
Page 1 of 14

Paper TF12-2012

Atypical Applications of Proc Transpose
John King, Ouachita Clinical Data Services Inc., Hopper, AR

ABSTRACT
Did you know that PROC TRANSPOSE can be used to verify the existence of variables in a SAS® data set?
It can process a list of variable name(s) or a “SAS Variable List” or a combination of the two. You can
also check if the variables in a list are numeric or character. Using the return code from PROC
TRANSPOSE a program can branch based on success or failure of PROC TRANSPOSE. Did you know you
can use PROC TRANSPOSE and a data step to determine if a list of variables is in one variable list but not
another? This paper shows how to accomplish these tasks and other atypical uses of PROC
TRANSPOSE.

INTRODUCTION
Most often PROC TRANSPOSE is used to transpose the data contained in a SAS data set, in order to
create more rows of data from variables or to create variables from observations. Creating variables
from observations using metadata to derive the variable name is a unique feature of PROC TRANSPOSE
that is not available in the data step. PROC TRANSPOSE can also create an extremely useful data set
when it is asked to transpose variables when there are zero observations to transpose. The TRANSPOSE
of zero observation produces a data with one observation for each variable listed in the VAR statement
or for all numeric variables if no VAR statement is used.

CREATE A DATA SET OF ALL VARIABLE NAMES AND LABELS.
When a data set with zero observations is transposed
PROC TRANSPOSE simply creates a data set of variable
names and labels. Most usually a VAR statement is
included to specify which variables are transposed and

the order in the output dataset. This technique will be modified slightly in the next few examples and
hopefully it will become clear how useful this simple PROC step can be.

PROC TRANSPOSE has created data HEARTVARS
with one observation for each variable name
listed in the VAR statement. If a variable name is
listed more than once there will be an
observation for each time the variable is listed.
The order of the variables in the data reflects the
order of the variable in the VAR statement. The
data will have at least one variable named by the
PROC TRANSPOSE NAME= option. The default
name is _NAME_. If at least one of the

proc transpose
 data=sashelp.heart(obs=0)
 out=heartVars;
 var _all_;
 run;

Obs _NAME_ _LABEL_

1 Status

2 DeathCause Cause of Death

3 AgeCHDdiag Age CHD Diagnosed

4-
14

Omitted

15 BP_Status Blood Pressure Status

16 Weight_Status Weight Status

17 Smoking_Status Smoking Status

Page 2 of 14

variables also has a label the variable named by the PROC TRANSPOSE LABEL= option. The default label
is _LABEL_.

We can increase the usefulness of this by
making it into and index lookup table by adding
an index variable and indexing the table on
NAME and the new index variable.

With the addition variable _ORDER_
and indexing the data on both _NAME_
and _ORDER_ data HEARTVARS
becomes a lookup table that can be
used to lookup a variable’s position in
the variable list or to lookup a variable
name base on position in the list. I
have used this technique in programs
like that described in Summary
Statistics in Rows. Summary statistics
in rows generates summaries of
continuous and/or categorical variables
in a stacked table with treatment as
column a grouping, the typical
demography table in most clinical trials.
In this application the variable names
passed to the program to be
summarized later become values of a
grouping variable. The program uses
the indexed data set as a lookup table

to lookup each variable’s LABEL to create a row label variable in the table. The program also uses the
order variable to determine the final sort order for the variables in the summary table.

data heartVars(index=(_name_ _order_));
 set heartVars;
 ORDER + 1;
 run;

Obs _NAME_ _LABEL_ _ORDER_

1 Status 1

2 DeathCause Cause of Death 2

3 AgeCHDdiag Age CHD Diagnosed 3

4 Sex 4

5 AgeAtStart Age at Start 5

6 Height 6

7 Weight 7

8 Diastolic 8

9 Systolic 9

10 MRW Metropolitan Relative Weight 10

11 Smoking 11

12 AgeAtDeath Age at Death 12

13 Cholesterol 13

14 Chol_Status Cholesterol Status 14

15 BP_Status Blood Pressure Status 15

16 Weight_Status Weight Status 16

17 Smoking_Status Smoking Status 17

http://www.lexjansen.com/mwsug/2011/pharma/MWSUG-2011-PH02.pdf�
http://www.lexjansen.com/mwsug/2011/pharma/MWSUG-2011-PH02.pdf�

