
1

PharmaSUG 2012 – Paper TF01

Macro Quoting to the Rescue: Passing Special Characters
Mary F. O. Rosenbloom, Edwards Lifesciences LLC, Irvine, CA

Art Carpenter, California Occidental Consultants, Anchorage, AK

ABSTRACT
We know that we should always try to avoid storing special characters in macro variables. We know that there are
just too many ways that special characters can cause problems when the macro variable is resolved. Sometimes,
however, we just do not have a choice. Sometimes the characters must be stored in the macro variable whether we
like it or not. And when they appear we need to know how to deal with them. We need to know which macro quoting
functions will solve the problem, and even more importantly why we need to use them.

This paper takes a quick look at the problems associated with the resolution and use of macro variables that contain
special characters such as commas, quotes, ampersands, and parentheses.

KEYWORDS
%BQUOTE, %QLEFT, %NRSTR, macro variable resolution, special characters

INTRODUCTION
Generally the inclusion of special characters, such as quotes, commas, ampersands, and parentheses in macro
variable values is to be discouraged. These characters can cause problems in a variety of ways when the macro
variable is resolved. Unfortunately we do not always have full control over the values taken on by the variables, and
when they do contain special characters we need to know how to handle them.

Fortunately macro quoting functions are available. However, the whole topic of quoting in the macro language is
difficult to work with, and even more difficult to understand. In this paper we will be discussing a number of situations
where macro quoting provides a solution to an otherwise difficult if not intractable programming problem.

The examples will utilize variations of the following problem. The data set HOSPITALVISITS contains the variable

SITECODE which takes on the values shown in the list shown to the left. We wish to
process a series of PROC PRINT steps for each value of SITECODE. Since in the

actual program there are a series of
PROC steps for each value of
SITECODE, we intend to automate
the process by using the macro
language. A macro variable is being
used to store the value of the data
set variable (SITECODE), and the
macro variable will be used in a

WHERE clause to subset the data. This is a very straightforward use of a macro variable to supply character
substitution.

Even this simple use of text substitution can fail when special characters become involved. For the problem
described in this paper the values used in the WHERE are obtained from the data itself, and then processed using a

macro list (Fehd and Carpenter, 2007). The code used in the
subsequent examples reflects the usage of this list. A %DO
loop steps through the individual elements, one at a time, with
each element in the list designated as &&STRING&I.

Special characters are not an issue when stored as data set
values, and are generally not an issue when being transferred
into macro variables. Problems do arise however when the
macro variables, which contain special characters, are
resolved. The following variants on this example demonstrate

common problems, as well as provide an opportunity to discuss solutions.

For the purposes of this discussion, consider these macro variables
and the special characters that they contain. &STRING2 contains
a comma, &STRING3 matched parentheses, and &STING4
matched double quotes. Other special characters, and
combinations of normally matched characters, but without a match,

e.g. parentheses and quotes, would provide further variations to those discussed here.

%let string1 = siteA;

title1 "Visits at &string1";

proc print data=HospitalVisits;

 where sitecode="&string1";

 run;

%macro show1;

%do i = 1 %to 4;

 title1 "Visits at &&string&i";

 proc print data=hospitalvisits;

 where sitecode="&&string&i";

 run;

%end;

%mend show1;

%let string1 = siteA;

%let string2 = SiteB,C;

%let string3 = SiteD (with E);

%let string4 = SiteF "aka G";

 sitecode

 siteA

 SiteB,C

 SiteD (with E)

 SiteF "aka G"

 SitesH&J

2

THE QUOTES PROBLEM
One of the most common situations that requires macro quoting involves macro variables with quotes embedded in
their values. Of the four macro variable values shown above, only the fourth will fail. The inserted value becomes:

"SiteF "aka G"", and the LOG shows "SiteF "aka G". Notice that the double quotes embedded within the

macro variable have become confused with those already present. As an aside, when two quotes or double quotes
appear together within code, as they do here, they are ‘seen’ as a single character after a second pass of the parser.
The result is mismatched quotes.

The macro quoting function %BQUOTE alone solves most of these types of special character problems, but not all of
them. There are still traps aplenty for the unwary. %BQUOTE masks special characters and mnemonics, and will

also mask quotes and parenthesis, even if they are not
resolved in pairs. But, this function will still not mask
the macro triggers, % and &, that may be embedded in
the text.

