
1

PharmaSUG2012 - Paper HW02-SAS

Using the SAS
®
 Clinical Standards Toolkit 1.4 for define.xml creation

Lex Jansen, SAS Institute Inc., Cary, NC

ABSTRACT

When submitting clinical study data in electronic format to the FDA, not only information from trials has to be submitted,
but also information to help understand the data. Part of this information is a data definition file, which is the metadata
describing the format and content of the submitted data sets. When submitting data in the CDISC SDTM format it is
required to submit the data definition file in the Case Report Tabulation Data Definition Specification (CRT-DDS, also
known as define.xml) format as prepared by the CDISC define.xml team.

This workshop will provide an introduction to the structure and content of the define.xml file. The SAS® Clinical
Standards Toolkit will then be used to create the define.xml file, including Value Level metadata.

INTRODUCTION

The FDA issued the Final Guidance on Electronic Submissions using the eCTD specifications in April 2006. The latest
revision of this guidance was published in June 2008 [1]

Technical specifications associated with this guidance are provided as stand-alone documents. Among these are Study
Data Specifications [2] that provide further guidance for submitting animal and human study data in electronic format
when providing electronic submissions to the FDA. Study data includes information from trials submitted to the agency
for evaluation and information to understand the data (data definition). The study data includes both raw and derived
data.

As of January 1, 2008, sponsors submitting data electronically to the FDA are required to follow the new eCTD
guidance. The previous guidance, originally issued in 1999, has been withdrawn as of the same date.

The new guidance differs from the 1999 guidance in one significant aspect: The application table of contents is no
longer submitted as a PDF file, but is submitted as XML (eXtensible Markup Language). This means that the electronic
submissions will now be XML based.

The current version of the Study Data Specifications contains specifications for the Data Tabulation data sets of human
drug product clinical studies and provides a reference to the Study Data Tabulation Model (SDTM) [3][4][5][6] developed
by the Submission Data Standard (SDS) working group of the Clinical Data Interchange Standard Consortium (CDISC).

Further, the Study Data Specifications document gives a reference to the Case Report Tabulation Data Definition
Specification (CRT-DDS or define.xml) developed by the CDISC define.xml Team [7].

DATA DEFINITION TABLES: define.xml

Released for implementation in February 2005, the Case Report Tabulation Data Definition Specification (CRT-DDS or
define.xml) Version 1.0 [7] specifies the standard for providing Case Report Tabulations Data Definitions in an XML
format for submission to regulatory authorities (e.g., FDA). The XML schema used to define the expected structure for
these XML files is based on an extension to the CDISC Operational Data Model (ODM). The current version of the CRT-
DDS (version 1.0) is based on version 1.2.1 of the CDISC ODM [8].

The Data Definition Document provides a list of the data sets included in the submission along with a detailed
description of the contents of each data set. To increase the level of automation and improve the efficiency of the
Regulatory Review process, the define.xml file can be used to provide the Data Definition Document in a machine-
readable format.

XML 101

In this section we present a short introduction to XML.

BASIC SYNTAX

The Extensible Markup Language (XML) [9] is a general-purpose markup language. It is classified as an extensible
language because it allows users to define their own elements. Its primary purpose is to facilitate the sharing of

2

structured data across different information systems. XML is a language that is hierarchical, text-based and describes
data in terms of markup tags. A good introductory guide to XML can be found in the reference section [10].

Every XML document starts with the XML declaration. This is a small collection of details that prepares an XML
processor for working with the document.

syntax XML declaration example

<?xml param1 param2 … ?> <?xml version="1.0" encoding="ISO-8859-1"
?>

Elements are the basic building blocks of XML, dividing a document into a hierarchy of regions. Some elements are
containers, holding text or (child) elements. Others are empty and serve as place markers. Every XML file should have
exactly 1 root element that contains all other elements.

syntax Container Element example

< name attribute1 attribute2 … >

 content

</ name >

<def:leaf ID="Location.DM" xlink:href="dm.xpt">
 <def:title>dm.xpt</def:title>
</def:leaf>

An empty element is similar, but contains no content or end tag.