Page 3 of 14

DO VARIABLES EXIST?
Imagine a program that accepts a
variable list and data set name,
parameters DATA= and VAR=, as
input and it is desired to expand the
variable list and check that all names
exist in the input data. If a variable
named in the list is not found PROC
TRANSPOSE will produce an ERROR:
and set the automatic variable
SYSERR to a value greater than 0.
The program can than then test
SYSERR in this case using a macro

%IF statement and take an action deemed appropriate. In this example an error message is printed and
the macro executes the %RETURN statement ending macro execution.

144 %main(DATA=sashelp.heart,var=AGE: SEX BMI);
ERROR: Variable BMI not found.

NOTE: The SAS System stopped processing this step because of errors.
WARNING: The data set WORK.MAIN_VARLIST may be incomplete. When this step was stopped there were
0 observations and 0 variables.
WARNING: Data set WORK.MAIN_VARLIST was not replaced because this step was stopped.

NOTE: SYSERR=3000
ERROR: Macro MAIN ending due to errors

Also note that PROC TRANSPOSE prints an error message to indicate which variable(s) are not found.
When the step is successful a data set of variable names is created. “SAS Variable Lists” e.g. “AGE:” are
expanded and the variables are ordered in the same order they are specified on the VAR statement.
“SAS Variable List” expansion is and import feature of the technique, letting SAS handle the details
makes it easy.

When the TRANSPOSE is successful and the
data VARLIST is created a data can be used
to add an indexing variable _ORDER_ and
the data can be index by _NAME_ and
ORDER transforming the data set into a
very useful data object, an indexed lookup
table.

%macro main(data=,var=);
 Proc transpose
 data=&data(obs=0)
 out=&sysmacroname._varlist;
 var &var;
 run;
 %put NOTE: SYSERR=&SYSERR;
 %if &syserr gt 0 %then %do;
 %put %str(ERR)OR: Macro &sysmacroname
ending due to errors;
 %return;
 %end;
 proc print data=&sysmacroname._varlist;
 run;
 %mend main;

Obs _NAME_ _LABEL_ _ORDER_

1 AgeCHDdiag Age CHD Diagnosed 1

2 AgeAtStart Age at Start 2

3 AgeAtDeath Age at Death 3

4 Sex 4

5 MRW Metropolitan Relative Weight 5

Page 4 of 14

IS THE LIST OF VARIABLES A SPECIFIC DATA TYPE?
Expanding the test for existence we
can use a similar technique to test
that lists of variables not only exist
but are of a specific type. Consider a
macro designed to accept input
where a list of variables is to be
process and the data type must be
numeric. Here a KEEP=_NUMERIC_
data set option is added to limit the
variables processed to numeric
variables only. Now the test for
existence also includes a test for type.
If a character variable is included in
the list PROC TRANSPOSE ends with
an error indicating the variable does
not exist, because it was not kept.
The test is now a test for both
existence and type.

789 %main(DATA=sashelp.heart,var=AGE: SEX MRW);

MPRINT(MAIN): Proc transpose data=sashelp.heart(obs=0 keep=_NUMERIC_) out=MAIN_varlist;
ERROR: Variable SEX not found.
MPRINT(MAIN): var AGE: SEX MRW;
MPRINT(MAIN): run;

NOTE: The SAS System stopped processing this step because of errors.
WARNING: The data set WORK.MAIN_VARLIST may be incomplete. When this step was stopped there were
0 observations and 0 variables.
WARNING: Data set WORK.MAIN_VARLIST was not replaced because this step was stopped.

NOTE: SYSERR=3000
ERROR: Variables listed as not found are not numeric or do not exist.
ERROR: Macro MAIN ending due to errors.
Above the SAS log reveals that the variable SEX is not found in SASHELP.HEART when only numeric
variables are included for processing. The macro prints a message and stops execution.