A related problem with quotes is often experienced when a quoted string appears inside of another quoted string.

This can occur in a number of SAS® programming situations, and is especially problematic when passing strings to a

Windows operating system.

This X statement directs Windows to create a directory. Since Windows requires paths to be surrounded by double
quotes, we can use single quotes to surround the text associated with the X statement. Since we almost never need

to nest quoted strings more than two deep, using a combination of single
and double quotes solves the problem – unless a macro variable is
needed. One way or the other, the macro variable must be inside of a
single quote, and the macro variable will necessarily remain unresolved.

Fortunately there are ways to either avoid the use of the single quotes or to prevent their use from masking the macro
variable. The %STR quoting function can be used to temporarily mask the inner quotes by preceding the quotes with

a % masking character. In this way single quotes are not
needed. This general concept has broader application than
just for the X statement. A number of other statements and
options can at times require the use of quotes within quotes.

These can include the TITLE, FILENAME, and LIBNAME statements, as well as, the STYLE override option.

In the current versions of SAS some of the statements that have required quoting, such as the X, LABEL, and TITLE
statements, no longer always require quotes. For the X statement shown
above, the outer quotes are not required, so a simpler solution for this
specific problem would be to simply rewrite it without the single quotes.

Quotes within quotes can also be a problem in the FILENAME statement. Again this is only an issue when macro
variables are also utilized. In the following example we want to write all the names of all of the RTF files found in the

specified directory to the
LOG. In this case we
have used the
%BQUOTE function to
mask the single quotes
until after the macro
variable has been
resolved. After the
macro variable has been
resolved the masking

characters for the single quotes must be removed, and this is accomplished with the %UNQUOTE function.

AMPERSANDS AND PERCENT SIGNS
Because the ampersand (&) and the percent sign (%) have special meaning to the macro language these characters

can be especially problematic when embedded within macro variables.
Consider a fifth possible site name to be stored in &STRING5. In this
case there is no macro variable &J, instead we would like H&J to be

treated as text as if there was no macro trigger involved. We need to mask the &. Unfortunately the & is seen as a
macro trigger. Since the macro processor cannot find &J in the global symbol table, a warning is sent to the log when

the macro variable
&STRING5 is defined.

title1 " Visits at %bquote(&&string&i)";

proc print data= hospitalvisits;

 where sitecode="%bquote(&&string&i)";

%let string5 = Sites H&J;

x 'md "c:\temp\output")';

x "%str(md %"&projloc\output%")";

x md "&projloc\output";

filename list pipe

 %unquote(%bquote(')dir "&projloc*.rtf" /o:n /b %bquote('));

data _null_;

infile list;

input ;

put _infile_;

run;

WARNING: Apparent symbolic reference J not resolved.

3

Once the macro parser determines that it cannot resolve &J, it is marked and the parser continues with the next
statement. Ultimately, therefore, &string5 takes the value of ‘Sites H&J’. Whenever we use &STRING5, as it will be
in %show1, the ampersand will again be recognized as a macro trigger, and the token &J will again be passed to the

macro processer for
resolution. At each
instance, every time
&STRING5 is used,
another warning will be
generated in the LOG.
Of course if we are very
unlucky, the macro
variable &J will already
exist, no warnings will
be generated, and we
will get incorrect results.

The problem is further demonstrated by examining
the code shown here. Whenever the macro variable
&SITE is used the warning will be issued. The ’no
rescan’ analogue of the %BQUOTE quoting function
(%NRBQUOTE) will mask the &, on all but the first
scan of the value. In this example the warning will
be issued when &STRING5A is defined in the %LET
statement, but not for any subsequent uses of the
macro variable &STRING5A. If we want to avoid
any warnings, the %NRSTR quoting function can be
used. As a compile time function, no attempt is
made to resolve the &J, either when &STRING5B is
defined in the %LET statement or when it is used in
the %PUT.

The LOG shows that when the macro variable

&SITE (which has the value of Sites
H&J) is used, a warning is issued,

because the macro variable &J is not
found. This is also the case when the
same string is assigned to the macro
variable &STRING5A.