syntax Empty Element example

< name attribute1 attribute2 … />

<ItemRef ItemOID="STUDYID" OrderNumber="1"
 Mandatory="Yes" Role="IDENTIFIER"
 RoleCodeListOID="RoleCodeList" />

In the element starting tag there can be information about the element in the form of an attribute. Attributes define
properties of elements. They associate a name with a value, which is a string of character data enclosed in quotes.
There is no limit to how many attributes an element can have, as long as no two attributes have the same name.

syntax Attributes example

name = “ value “

ItemOID="STUDYID" OrderNumber="1"
Mandatory="Yes" Role="IDENTIFIER"
RoleCodeListOID="RoleCodeList"

Namespaces are a mechanism by which element and attribute names can be assigned to groups. They are most often
used when combining different vocabularies in the same document. If each vocabulary is given a namespace then the
ambiguity between identically named elements or attributes can be resolved.

syntax Namespaces example

xmlns: name = “ URI “

xmlns="http://www.cdisc.org/ns/odm/v1.2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:def="http://www.cdisc.org/ns/def/v1.0"

Comments in an XML document are not interpreted by the XML processor:

syntax Comments example

<!-- comment text -->

<!-- File: define.xml -->

<!-- Date: 02/02/2005 -->

<!-- Author: Clinical Data Interchange Standards -->

<!-- Consortium (CDISC) define.xml team -->

3

A CDATA (character data) section tells the XML parser that this section of the document contains no markup and
should be treated as regular text. CDATA sections can be useful for large regions of text that contain a lot of „forbidden‟
XML characters. They should be used with care though, since it may be hard to use any elements or attributes inside
the marked region.

syntax CDATA example

<![CDATA unparsed character data]]>

<TranslatedText xml:lang="en"><![CDATA[Classifies
 subjects based on Hy’s Law - 2 variations - For each
 variation, subject is classified as normal or abnormal at
 baseline and as normal or abnormal based on most
 extreme value during treatment, Safety population
]]></TranslatedText>

Processing instructions are meant to provide information to a specific XML processor, but may not be relevant to
others. It is a container for data that is targeted toward a specific XML processor. The processing instruction looks like
the XML declaration, but is targeted at a specific XML processor. The XML declaration can be viewed as a processing
instruction for all XML processors.

syntax Processing Instructions example

<? target data ?> <?xml-stylesheet type="text/xsl" href="define1-0-0.xsl" ?>

Now that we have explained the most important building blocks of XML, we can look at a more complete example in
Figure 1.

Figure 1: Excerpt of an XML file (define.xml)

The first line is the XML declaration.

The second line contains a processing instruction
to include the XSL style sheet to display the XML
file in a human readable form in a browser.

<ODM> is the root element.

<Study>, <GlobalVariables>, <MetaDataVersion>,
<StudyName>, <ItemGroupDef>, etc are
elements.

<Study> is a child element of the <ODM>
element.

FileOid, ODMVersion, etc are attributes of the
<ODM> element.

The 4 lines starting with “xmlns:” are namespace
declarations. This excerpt contains no comments
or CDATA sections.

WELL-FORMED AND VALIDATED

An XML file is said to be well-formed if it conforms to the rules of XML syntax. At a very basic level this means:

 A single element, called the root element, contains all other elements in the document (in the define.xml the
root element is <ODM>)

 Elements should be properly opened and closed

4

 Elements do not overlap, e.g. are properly nested

 Attributes are properly quoted

 The document does not contain illegal characters.
For example, the “<” character has special meaning because it opens a tag. So, if this character is part of the
content, it should be should substituted as “<”

A conforming XML parser is not allowed to process an XML document that is not well-formed.

An XML schema is a description of a type of XML document, typically expressed in terms of constraints on the
structure and content of documents of that type. This description goes above and beyond the basic syntax constraints
imposed by well-formedness of an XML document [11].

The schema defines the allowed elements and attributes, order of the elements, overall structure, etc...

A schema might also describe that the content of a certain element is only valid if it conforms to the ISO 8601 date and
time specification. An XML document is valid, if it conforms to a specific XML schema.