%macro main(data=,var=);
 Proc transpose
 data=&data(obs=0 keep=_NUMERIC_)
 out=&sysmacroname._varlist;
 var &var;
 run;
 %put NOTE: SYSERR=&SYSERR;
 %if &syserr gt 0 %then %do;
 %put %str(ERR)OR: Variables listed as not
found are not numeric or do not exist.;
 %put %str(ERR)OR: Macro &sysmacroname
ending due to errors;
 %return;
 %end;
 proc sql noprint;
 select _NAME_ into :var separated by ' '
 from &sysmacroname._varlist;
 quit;
 run;
 %put NOTE: VAR=&var;
 proc summary data=&data;
 var &var;
 output out=&sysmacroname._summary;
 run;
 proc print;
 run;
 %mend main;

Page 5 of 14

EXPAND A VARIABLE LIST INTO A DELIMITED LIST.
It is often helpful to expand a variable list, especially when it contains “SAS Variable Lists”, into a list of
individually specified variables. This would be useful in a macro that accepts “SAS Variable Lists” and to
insure correct processing later on when the list is expanded into individual variable names. Another
reason might be to normalize the variable names with respect to case, e.g. when a variable specified as
“SEX” is actually “Sex” in the data set and it is desired to retrieve the “correct” spelling. There are also
SAS PROCS that do not accept a “SAS Variable List” as input and the list must be expanded into
individual names.

The previous example includes PROC
SQL to write the values of _NAME_
into macro variable VAR separated
by a single space. This technique will
suffice for most reasonable sized

problems. In the example PROC TRANSPOSE expands the variable list “AGE:” into individual names
when the macro is called and the list of variables all exist and are numeric the log looks like the
following.

790 %main(DATA=sashelp.heart,var=AGE: MRW);

MPRINT(MAIN): Proc transpose data=sashelp.heart(obs=0 keep=_NUMERIC_) out=MAIN_varlist;
MPRINT(MAIN): var AGE: MRW;
MPRINT(MAIN): run;

NOTE: There were 0 observations read from the data set SASHELP.HEART.
NOTE: The data set WORK.MAIN_VARLIST has 4 observations and 2 variables.

NOTE: SYSERR=0
MPRINT(MAIN): proc sql noprint;
MPRINT(MAIN): select _NAME_ into :var separated by ' ' from MAIN_varlist;
MPRINT(MAIN): quit;

MPRINT(MAIN): run;
NOTE: VAR=AgeCHDdiag AgeAtStart AgeAtDeath MRW
MPRINT(MAIN): proc summary data=sashelp.heart;
MPRINT(MAIN): var AgeCHDdiag AgeAtStart AgeAtDeath MRW;
MPRINT(MAIN): output out=MAIN_summary;
MPRINT(MAIN): run;

NOTE: There were 5209 observations read from the data set SASHELP.HEART.
NOTE: The data set WORK.MAIN_SUMMARY has 5 observations and 7 variables.

MPRINT(MAIN): proc print;
MPRINT(MAIN): run;
NOTE: There were 5 observations read from the data set WORK.MAIN_SUMMARY.

Notice that the “SAS Variable List” AGE: is expanded into AgeCHDdiag AgeAtStart AgeAtDeath the entire
list being printed on the SAS LOG and used in the VAR statement for PROC SUMMARY. Processing the
data from the data set created by PROC TRANSPOSE can be used to produce a more complicated list
than blank delimited. For example the values of _NAME_ can be quote and the list can be delimited
with a comma using a SELECT statement similar to the one shown here.

 proc sql noprint;
 select _NAME_ into :var separated by ' '
 from &sysmacroname._varlist;
 quit;
 run;
 %put NOTE: VAR=&var;

Page 6 of 14

select quote(strip(_name_)) into :quotedvar separated by ','
 from &sysmacroname._varlist;
This produces the following output a comma delimited list of variable names in double quotes.

NOTE: QUOTEDVAR="AgeCHDdiag","AgeAtStart","AgeAtDeath","MRW"

You can imagine that all kinds of various code bits could be generated in this way.