Usually in a situation such as this you
will want to mask the & as soon as
possible and generally you will want to
use the %NRSTR function to prevent
any warnings to be written to the LOG
(as was done for &STRING5B).

data a;

val = 'Sites H&J';

call symputx('site',val);

run;

* Warning when used;

%put |&site|;

* Warning when used first (in the LET);

%let string5a = %nrbquote(Sites H&J);

%put |&string5a|;

* No warning masked in the LET;

%let string5b = %nrstr(Sites H&J);

%put |&string5b|;

%macro show1;

%do i = 1 %to 5;

 title1 "&&string&i"; /* show how the single quote generated

for the fourth exp*/

 proc print data=hospitalvisits;

 where sitecode="&&string&i"; /* works for first three */

 run;

%end;

%mend show1;

%show1

6 * Warning when used;

7 %put |&site|;

WARNING: Apparent symbolic reference J not resolved.

|Sites H&J|

8

9 * Warning when used first (in the LET);

10 %let string5a = %nrbquote(Sites H&J);

WARNING: Apparent symbolic reference J not resolved.

11 %put |&string5a|;

|Sites H&J|

12

13 * No warning masked in the LET;

14 %let string5b = %nrstr(Sites H&J);

15 %put |&string5b|;

|Sites H&J|

4

Our coding becomes more complicated when the site code is stored in a macro variable, as it was in the introduction.
In the previous example, we needed
to mask the &J and this was done
with the %NRSTR function.
However, since the %NRSTR
quoting function prevents the
resolution of the macro variable by
masking the &, we cannot use it
when the value itself is stored in a
macro variable. In this example
%NRBQUOTE is used successfully
to resolve &SITE, while %NRSTR
does not. Notice that the use of
%NRBQUOTE allows the resolution
of &SITE, attempts to resolve &J
once (resulting in the warning), and
then stores the value with the &J

masked. This means that the warning will not be displayed on subsequent uses of the macro variable &STRING5C.

LISTS and NESTED FUNCTIONS
The overall problem can easily become more complicated in a number of ways, and two of the more common
complications are discussed here. The first involves the use of macro list processing and the second the use of
nested functions.

There are several techniques for processing a list of values in the macro language (Fehd and Carpenter, 2007). The

following example utilizes a list of macro variables
and steps through the list one at a time. The
values of interest have again been stored in the
macro variables &STRING1 through &STRING5.
These will be processed in a %DO loop and will be
addressed as &&STRING&I. So that we can
demonstrate the use of nested functions, a blank
has been added to the values.

The values are to be used in a WHERE statement and the leading blank will cause problems with the matching of the
macro variable value to the stored value in the data, which does not have a leading blank. Although leading and
trailing blanks are normally removed when a macro variable is defined using the %LET, they will be preserved if the
macro variable has been derived from a data step variable using CALL SYMPUT X or if inserted with a quoting
function as was done above.

The intuitive solution is to use the %LEFT autocall macro function to simply perform a left justification of the value,
and then quote the result with the %NRBQUOTE function. However simply adding the %LEFT function can have

unexpected consequences. Remember that
the &&STRING&I macro variable is resolved
first and the %LEFT is applied to the result,
and that resolved value must comply with the

expectations of the %LEFT function. One of those expectations is that there is exactly one argument. While this
solution will generally work, it fails for one of our site codes. Recall that the resolved value of &STRING2 contains a
comma. In this case, the comma is interpreted as a function argument delimiter for the %LEFT function, which
causes the compilation of the macro expression to fail and an error to be generated.

Other possible combinations of functions could be considered. Each of these could be used in the WHERE
statement with varying degrees of success. Two of these five
combinations have already been discussed. We can try each of
these in a small test loop and use the results to further
understand how these functions work together.

%nrstr(%left(&&string&i))

%nrbquote(%left(&&string&i))

%left(%nrbquote(&&string&i))

%qleft(%nrbquote(&&string&i))

%qleft(&&string&i)

where sitecode="%nrbquote(%left(&&string&i))";

ERROR: More positional parameters found than defined.

NOTE: The SAS System stopped processing this step because of errors

18 %let string5c = %nrbquote(&site);

WARNING: Apparent symbolic reference J not resolved.