The following example illustrates the difference between well-formed and validated. The XML document in Figure 2 is
a well-formed XML document, but is obviously not valid with respect to the schema that defines a valid define.xml file.

Figure 2: A well-formed XML document, but not a valid define.xml document
1

XPATH AND XSL

In order to be able to understand the XML structure of a define.xml file, we need to briefly discuss a few more XML
related standards and concepts.

The XML Path Language (XPath) gives XML developers a tool for navigating the structure of an XML document. We
can simply demonstrate this by 2 examples from Figure 2.

 The XPath location path /heartofrockandsoul/single/artist returns all artist elements: “George

Jones” and “Jerry Lee Lewis”.

 The XPath location path /heartofrockandsoul/single/@genre returns the “country” attribute.

XPath sees an XML document as a tree with branches called nodes. The nodes in this tree have family relationships:
parent-child, ancestor-descendant, sibling, and so forth.

1
 This particular document may not be a valid define.xml document, but it is certainly appropriate for a PharmaSUG in Nashville, home

of the Grand Ole Opry.

5

Conceptually, the XPath data model describes an XML document as having seven possible node types:

 Root

 Element

 Attribute

 Text

 Namespace

 Comment

 Processing instruction

Figure 3: define.xml as a tree

In Figure 3 we see part of a define.xml as a tree with
nodes. We only show element and attribute nodes.

ODM is the root element and is the parent of the

Study element. The ItemGroupDef and ItemDef

elements are siblings. The OID, Name and Purpose

attributes and the ItemRef elements are children of

The ItemGroupDef element. Study,

MetaDataVersion, ItemGroupDef, ItemDef and

ItemRef are all descendants of the ODM element.

The ODM element is an ancestor of the ItemRef

elements, or the ItemDefs elements.

XPath allows us to access any node from any other
node simply by knowing the relationship between the
two.

At the foundation of the XPath language is the ability to use location paths to refer to a node or nodeset. A node is a
piece of the XML document (such as an element, an attribute, or text content).

A location path identifies a set of nodes in a document. This set may be empty, may contain a single node, or may
contain several nodes. These can be element nodes, attribute nodes, namespace nodes, text nodes, comment nodes,
processing-instruction nodes, root nodes, or any combination of these. A location path is built out of successive location
steps. Each location step is evaluated relative to a particular node in the document called the context node [15].

There are two kinds of location paths: relative location paths and absolute location paths.

A relative location path consists of a sequence of location steps separated by a forward slash (/). Each step selects a
node or nodeset relative to the current node. Then, each node in that set is used as the current node for the following
step, and so on.

An absolute location path starts with a forward slash, optionally followed by a relative location path.

Examples:

 odm:Decode/odm:TranslatedText/text()

 /odm:ODM/odm:Study/odm:MetaDataVersion/ItemGroupDef

The SAS XML Mapper application also uses XPath location paths to tell the SAS XML engine where to find content from
the XML elements and attribute content to create rows and columns in SAS data sets.

Figure 4 shows part of an XMLMAP. It specifies that the data set ItemDef has a variable named Name, whose content

is defined by the XPath specification /LIBRARY/ItemDefs/Name.

6

Figure 4: XMLMAP example

The XPath standard is part of the XSL family of standards.

XSL is the Extensible Style sheet Language [12], one of the most complicated – and most useful – parts of XML. While
XML itself is intended to define the structure of a document, it does not contain any information on how it is to be
displayed. In order to do this we need a language, XSL, to describe the format of a document, ready for use in a display
application (computer screen, cell phone screen, paper).

XSL is actually a family of transformation languages which allows one to describe how files encoded in the XML
standard are to be formatted or transformed.

The following three languages can be distinguished:

 XSL Transformations (XSLT): an XML language for transforming XML documents into other XML documents,
into HTML documents, or into any other text based documents (like a SAS program), or even a PDF file.

 XSL Formatting Objects (XSL-FO): an XML language for specifying the visual formatting of an XML document

 The XML Path Language (XPath): a non-XML language used by XSLT, and also available for use in non-
XSLT contexts, for addressing the parts of an XML document.