MANIPULATE A LIST USING ANOTHER LIST.
This example might seem somewhat contrived but I have actually used this exact technique in a macro.
A macro was designed to accept a list of covariates (COVARS) to be used as the right hand side of a
linear model (main effects ANOVA). The specification was that all COVARS would always be discrete and
included in a CLASS statement. The macro was written and put into use, later it was realized COVARS
may not always be discrete. The obvious choice would be to add a CLASS parameter to the macro,
however since the macro was already in use this posed a compatibility problem. Instead a new
parameter DIRECT was added to specify variables that are NOT discrete and should be entered directly
into the model. Another similar application was posted to SAS-L in the following SAS-L Thread:
Removing STRINGS from A MACRO VARIABLE VALUE . I suggested the method described here but my
suggestion was ignored in favor of macro loops and regular expressions. Consider a macro that looks
something like the following.

The first step in the
macro is to call PROC
TRANSPOSE to produce
a variable list for
parameters COVARS
and DIRECT. This is the
same technique we
used in previous
examples. The error
checking done in those
examples was omitted
from this example to
focus attention on this
specific task. PROC SQL
with the INTO macro

variable syntax is used to replace the value of COVARS with the expanded list of variables. A new macro
variable CLASS is created by removing the variables found in DIRECT from the list of variables in COVARS.

%macro main(y=,covars=,direct=);
 proc transpose data=sashelp.heart(obs=0) out=covars;
 var &covars;
 run;
 proc transpose data=sashelp.heart(obs=0) out=direct;
 var &direct;
 run;
 %local class;
 proc sql noprint;
 select _name_ into :covars separated by ' '
 from covars;
 select _name_ into :class separated by ' '
 from covars
 where _name_ ne ALL(select _name_ from direct)
 ;
 quit;
 run;
 %put NOTE: COVARS=&COVARS;
 %put NOTE: CLASS=&CLASS;
%mend main;

http://www.listserv.uga.edu/cgi-bin/wa?A2=ind1203B&L=sas-l&D=0&P=7687�
http://www.listserv.uga.edu/cgi-bin/wa?A2=ind1203B&L=sas-l&D=0&P=7687�

Page 7 of 14

Calling the macro with
the options show here
will produce the output
shown as NOTE. Of
course the real
program would do
something useful with
these macro variables,
COVARS becoming the

right hand side of a MODEL statement and the CLASS becoming the CLASS statement variable list.

Data WORK.COVARS

Data WORK.DIRECT

As you can see from the proceeding examples the possibilities for using PROC TRANSPOSE to process
variable lists provides a simple and powerful method that should be preferred to manipulation of macro
variables. Once the variable names are expanded and put into a SAS data set we can take advantage of
other SAS tools designed for manipulation of the data in these data sets.

%main
 (
 y = Diastolic,
 covars = Height Weight Chol_status--Smoking_Status,
 direct = Weight Height
)

NOTE: COVARS=Height Weight Chol_Status BP_Status Weight_Status
Smoking_Status
NOTE: CLASS=Chol_Status BP_Status Weight_Status Smoking_Status

Obs _NAME_ _LABEL_

 1 Height

2 Weight

3 Chol_Status Cholesterol Status

4 BP_Status Blood Pressure Status

5 Weight_Status Weight Status

6 Smoking_Status Smoking Status

Obs _NAME_

1 Weight

2 Height

Page 8 of 14

TRANSPOSE GROUPS TO VARIABLES.
Sometimes it is necessary to transpose groups of observations into variables, where each level of the
group becomes a new variable. PROC TRANSPOSE is particularly helpful in this situation because it can
create new variables and name them using the values of other variables. The transpose of groups to
variables has become more common with the advent of ODS GRAPHIS and the GTL, an example Sample
39132: Median of lipid profile over time illustrates GTL that uses data where levels of treatment are
represented by variables. However, the example does not show how to transform the data from the
more normal tall structure where treatments are in rows. We will show the transpose of groups to
variables is done using SASHELP.CLASS.