19 %put |&string5c|;

|Sites H&J|

20 %put |%nrbquote(&site)|;

WARNING: Apparent symbolic reference J not resolved.

|Sites H&J|

21

22 * No warning masked in the LET;

23 %let string5d = %nrstr(&site);

24 %put |&string5d|;

|&site|

25 %put |%nrstr(&site)|;

|&site|

%* add a leading space to foil the WHERE;

%let blk = %str();

%let string1 = &blk.siteA;

%let string2 = &blk.SiteB,C;

%let string3 = &blk.SiteD (with E);

%let string4 = &blk.SiteF "aka G";

%let string5 = &blk.%nrstr(SitesH&J);

5

The following tables show how each of these combinations of functions work with each of the five site codes in the
HOSPITALVISITS data.

siteA Resolves To: Errors? Warnings? OK?

%nrstr(%left(&&string&i)) %left(&&string&i) No No
%nrbquote(%left(&&string&i)) siteA No No 
%left(%nrbquote(&&string&i)) siteA No No 
%qleft(%nrbquote(&&string&i)) siteA No No 
%qleft(&&string&i) siteA No No 

SiteB,C Resolves To: Errors? Warnings? OK?

%nrstr(%left(&&string&i)) %left(&&string&i) No No
%nrbquote(%left(&&string&i)) Yes No
%left(%nrbquote(&&string&i)) SiteB,C No No 
%qleft(%nrbquote(&&string&i)) SiteB,C No No 
%qleft(&&string&i) yes No

SiteD (with E) Resolves To: Errors? Warnings? OK?

%nrstr(%left(&&string&i)) %left(&&string&i) No No
%nrbquote(%left(&&string&i)) SiteD (with E) No No 
%left(%nrbquote(&&string&i)) SiteD (with E) No No 
%qleft(%nrbquote(&&string&i)) SiteD (with E) No No 
%qleft(&&string&i) SiteD (with E) No No 

SiteF "aka G" Resolves To: Errors? Warnings? OK?

%nrstr(%left(&&string&i)) %left(&&string&i) No No
%nrbquote(%left(&&string&i)) SiteF "aka G" No No 
%left(%nrbquote(&&string&i)) SiteF "aka G" Yes No
%qleft(%nrbquote(&&string&i)) SiteF "aka G" No No 
%qleft(&&string&i) SiteF "aka G" No No 

SitesH&J Resolves To: Errors? Warnings? OK?

%nrstr(%left(&&string&i)) %left(&&string&i) No No
%nrbquote(%left(&&string&i)) SitesH&J No Yes 
%left(%nrbquote(&&string&i)) SitesH&J No Yes 
%qleft(%nrbquote(&&string&i)) SitesH&J No No 
%qleft(&&string&i) SitesH&J No No 

Clearly using the %NRSTR function will not be successful as it masks both the % and &. Of these five combinations
only one works for all five of the test strings.

Since we are already using the %NRBQUOTE quoting function our next attempt might be to switch the position of the

two macro functions. This solves the problem
of the comma, but now the string with
embedded quotes again causes a problem!
After its execution the %LEFT unmasks any

special characters that had been masked by the %NRBQUOTE function. Consequently the double quotes are now
exposed to the parser where they cause problems for the WHERE statement.

This highlights a behavior that is shared by several macro functions. The %LEFT function always results in an
unquoted string, even if the string was previously quoted. This is also true for each of the autocall macro functions,
including %LEFT, %TRIM, %SCAN, %SUBSTR, %UPCASE, %VERIFY, that return text. Fortunately, we have
another option. Each of these functions has a ‘Q’ analog that returns quoted values (regardless of whether or not
they were quoted prior to calling the function. The analog function for %LEFT is %QLEFT.

%QLEFT is another autocall macro function, and it has the additional feature of producing a result with all of the
special characters and mnemonic operators masked, including the macro triggers % and &. %QLEFT can work

alone without %NRBQUOTE for all of the
site codes that we send to it, with the
exception of &string2, again because of the

comma. When it is paired, as above, with %NRBQUOTE, all of the macro variables resolve as desired. Interestingly

where sitecode="%left(%nrbquote(&&string&i))";

where sitecode="%qleft(%nrbquote(&&string&i))";

6

enough this combination also removes the uninitialized macro variable warning generated by the &J in &STRING5 –
a nice side benefit.

SOMETIMES SPECIAL CHARACTERS JUST WON’T WORK
Our original example showed a macro which called PROC PRINT using a WHERE clause to subset the data. The
WHERE clause and the TITLE statement contained references to &&string&i. But what if we also wanted to save the
PROC PRINT output to an .rtf file using ODS, where the filename contained the site name, too?