An XSL stylesheet can be used to transform the define.xml to HTML in such a way that it can be viewed in a browser.

Figure 5: Define.xml displayed in a browser using an XSL style sheet

7

Figure 6: Transforming with XSLT

THE STRUCTURE OF THE DEFINE.XML

The previous section explained the building blocks of XML. This section will specifically describe the structure of a
define.xml file that conforms to the Case Report Tabulation Data Definition Specification (CRT-DDS or define.xml)
version 1.0 as developed by the CDISC define.xml Team [7].

SCHEMA STRUCTURE

The CRT-DDS (define.xml) standard is based on the CDISC operational model (ODM). The ODM is defined by an XML
schema that allows extension [8]. This extension mechanism has been implemented by expressing the ODM schema
using two files:

 a foundation XML Schema file (ODM1-2-1-foundation.xsd), which defines the elements, attributes and
structure of the base ODM schema.

 an application XML Schema file (ODM1-2-1.xsd.) which imports the foundation XML Schema and other
schema definitions needed by ODM, such as the core W3C XML schema (xml.xsd) and the XML schema that
defines the W3C XML Signature standard (xmldsig-core-schema.xsd).

To create the define.xml extension three files have been provided:

 A namespace XML schema (define-ns.xsd) that defines the extension namespace and any new elements and
attributes.

 An extension XML Schema file (define-extension.xsd) defines the location of the extensions within the ODM.

 An application extension XML Schema file (define1-0-0.xsd) that will import the extension XML Schema file
and, in turn, any files imported in the ODM root schema.

In November 2009 CDISC published a XML Schema Validation for Define.xml white paper [13]. This white paper,
created by the CDISC XML Technology team, provides guidance on validating define.xml documents against the
define.xml XML schemas and proposes practices and tools to improve define.xml schema validation.

8

Figure 7: The define.xml (CRT-DDS) and the associated style sheet and schemas

DEFINE.XML BUILDING BLOCKS

In this paragraph we will show the building blocks of the define.xml. As mentioned before, the CRT-DDS standard
(define.xml) is an extension of ODM. The ODM model defines many elements and attributes that are optional.

We will only mention required elements and attributes, or elements and attributes that were found in the example
define.xml file.

Figure 8 shows a high-level overview of a define.xml file.

Figure 8: The building blocks of the define.xml (CRT-DDS)

We will now describe the different parts of the define.xml file.

 The header section of the define.xml is important for the XML processor.

The first line identifies the file as an XML document and specifies the XML version (“1.0”) and the encoding of the
document (“ISO-8859-1”). The second line includes a reference to the style sheet (“define1-0-0.xsl”) that can be used
by an XSL processor to render the document. In this case the style sheet can be used by the XSL processor in a web

9

browser to render the XML file as HTML for display. As mentioned before, the HTML that gets created by the browser
depends on the particular browser application.

 Following the header section is the ODM root element. All other elements in the define.xml file will be contained
within the ODM element. The ODM element contains attributes that define the namespaces and the location of the
schema that specifies the XML document.

Other required ODM attributes are displayed in Table 1.

Table 1: ODM required attributes

Attribute Description

FileType Type of transmission. For define.xml the only valid value is “Snapshot”. This means that
the document contains only the current state of the data and metadata it describes, and
no transactional history.

FileOID A unique identifier for this file. FileOIDs should be universally unique if at all possible.

CreationDateTime Date and Time when the define.xml file was last modified (ISO 8601 datetime).

ODMVersion The version of the ODM standard used. According to the ODM schema, this is an
optional attribute. However, a missing ODMVersion should be interpreted as "1.1".
Documents based on ODM 1.2 should have ODMVersion="1.2".

 Study is the first element contained in the ODM root element. The Study element collects static structural
information about an individual study. It has one attribute “OID”, which is the unique identifier of the Study.

The Study element has two child-elements in the define.xml:

 GlobalVariables - General summary information about the Study.

 MetaDataVersion - Domain and variable definitions within the submission.

 GlobalVariables is a required child element of the Study element and contains three required child elements:

 StudyName - Short external name for the study.

 StudyDescription - Free-text description of the study.

