject’s body mass
index (BMI) at baseline, a subject can be classified as underweight (< 19 kg/m

2
), normal (19-<26 kg/m

2
), overweight

(26-<30 kg/m
2
) and obese (≥ 30 kg/m

2
). In the following example, the authors have provided an illustration of the

range attribute map by adding a scatterplot of individual scores at different time points. The color of the dots in the
scatterplot are based on the BMI at baseline of the corresponding subject. Note that as of SAS v9.3, range attribute
maps are only available in GTL and not in SG procedures.

Code for Figure 4 (Using Range Attribute Map with GTL Approach)

data SCORE;

 input USUBJID 1-3 TRT $ 7-13 @16 BBMI 4.1 @24 MONTH 1. SCORE 28-30;

 label BBMI='BMI at Baseline (kg/m**2)';

datalines;
100 Placebo 29.8 1 8

100 Placebo 29.8 2 12

100 Placebo 29.8 3 16

… more data …

; run;

11

Figure 4: A scatterplot of score over month with the color of the dots representing

the value of the BMI at baseline.

Code for Figure 4 (Using Range Attribute Map with GTL Approach) (Continued)

proc template;

 define statgraph SCATTERPLOT;

 begingraph;

 entrytitle 'Score Over Time'/ textattrs=(size=2.5pct);

 -- Define the attribute map and assign the name “BBMI_Range” --;

 RangeAttrMap name="BBMI_Range";

 range MIN - < 19 / rangealtcolor=blue;

 range 19 - < 26 / rangealtcolormodel=(lightpurple lightorange);

 range 26 - < 30 / rangealtcolormodel=(orange lightred);

 range 30 - MAX / rangealtcolor=red;

 EndRangeAttrMap;

 -- Associate the attribute map with the variable BBMI and --;
 -- assign variable name RANGEVAR for this association. --;

 RangeAttrVar attrvar=rangevar var=BBMI attrmap="BBMI_RANGE";

 layout overlay / xaxisopts=(label='Month' labelattrs=(weight=bold size=12pt)

 tickvalueattrs=(weight=bold))

 yaxisopts=(label='Score' labelattrs=(weight=bold size=12pt)

 tickvalueattrs=(weight=bold));

 --Refer to the previously defined RANGEVAR in the SCATTERPLOT statement.--;
 scatterplot x=MONTH y=SCORE / markercolorgradient=rangevar

 markerattrs=(symbol=circlefilled size=8px)

 name=”scatter”:

 continuouslegend "scatter" / orient=vertical halign=right

 title="BMI at Baseline(kg/m**2)"

 titleattrs=(weight=bold size=12pt)

 valueattrs=(weight=bold) ;

 endlayout;

 endgraph; end; run;

-Use PROC SGRENDER to render the graph from stored graphics template SCATTERPLOT.-;

proc sgrender data=SCORE template=SCATTERPLOT;

 where TRT ne 'Drug B';

run;

12

THE SGPANEL PROCEDURE

In early phase clinical trials, researchers are often interested in various lab test results of individual subjects over
time. Such results are can be nicely displayed in a panel of graphic cells. Each of these graphics cells contains data
for a subject. If a subject is assigned to one treatment, then that cell can be considered as having only one non-
missing treatment group. Moreover, the graphical cells are often displayed according to the order of additional
variables of interest, such as subject age and BMI at baseline. Such variables do not only affect the order of cells
displayed, but also have impact on the default treatment attribute assignment. Methods we discussed can also be
applied to the SGPANEL procedure and its GTL correspondence. For details, please consult Cheng (2011).

CONCLUSION

In the analysis of clinical data, often times only a subset of data is of interest. Special attention has to be taken in
order to guarantee that the line appearance for the treatments stay intact in subset analyses. In this paper, the
authors illustrated 5 different approaches to ensure consistency in line attributes. These methods include (1) adding
dummy observations to input data, (2) re-mapping line attributes, (3) re-ordering of group variable internal values, (4)
use of INDEX option in GTL and (5) use of Attribute Maps in SG procedures and GTL.

Except for the first method of adding dummy data, the remaining 4 approaches all achieve the same desirable output.
Since the SG procedures require at least SAS v9.2, one may want to take advantage of the INDEX feature described
in Method 4 or the attribute map approach in Method 5 if SAS v9.3 is available in your organization. Method 2,
though workable, is not taking advantage of the new features in statistical graphics. Method 3 may not be very
practical since one may not know which treatment groups will be eliminated in future analysis.

SLIDE PRESENTAION

Slide presentation of this paper will be available in http://www.slideshare.net/alice_m_cheng

REFERENCES

• Carpenter, Arthur L. (2004). Carpenter’s Complete Guide to the SAS
®
 Macro Language, Second Edition.

SAS Institute, Cary, NC.

• Cheng, Alice M. (2011). “Is the Legend in your SAS/Graph
®
 Output Still Telling the Right Story?” WUSS

2011. http://www.lexjansen.com/cgi-bin/xsl_transform.php?x=wuss2011&s=proceedings&c=wuss#sdp11

• Flavin, Justina M. and Carpenter, Arthur L. (2004). “Is the Legend in your SAS/Graph
®
 Output Telling the

Right Story?” SUGI 29. http://www2.sas.com/proceedings/sugi29/086-29.pdf

• Kuhfeld, Warren F. (2010). Statistical Graphics in SAS
®)

: An Introduction to the Graph Template Language
and the Statistical Graphics Procedures. SAS Institute, Cary, NC.

• SAS Institute Inc. (2011). SAS/GRAPH
®
 9.3 Graph Template Language Reference, Second Edition. SAS

Institute, Cary, NC.
http://support.sas.com/documentation/cdl/en/grstatgraph/64764/HTML/default/viewer.htm#p0891gx3y0z8xq
n1k9ijhv5xughi.htm

• SAS Institute Inc. (2011). SAS
®
 9.3, ODS Graphics: Procedures Guide. SAS Institute, Cary, NC.

http://support.sas.com/documentation/cdl/en/grstatproc/62920/HTML/default/viewer.htm#titlepage.htm

ACKNOWLEDGMENTS

Alice Cheng was first inspired to explore this topic after a brief conversation with Shawn Hopkins, of Seattle Genetics.
Thank you, Mr. Hopkins, for sharing your insight and expertise. Both authors are grateful to Susan Morrison, Lelia
McConnell and Marcia Surratt of SAS Technical Support for sharing their expertise on statistical graphics, as well as,
Adam Sharp and Steve Michaelson of SimulStat, Inc. for providing us with SAS v9.3. Last but definitely not least, we
would like to extend our sincere gratitude to Art Carpenter for his valuable feedback on the predecessor of this paper.
Any errors and oversight in this article are the sole responsibility of the authors.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:
Alice M. Cheng Justina M. Flavin
E-mail: alice_m_cheng@yahoo.com E-mail: justina.flavin@gmail.com

 http://www.linkedin.com/in/alicemcheng

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