The special characters contained in the macro variables could cause syntax errors once resolved into the code. Here
the file name in the ODS statement uses macro variables to form the name. And the name itself must be quoted.

When resolved &STRING4 contains double quotes and this will create an ambiguity for the parser.

This is not a macro processing problem, but rather a problem with resolving double quotes within double quotes.
There is a solution to this, however. In this case, we can use the TRANSLATE function with %QSYSFUNC to
exchange the double quotes for single quotes.

The resulting ODS statement will parse correctly.

IN THE MACRO CALL
Another place that special characters can cause problems is in the macro call. In the preceding examples we wanted

to print a portion of the data set. The PROC
PRINT would commonly be in a macro. In
this case we want to pass the value to be
used in the WHERE statement into the
macro. Having carefully learned the lessons
in the previous example we use the
%QLEFT and %NRBQUOTE quoting
functions within the macro.

Using quoting functions within the macro however will not be enough.
We still need to call the macro and pass the site code into the WHERE
statement. The second of the five site codes, shown here, is
unsuccessful, and results in an error. The problem is not in the macro, but in the macro call itself. The comma is

seen as a parameter
separator, and a
positional parameter
(which does not

exist) is assumed. This results in the error. We need to mask the special characters in the macro call as well as
within the macro.

The solution is a straight forward extension of what we have already done. To make the following examples a bit
more interesting we have used CALL EXECUTE (Fehd and Carpenter, 2007, and Michel, 2005), which is another
way of processing a list of values, to generate the macro calls. The CALL EXECUTE routine can be used to write to
a stack, in this case we will write macro calls to the stack. After the DATA step has finished executing, the items in
the stack are executed. This methodology completely avoids the need to build the list of macro variables and the
resulting code does not use either %DO loops or the &&STRING&I syntax.

The DATA step which uses the CALL
EXECUTE is fairly simple, and our first
attempt recreates the macro call shown
above. As we might anticipate this approach
is unsuccessful for two of the five site codes
(SiteB,C and SiteF "aka G"). In the first case

%let string4a=%qsysfunc(translate(&string4,%str(%'),%str(%")));

%macro printit(whr=);

 %put **********************************;

 title1 "%qleft(%nrbquote(&whr))";

 %put %qleft(%nrbquote(&whr));

 proc print data=hospitalvisits;

 where sitecode="%qleft(%nrbquote(&whr))";

 run;

%mend printit;

%printit(whr= SiteB,C)

ods rtf path="C:\output" file=" Report for SiteF "aka G" 19JUL2011.rtf";

ods rtf path="C:\output" file="%bquote(Report for &string4 &sysdate9..rtf)";

ods rtf path="C:\output" file=" Report for SiteF 'aka G' 19JUL2011.rtf";

data _null_;

 set hospitalvisits;

 call execute('%printit(whr='||sitecode||')');

 run;

415 %printit(whr= SiteB,C)

ERROR: All positional parameters must precede keyword parameters.

7

the macro call fails and in the second the quote marks cause confusion.

Our solution is to build the macro call with the special characters masked. We cannot apply the macro quoting
functions to the DATA step variable SITECODE, because the timing would be wrong (SITECODE must be resolved in
the DATA step first). We can, however apply the quoting functions to the call itself. The CALL EXECUTE statement

now includes the
%QLEFT and the
%NRBQUOTE

functions. For the first SITECODE the CALL EXECUTE produces a macro call that includes the %QLEFT and
%NRBQUOTE functions. This macro call is
successful for each of the five cases except the fourth
– the one with the quotes.

The timing of the compilation and execution of functions within a macro called by CALL EXECUTE are not
necessarily the same as those of macros called through other methods. We can delay the process; make it more like
the timing in non-CALL EXECUTE situations, by hiding the macro call until after the stack is read. We can do this by
adding a %NRSTR function. In earlier examples the %NRSTR masked all the % signs and their associated function

calls. In
this case,
when using
CALL

EXECUTE, this is a bit different. Here the masking due to the %NRSTR is unquoted and the % revealed when the
macro call is read out of the stack.

SUMMARY
Using macros to write data-driven code is a powerful and flexible tool. But, these types of programs must be able to
handle all types of special characters embedded in the data, some of which may not appear until after the program is
in production. This paper has examined several techniques for handling these special characters.