 ProtocolName - The sponsor‟s internal name for the protocol.

 The MetaDataVersion is a child element of the Study element and contains the domain and variable definitions
included within a submission. Table 2 lists the MetaDataVersion attributes that are part of the define.xml file. The
attributes with a prefix of “def:” are extensions to the ODM schema.

Table 2: MetaDataVersion required attributes

Attribute Description

OID The unique identifier of the MetaDataVersion

Name Name of the MetaDataVersion

Description Further description of the data definition document

def:DefineVersion The schema version used for the define.xml

def:StandardName Short name of the MetaDataVersion (e.g. CDISC SDTM)

def:StandardVersion The version of an external standard to which the data conforms (e.g. 3.1.1)

 Table 3 lists the MetaDataVersion child elements. The ItemGroupDef and ItemDef elements are required.

10

Table 3: MetaDataVersion child elements

Element Description

def:AnnotatedCRF This element can be used to reference an Annotated Case Report Form (CRF), a PDF
file that maps the data collection fields used to collect subject data to the
corresponding variables or discrete variable values contained within the data sets

def:SupplementalDoc This element can be used to reference a PDF file with supplemental data definition
information. A reason for this document can be the need for further explanations or
descriptions of variables contained within the data sets.

def:leaf This element has to be present if either the def:AnnotatedCRF and/or the
def:SupplementalDoc are provided. The def:leaf element will then contain the actual
location of the PDF file relative to the define.xml

def:ComputationMethod This element is available for every unique computational algorithm that is referenced
by variable metadata or variable value-level metadata. It contains the method name
and the computation rule in a kind of pseudo code.

def:ValueListDef This element provides additional value-level metadata for certain variables that are part
of a normalized data structure. For example, the Vital Signs domain has a
measurement parameter (VSTESTCD) that stores the name of a measurement (height,
weight, systolic blood pressure, …). A corresponding value list will then describe each
unique value of the measurement (“HEIGHT”, “WEIGHT”, “SYSBP”, …)

ItemGroupDef For every data set in the submission there is an ItemGroupDef element describing data
set metadata (label, structure, keys, variables, location of transport file, …)

ItemDef For every variable referenced in either def:ValueListDef or ItemGroupDef there will be
an ItemDef element. This element will describe properties like name, label, length,
computation method, range or code list restrictions, and several other properties.

CodeList The CodeList element defines a discrete set of permitted values for an item. The
definition can be an explicit list of values or a reference to an externally defined code
list.

METADATAVERSION ELEMENT DETAILS

In this paragraph we will dive deeper into the sub-elements of the MetaDataVersion element. We will see how the
different elements relate to each other.

def:AnnotatedCRF, def:SupplementalDoc and def:leaf

As mentioned before, these elements can be used to reference PDF files. Figure 9 shows the relation between these

elements. The def:DocumentRef/@leafID must match the corresponding def:leaf/@ID.

Figure 9: Referencing external PDF files

ItemGroupDef

For every data set in the submission there will be an ItemGroupDef element with domain-level metadata. Table 4 lists
the ItemGroupDef attributes.

11

Table 4: ItemGroupDef attributes

Attribute Status Description

OID Required The unique identifier of the domain.

Name Required The file name of the data set or data domain name (e.g., “DM” for
Demographics)

Repeating Required “Yes” for domains with more than one record per subject whereas, “No” for
domains with 1 record per subject.

IsReferenceData Optional “Yes” for domains that contain reference data only, no subject-level data. “No”
indicates subject-level data. Absence of this attribute indicates subject-level
data.

SASDatasetName
2
 Optional Name of SAS data set.

Purpose Optional Purpose for the data set (e.g., “Tabulation”, “Analysis”).

def:Label Required Brief description of the data domain.

def:Structure Optional Data domain structure (e.g. “One record per subject per visit”).

def:DomainKeys Optional Comma-separated text string that contains the data set variables that uniquely
identify a data record.

def:Class Optional General class of the domain as defined in the SDTM model (e.g., “Events”,
“Interventions”, “Findings”, “Special Purpose”, “Trial Design”, ...)

def:ArchiveLocationID Required Reference to the def:leaf element that contains a link to the location of the data
set.