Suppose we have data from SASHELP.CLASS and we want to transpose all the numeric variables such
that there is a variable for each level of SEX. With three numeric variables (Age, Height, and Weight)
and two levels for SEX (M and F) we will create 6 new variables.

The first step is to sort the data by the grouping
variable followed by a transpose of all numeric
variables BY SEX. The next step produces a
wide data set CLASS2 with one observation for
each level of SEX and transposed numeric
variable. Remember PROC TRANSPOSE
transposes all numeric variables if the VAR
statement is not used, as in our example. In
step three the wide data is transposed again
this time using an ID statement to direct PROC

TRANSPOSE to name the new variables using information conveyed through the ID statement. New to
SAS 9.2 is the feature to allow more than one variable in the ID statement. The formatted values of the
ID variables are concatenated using the delimiter specified in the new parameter DELIMITER =. This new
feature in PROC TRANSPOSE saves the extra data step that would be needed to concatenate the values
of SEX and _NAME_ into a new ID variable.

Data
WORK.CLASS2

proc sort data=sashelp.class out=class;
 by sex;
 run;
proc transpose data=class out=class2;
 by sex;
 run;
proc transpose data=class2 out=class3
 DELIMITER=_;
 var col:;
 id sex _name_;
 run;

Obs Sex _NAME_ COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8 COL9 COL10

1 F Age 13.0 13.0 14.0 12.0 15.0 11.0 14.0 12.0 15.0 .

2 F Height 56.5 65.3 62.8 59.8 62.5 51.3 64.3 56.3 66.5 .

3 F Weight 84.0 98.0 102.5 84.5 112.5 50.5 90.0 77.0 112.0 .

4 M Age 14.0 14.0 12.0 13.0 12.0 16.0 12.0 15.0 11.0 15.0

5 M Height 69.0 63.5 57.3 62.5 59.0 72.0 64.8 67.0 57.5 66.5

6 M Weight 112.5 102.5 83.0 84.0 99.5 150.0 128.0 133.0 85.0 112.0

http://support.sas.com/kb/39/132.html�
http://support.sas.com/kb/39/132.html�

Page 9 of 14

Data WORK.CLASS3

The second transpose creates 6
new variables as shown here
using the values of SEX and
NAME, to form the names of
the new variables.

DOUBLE TRANSPOSE TO CONVERT NUMERIC VARIABLES TO CHARACTER.
Converting numeric variables to character using PROC TRANSPOSE may seem unusually, I expect most
everyone is used to using functions like PUT, PUTN, VVALUE or VVALUEX. Of course those are all well
and good but using PROC TRANSPOSE can be much simpler, requiring no data step code. The technique
relies on the fact that when PROC TRANSPOSE transposes both character and numeric variables to
observations it resolves the type conflict created by this operation by converting numeric variables to
character. The numeric variables are converted using their associated format, whether it is the SAS
default format, a SAS supplied numeric format, or a user written format created with PROC FORMAT.
These formats can be specified in a FORMAT statement in PROC TRANSPOSE or permanently associated
with the variables in the data set. To see how this technique is applied an a meaningful way see
Summary Statistics in Rows where the summary statistics are convert en masse to character efficiently
formatting the statistics for display with PROC REPORT.

Consider a data set CLASS created by the
statements shown to the left. We will need
a unique key variable to identify each
observation in a BY statement. This could
be a list of variables that uniquely identify
the observations but we will create a
unique key using _N_. We also need a
character variable to transpose along with
the numeric variables trigger the
conversion. If could be an existing variable
but we will use _DUMMY_ to emphasize

what is needed to get the desired result. We also add formats to the numeric variables to illustrate that
the variables are transposed using their associated formats. Also labels are added to the numeric