ABOUT THE AUTHORS
Mary Rosenbloom is a statistical programmer at Edwards Lifesciences in Irvine, California. She has been using SAS
for over 15 years, and is especially interested in using macros to generate data-driven code, DDE, and program
validation methods.

Art Carpenter’s publications list includes four books, and numerous papers and posters presented at SUGI, SAS
Global Forum, and other user group conferences. Art has been using SAS

®
 since 1977 and has served in various

leadership positions in local, regional, national, and international user groups. He is a SAS Certified Advanced
Professional programmer, and through California Occidental Consultants he teaches SAS courses and provides
contract SAS programming support nationwide.

AUTHOR CONTACT
Mary F. O. Rosenbloom
Edwards Lifesciences, LLC
One Edwards Way
Irvine, CA 92614

949 250-2281
Mary_rosenbloom@edwards.com

Arthur L. Carpenter
California Occidental Consultants
10606 Ketch Circle
Anchorage, AK 99515

(907) 865-9167
art@caloxy.com
www.caloxy.com

ACKNOWLEDEMNENTS
Mary would like to thank Drs. Cody Hamilton and Steven Lewis of Edwards Lifesciences for supporting her continued
SAS learning and publishing efforts. She would also like to thank Art Carpenter for helping to turn this Code Doctor
question into a paper, and for his enthusiastic and patient mentoring.

REFERENCES
Carpenter, Arthur L., 2004, Carpenter’s Complete Guide to the SAS

®
 Macro Language, 2

nd
 Edition, Cary, NC: SAS

Institute Inc.

Carpenter, Arthur L., 2004, “Storing and Using a List of Values in a Macro Variable”, Proceedings of the 12

th
 Annual

Western Users of SAS Software, Inc. Users Group Conference (WUSS), Cary, NC: SAS Institute Inc. Also in the
proceedings of the Thirtieth SAS User Group International Conference (SUGI), 2005, Cary, NC: SAS Institute Inc.,
paper 028-30, and in the proceedings of the Pharmaceutical SAS User Group Conference (PharmaSUG), 2005,
Cary, NC: SAS Institute Inc.

call execute('%printit(whr=%qleft(%nrbquote('||sitecode||')))');

call execute('%nrstr(%printit(whr=%qleft(%nrbquote('||sitecode||'))))')

%printit(whr=%qleft(%nrbquote(siteA)))

http://www.sas.com/apps/pubscat/bookdetails.jsp?catid=1&pc=59224
http://caloxy.com/papers/58-028-30.pdf

8

Fehd, Ronald and Art Carpenter, 2007, The same data set and REPORT step is shown in the paper “List Processing
Basics: Creating and Using Lists of Macro Variables” by Ronald Fehd and Art Carpenter which was presented at the
2007 SAS Global Forum (Paper 113-2007). The discussion of the paper looks at different approaches used in the
automation of programs by using various kinds of macro variable lists. This paper appears in proceedings of a
number of conferences, including: SGF(2007), WUSS (2008), MWSUG (2009), SESUG (2009).

Michel, Denis, 2005, “CALL EXECUTE: A Powerful Data Management Tool”, presented at SUGI 30 (Paper 027-30),
this paper includes a number of references to other CALL EXECUTE papers.

TRADEMARK INFORMATION
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
registered trademarks or trademarks of their respective companies.

APPENDIX – SAMPLE CODE
The following code can be used to test the various examples used in this paper.

***define the macro variables;

%let string1 = siteA;

%let string2 = SiteB,C;

%let string3 = SiteD (with E);

%let string4 = SiteF "aka G";

%let string5 = Sites H&J;

***look at the value of the last macro variable;

%put &string5;

***create the hospital data set;

data hospitalvisits;

length sitecode $15;

sitecode = 'siteA'; output;

sitecode = 'SiteB,C'; output;

sitecode = 'SiteD (with E)'; output;

sitecode = 'SiteF "aka G"'; output;

sitecode = 'Sites H&J'; output;

run;

**;

***initial macro;

%macro show1;

%do i = 1 %to 5;

 title1 "&&string&i";

 proc print data=hospitalvisits;

 where sitecode="&&string&i"; /* works for first three */

 run;

%end;

%mend show1;

%show1

***;

***macro with NRBQUOTE;

options mprint;

%macro show2;

%do j = 1 %to 5;

 title1 "%nrbquote(&&string&j)";

 proc print data=hospitalvisits;

 where sitecode="%nrbquote(&&string&j)";

 run;