ItemGroupDef elements have:

 One ItemRef child element per variable in the data set

 Exactly one def:leaf element that contains the XLink information that is referenced by the
def:ArchiveLocationID attribute.

The relation between the ItemGroupDef/@def:ArchiveLocationID and the def:leaf/@ID is illustrated in Figure 10.

Figure 10: Referencing external data sets

ItemRef and ItemDef

For every variable in a data set in the submission there will be an ItemRef and an ItemDef element with variable-level
metadata. Table 5 lists the ItemRef attributes. Table 6 lists ItemDef attributes. ItemDef elements can have an optional
associated CodeListRef or def:ValueListRef child element.

2
 SASDatasetName is an optional attribute that is part of the ODM foundation. This means that it is a valid attribute in the define.xml.

This attribute is not mentioned in the define.xml specification.

12

def:ComputationMethod

The def:ComputationMethod element has one attribute (OID) and contains the details about computational algorithms
used to derive or impute variable values.

Figure 11: Example of a ComputationMethod

Table 5: ItemRef attributes

Attribute Status Description

ItemOID Required The unique identifier of the variable.

OrderNumber Optional Provide an ordering on the ItemRefs (within the containing ItemGroupDef) for
use whenever a list of ItemRefs is presented to a user.

Mandatory Required Indicates that the clinical data for an instance of the containing item group
would be incomplete without an instance of this type of item.

Variables that have an SDTM “Core” attribute given as "Required" should have
Mandatory="Yes" in the define.xml. SDTM variables that have a “Core” attribute
as "Expected" or "Permissible" should have Mandatory="No" in the define.xml.

Role Optional Variable classification (e.g., “Identifier”, “Topic”, .”Timing Variable”, ...). Values
are interpreted as codes from CodeList as specified by @RoleCodeListOID

RoleCodeListOID Optional The identifier of the corresponding Role Code List, which defines the full set
roles from which the Role attribute values are to be taken.

Table 6: ItemDef attributes

Attribute Status Description

OID Required The unique identifier of the variable.

Name Required Variable name.

DataType Required Type of the data (e.g., text, integer, float, ...)

Length Conditional The variable length.

SignificantDigits Conditional The number of decimal digits.

SASFieldName
3
 Optional

Origin Optional Indicator of the origin of the variable (e.g., CRF page number,
derived, or a reference to other variable(s).

Comment Required Further information regarding variable definition, usage, etc.

Def:Label Required Variable label.

Def:DisplayFormat Optional Display format for numeric variables (e.g., 8.2)

Def:ComputationMethodOID Optional Unique identifier of the corresponding computation method.

CodeList and def:ValueListDef
Many variables in a submission have a discrete list of valid values or controlled terms associated with them. The
CodeList element defines the controlled terminology. For variables whose values are restricted to a list of values, the
corresponding ItemDef element has to include a CodeListRef element that references a CodeList element. The
CodeListOID attribute of the CodeListRef element should match the OID attribute of the CodeList element.

3
 SASFieldName is optional an attribute that is part of the ODM foundation. This means that it is a valid attribute in the define.xml. This

attribute is not mentioned in the define.xml specification.

13

The def:ValueListDef element provides additional value-level metadata for certain variables that are part of a
normalized data structure. For example, the Vital Signs domain has a measurement parameter (VSTESTCD) that
stores the name of a measurement (height, weight, systolic blood pressure, …). A corresponding value list will then
describe each unique value of the measurement (“HEIGHT”, “WEIGHT”, “SYSBP”, …). For these variables, the
corresponding ItemDef element has to include a def:ValueListRef element that references a def:ValueListDef element.

The def:ValueListOID attribute of the def:ValueListRef element should match the OID attribute of the

def:ValueListDef element.

Figure 12 illustrates several concepts that are related to ItemRef, ItemDef, def:ComputationMethod, CodeList and
def:ValueListDef elements.

The black numbers on the right side represent the source of a relation and a red numbers on the left side represent the
target of a relation. In every relation there has to be a correspondence between the identifier of the source and the
target.