Obs _NAME_ F_Age F_Height F_Weight M_Age M_Height M_Weight

1 COL1 13 56.5 84.0 14 69.0 112.5

2 COL2 13 65.3 98.0 14 63.5 102.5

3 COL3 14 62.8 102.5 12 57.3 83.0

4 COL4 12 59.8 84.5 13 62.5 84.0

5 COL5 15 62.5 112.5 12 59.0 99.5

6 COL6 11 51.3 50.5 16 72.0 150.0

7 COL7 14 64.3 90.0 12 64.8 128.0

8 COL8 12 56.3 77.0 15 67.0 133.0

9 COL9 15 66.5 112.0 11 57.5 85.0

10 COL10 . . . 15 66.5 112.0

proc format;
 value age 0-12='Pre-Teen' 13-19='Teen';
 run;
data class;
 OBS = _n_;
 set sashelp.class;
 retain _DUMMY_ ' ';
 format age age. weight 7.2 height 7.3;
 label
 DOB='Date of Birth'
 Weight='Weight (kg)'
 Height='Height (in)'
 ;
 run;

http://www.lexjansen.com/mwsug/2011/pharma/MWSUG-2011-PH02.pdf�

Page 10 of 14

variable to show that the labels are also preserved. The first five observations are shown below there
are 19 total observations in data CLASS.

Obs _OBS_ Name Sex Age Height Weight _DUMMY_

1 1 Alfred M 14 69.0 112.5

2 2 Alice F 13 56.5 84.0

3 3 Barbara F 13 65.3 98.0

4 4 Carol F 14 62.8 102.5

5 5 Henry M 14 63.5 102.5

We need to create two variables lists to use in the PROC TRANSPOSE statements VAR and COPY. We
need a list of all numeric variables excluding the variable _OBS_ to use in the VAR statement. We also
need a list of all character variables excluding _DUMMY_ to use in COPY statement.

These statements
should look familiar
as they were
featured in the
examples above.
The variable lists are
written to macro
variables so they can
be used in the code
that follows.

Given the variable lists created above the first PROC TRANSPOSE
is simple. The statement BY _OBS_ transposes each observation
separately so the data can be transposed back to its original
format. The variables in the CHARVARS macro variable used in
the COPY statement and are carried along unchanged. The
variable names NUMVARS are transposed along with the

character variable _DUMMY_ forcing the entire list of variables into a single variable with character data
type.

proc transpose data=class(obs=0 drop=_DUMMY_) out=charvars;
 var _character_;
 run;
proc transpose data=class(obs=0 drop=_OBS_) out=numvars;
 var _numeric_;
 run;
%put NOTE: CHARVARS=&charvars;
%put NOTE: NUMVARS=&numvars;

proc sql noprint;
 select _name_ into :charvars separated by ' '
 from charvars;
 select _name_ into :numvars separated by ' '
 from numvars;
 quit;
 run;

proc transpose data=class
 out=convert2char
 ;
 by _OBS_;
 copy &charvars;
 var &numvars _dummy_;
 run;

Page 11 of 14

 The variables listed in the VAR statement
have been transposed to observations and
converted to character using their associated
formats and are stored in COL1. The COPY
variables have been brought along for the
ride. It should be noted that we could COPY
any or all numeric variables and if we rename
the transposed variables by altering the value
of _NAME_ perhaps using
NAME=CATS(‘C_’,_NAME_);
 you would end up with the original variables
and new variables derived from the numeric
variables converted to character with new
names.

To get the data back to its original format we can use the
PROC TRANSPOSE show here. Again we use BY unique
record identifier to identify which groups of observations to
collapse into one observation. This time the variable COL1
is transposed and the same list of tagalong variables are
listed in the COPY statement. Recall the special variables
NAME and _LABEL_ imply the inclusion of the ID and
IDLABEL statements, show here commented out of the
program.

This PROC CONTENTS shows that AGE, HEIGHT, and WEIGHT
have been converted to character. Plus the variable LABEL
remains attached. Looking at the next table of 4 observations
displayed with PROC PRINT we can see how Age was converted
to a text string using the AGE format and HEIGHT and WEIGHT
while more subtle have been converted similarly using their
associated formats.