%end;

%mend show2;

%show2

**

*** Ampersands and percent signs;

http://www.caloxy.com/papers/72Lists.pdf
http://www.caloxy.com/papers/72Lists.pdf
http://www2.sas.com/proceedings/sugi30/027-30.pdf

9

data a;

val = 'Sites H&J';

call symputx('site',val);

run;

* Warning when used;

%put |&site|;

* Warning when used first (in the LET);

%let string5a = %nrbquote(Sites H&J);

%put |&string5a|;

* No warning masked in the LET;

%let string5b = %nrstr(Sites H&J);

%put |&string5b|;

* Warning when first used;

%let string5c = %nrbquote(&site);

%put |&string5c|;

%put |%nrbquote(&site)|;

* No warning masked in the LET;

%let string5d = %nrstr(&site);

%put |&string5d|;

%put |%nrstr(&site)|;

***;

***leading blanks;

options mprint MAUTOSOURCE mlogic symbolgen;

%* add a leading space to foil the WHERE;

%let blk = %str();

%let string1 = &blk.siteA;

%let string2 = &blk.SiteB,C;

%let string3 = &blk.SiteD (with E);

%let string4 = &blk.SiteF "aka G";

%let string5 = &blk.%nrstr(SitesH&J);

%put |&string4|;

***macro to demonstrate which cases work;

%macro show3;

%do i = 1 %to 5;

 title1 "&i - %qleft(%nrbquote(&&string&i))";

 %put %qleft(&&string&i);

 %do k = 1 %to 5;

 %put **;

 %put i=&i k=&k;

 proc print data=hospitalvisits;

 * the first two fail. Explain why;

 %if &k=1 %then %do;

 title2 "&k - Using nrstr then left";

 where sitecode="%nrstr(%left(&&string&i))";

 %put where sitecode="%nrstr(%left(&&string&i))";

 run;

 %end;

 %else %if &k=2 %then %do;

 title2 "&k - Using nrbquote then left";

 where sitecode="%nrbquote(%left(&&string&i))";

 %put where sitecode="%nrbquote(%left(&&string&i))";

 run;

 %end;

 %else %if &k=3 %then %do;

 title2 "&k - Using left then nrbquote";

 where sitecode="%left(%nrbquote(&&string&i))";

 %put where sitecode="%left(%nrbquote(&&string&i))";

10

 run;

 %end;

 %else %if &k=4 %then %do;

 title2 "&k - Using qleft and nrbquote";

 where sitecode="%qleft(%nrbquote(&&string&i))";

 %put where sitecode="%qleft(%nrbquote(&&string&i))";

 run;

 %end;

 %else %if &k=5 %then %do;

 title2 "&k - Using qleft only";

 where sitecode="%qleft(&&string&i)";

 %put where sitecode="%qleft(&&string&i)";

 run;

 %end;

 %end;

%end;

%mend show3;

options nomprint nomlogic nosymbolgen;

*filename mprint "c:\temp\quoting.sas";

*options mprint mfile;

%show3

***;

* Translate double quotes;

%let string4 = SiteF "aka G";

%put ods rtf path="C:\output" file="%bquote(Report for &string4 &sysdate9..rtf)";

%let string4a=%qsysfunc(translate(&string4,%str(%'),%str(%")));

%put &string4;

%put &string4a;

%put ods rtf path="C:\output" file="%bquote(Report for &string4a &sysdate9..rtf)";

***;

options mprint;

%macro printit(whr=);

 %put **;

 title1 "%qleft(%nrbquote(&whr))";

 %put %qleft(%nrbquote(&whr));

 proc print data=hospitalvisits;

 where sitecode="%qleft(%nrbquote(&whr))";

 run;

%mend printit;

* Call printit - this fails;

%printit(whr= SiteB,C)

* This does not always work;

data _null_;

 set hospitalvisits;

 call execute('%printit(whr='||sitecode||')');

 run;

* quote in the macro call – mostly works;

data _null_;

 set hospitalvisits;

 call execute('%printit(whr=%qleft(%nrbquote('||sitecode||')))');

 run;

* Adding %NRSTR;

data _null_;

 set hospitalvisits;

 call execute('%nrstr(%printit(whr=%qleft(%nrbquote('||sitecode||'))))');

 run;