Obs _OBS_ Name Sex Age Height Weight

1 1 Alfred M Teen 69.000 112.50

2 2 Alice F Teen 56.500 84.00

3 3 Barbara F Teen 65.300 98.00

4 4 Carol F Teen 62.800 102.50

Obs _OBS_ Name Sex _NAME_ _LABEL_ COL1

1 1 Alfred M Age Teen

2 1 Height Height (in) 69.000

3 1 Weight Weight (kg) 112.50

4 1 _DUMMY_

5 2 Alice F Age Teen

6 2 Height Height (in) 56.500

7 2 Weight Weight (kg) 84.00

8 2 _DUMMY_

9 3 Barbara F Age Teen

10 3 Height Height (in) 65.300

11 3 Weight Weight (kg) 98.00

12 3 _DUMMY_

proc transpose
 data=convert2Char
 out=classChar
 (drop=_name_ _dummy_)
 ;
 by _OBS_;
 var col1;
 copy &charvars;
/* id _name_;*/
/* idlabel _label_;*/
 run;

Variables in Creation Order

Variable Type Len Label

1 _OBS_ Num 8

2 Name Char 8

3 Sex Char 1

4 Age Char 8

5 Height Char 8 Height (in)

6 Weight Char 8 Weight (kg)

Page 12 of 14

DOUBLE TRANSPOSE TO CONVERT CHARACTER VARIABLES TO NUMERIC.
Suppose we need to convert a large number of character variables to numeric. As you know we can’t
just change a variable’s data type we must create a new variable. Also if we want the new variables to
have the same name and label we have to RENAME and DROP and reassign the LABEL. This can be a bit
tedious but we could write a macro to do the RENAME and DROP and the rest. Or PROC TRANSPOSE
can be employed making it all fairly easy. Consider the following example that address the question
posted to the SAS Discussion Forum “convert char to num for all _CHARACTER_”

The data consists of a unique ID variable
and some numeric and character variables.
There could be any number of variables too
many to deal with individually. In this
example the range of variables to be
processed is X1-X10.

We will create three variable lists using the
technique of transposing zero observations
described above. ALL will contain a list of
all variables in the order of the original
data. NUMS are the names of the numeric
variables in the range of variables of
interest. CHARS are the names of the
character variables in the range of interest.
Each variable list is written to macro
variables of the same name. The macro
variables are used in the next steps.

NOTE: ALL=id x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
NOTE: NUMS=x1 x3 x5 x7 x9
NOTE: CHARS=x2 x4 x6 x8 x10

data test;
 id + 1;
 input (x1-x10)(:f8. :$f8.);
 attrib _numeric_
 label='Numeric Variable';
 attrib _character_
 label='Character Variable';
 cards;
1 2 3 4 5 6 7 8 9 10
3 49 98 17 87 18 18 18 77 77
;;;;
 run;

proc transpose data=test(obs=0) out=all;
 var _all_;
 run;
proc transpose data=test(obs=0) out=nums;
 var x1-numeric-x10;
 run;
proc transpose data=test(obs=0) out=chars;
 var x1-character-x10;
 run;
proc sql noprint;
 select _name_ into :all separated
 by ' ' from all;
 select _name_ into :nums separated
 by ' ' from nums;
 select _name_ into :chars separated
 by ' ' from chars;
 quit;
 run;
%put NOTE: ALL=&all;
%put NOTE: NUMS=&nums;
%put NOTE: CHARS=&chars;

http://communities.sas.com/thread/33899?tstart=30�

Page 13 of 14

Armed with the variable lists created above we
can flip the character variables to long format
by the unique ID and drag along the COPY
varriables. With a simple data step we add a
new variable to FLIPCHAR with an assignment
statement using an INPUT function we convert
COL1 to numeric. Effectively converting all

character variables to numeric, as soon as we flop the data back to wide that is.

Notice the variables in macro
variable NUMS have been copied
to the new data set via the COPY
statement. Also note the new
variable NUM; this will be the
variable that is transpose when
the data is transposed back to
wide format.

Data FLIPCHAR is now transposed back to wide
format. The transpose variable is NUM and since
the special variables _NAME_ and _LABEL_ exist
in the input they are used in implied ID and
IDLABEL statements, providing variable names
and labels for the new numeric variables created

by the transpose to wide. The COPY statement copies the original COPY variables to this new data set.

The new data FLIP2ALLNUMS now contains new
numeric variables converted from character and the
original variables, but the variable order is now
different.

We can fix the order using the macro variable ALL
and a RETAIN statement in a data step.

proc transpose data=test out=flipchar;
 by id;
 var &chars;
 copy &nums;
 run;
data flipchar;
 set flipchar;
 num = input(col1,f16.);
 run;

Obs id x1 x3 x5 x7 x9 _NAME_ _LABEL_ COL1 num

1 1 1 3 5 7 9 x2 Character Variable 2 2

2 1 x4 Character Variable 4 4

3 1 x6 Character Variable 6 6

4 1 x8 Character Variable 8 8

5 1 x10 Character Variable 10 10

6 2 3 98 87 18 77 x2 Character Variable 49 49

7 2 x4 Character Variable 17 17

8 2 x6 Character Variable 18 18

9 2 x8 Character Variable 18 18

10 2 x10 Character Variable 77 77

proc transpose data=flipchar
 out=flop2allnums(drop=_name_);
 by id;
 var num;
 *id _name_;
 *idlabel _label_;
 copy &nums;
 run;

Obs id x1 x3 x5 x7 x9 x2 x4 x6 x8 x10

1 1 1 3 5 7 9 2 4 6 8 10

2 2 3 98 87 18 77 49 17 18 18 77

data allChars;
 retain &all;
 set flop2Allnums;
 run;

Page 14 of 14

At last we have produced the data set where specific
character variables are converted to numeric variables with
all variables in the original order and with the variable label
from the original variable.

CONCLUSION
The examples presented here demonstrate a few useful techniques that are available using proc PROC
TRANSPOSE. PROC TRANSPOSE is invaluable for manipulating variable lists as it provides the most
efficient method I have found to expand a list and put the output into an infinitely useful object.

REFERENCES
• SAS Variable Lists http://support.sas.com/documentation/cdl/en/lrcon/61722/HTML/default/a000695105.htm

• Summary Statistics in Rows http://www.lexjansen.com/mwsug/2011/pharma/MWSUG-2011-PH02.pdf

• The TRANSPOSE Procedure
http://support.sas.com/documentation/cdl/en/proc/61895/HTML/default/viewer.htm - a000063661.htm

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

John Henry King
Ouachita Clinical Data Services, Inc.
1769 Hwy 240 West
Hopper, AR 71935
PH: 501-351-0432
iebupdte@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of

SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Variables in Creation Order

Variable Type Len Label

id Num 8 Numeric Variable

x1 Num 8 Numeric Variable

x2 Num 8 Character Variable

x3 Num 8 Numeric Variable

x4 Num 8 Character Variable

x5 Num 8 Numeric Variable

x6 Num 8 Character Variable

x7 Num 8 Numeric Variable

x8 Num 8 Character Variable

x9 Num 8 Numeric Variable

x10 Num 8 Character Variable

http://support.sas.com/documentation/cdl/en/lrcon/61722/HTML/default/a000695105.htm�
http://www.lexjansen.com/mwsug/2011/pharma/MWSUG-2011-PH02.pdf�
http://support.sas.com/documentation/cdl/en/proc/61895/HTML/default/viewer.htm#a000063661.htm�
mailto:iebupdte@gmail.com�

	ABSTRACT
	INTRODUCTION
	Create a data set of all variable names and labels.
	Do variables exist?
	IS THE LIST OF VARIABLES A SPECIFIC DATA TYPE?
	EXPAND A VARIABLE LIST INTO A DELIMITED LIST.
	MANIPULATE A LIST USING ANOTHER LIST.
	TRANSPOSE GROUPS TO VARIABLES.
	DOUBLE TRANSPOSE TO CONVERT NUMERIC VARIABLES TO CHARACTER.
	DOUBLE TRANSPOSE TO CONVERT CHARACTER VARIABLES TO NUMERIC.