For example: In relation 4: source identifier = ItemRef/@ItemOID, target identifier = ItemDef/@OID and the both have
the value “VS.VSTESTCD”;

14

Figure 12: Relations within a define.xml

l

15

DESIGNING A RELATIONAL DATA STRUCTURE FOR THE DEFINE.XML

In the previous paragraphs we have seen the structure of the define.xml file. Also, we have seen the relations between
the different parts within the define.xml file. Since the define.xml file does not have a 2-dimensional data structure, it is
not a trivial task to translate the define.xml to a number of SAS data set with rows and columns. SAS has defined a
relational data model that represents the define.xml.

The highly structured nature of CDISC CRT-DDS data requires that any mapping to a relational format include a large
number of data sets, with foreign key relationships to help preserve the intended non-relational object structure. In the
SAS Clinical Standards Toolkit, foreign key relationships are enforced when validating the CDISC CRT-DDS data sets.
Appendix 1 and Appendix 2 show the 39 SAS data sets that represent the CRT-DDS data model.

One could use SAS/Base to construct the information that needs to go into the 39 tables, however, it is important to
understand what the relation is between the CRT-DDS tables and what information is needed in the tables. Some of the
information in these 39 tables can be easily derived from the SDTM datasets that need to be described by the
define.xml (dataset label, dataset name, variable names and labels, …). Other information cannot automatically be
created and needs to be created through a process.

The first step in creating a define.xml file with SAS Clinical Standards Toolkit means populating the SAS data set
representation of the CRT-DDS model from the SDTM domain metadata (source_tables and source_columns data sets)
and the study metadata (source_study data set) by running the crtdds_sdtmtodefine macro. Depending on the
completeness of this source data the crtdds_sdtmtodefine macro can (partially) populate 12 of the 39 CRT-DDS SAS
tables:

clitemdecodetranslatedtext

codelistitems

codelists

computationmethods

definedocument

itemdefs

itemgroupdefitemrefs

itemgroupdefs

itemgroupleaf

itemgroupleaftitles

metadataversion

study

The remainder of the tables will not be automatically populated by SAS Clinical Standards Toolkit. Typically, the
following tables need be filled by a process not included in SAS Clinical Standards Toolkit to create a CRT-DDS
define.xml file that can be considered more complete.

annotatedcrfs (contains document references to the annotated case report form)

supplementaldocs (contains document references to the supplemental documentation)

mdvleaf (contains links for each of the documents listed in the AnnotatedCRF and SupplementalDocs tables)

mdvleaftitles (contains a descriptive title for each MDVLeaf item)

itemvaluelistrefs (associates each value list item to a row in the ItemDefs table)

valuelists (contains id of value lists)

valuelistitemrefs (contains id of each item in a value list)

externalcodelists (contains name and versions of external code lists)

Version 1.5 of the SAS Clinical Standards Toolkit will contain macros that will make the process of populating these 8
tables easier, compared to doing this with custom SAS/Base code.

The remaining 19 tables are typically not used in a define.xml, but have been defined to make the data model for the
metadata complete.

THE SAS CLINICAL STANDARDS TOOLKIT

The SAS Clinical Standards Toolkit is a technology that exists as a set of SAS macros and metadata SAS datasets. The
macros that are part of the toolkit are used by SAS® Clinical Data Integration, which can be used to populate metadata
datasets and perform macro calls through a user interface.

VALIDATING THE DEFINE.XML

Earlier we talked about two different ways to verify whether XML files are coded correctly:

16

Well-formed The XML code must be syntactically correct.

Valid If the XML file has an associated XML Schema, the elements must appear in the defined structure and
the content of the individual elements must conform to the declared data types specified in the schema.

There are numerous tools available that can check well-formedness and validate an XML file against an XML schema.
As mentioned earlier in this paper, the CDISC XML Technologies Team has published a XML Schema Validation for
Define.xml white paper that provides guidance on validating define.xml documents against the define.xml XML schemas
and proposes practices and tools to improve define.xml schema validation [13].

To further ensure the quality of the define.xml, more validation needs to be performed:

 Validate against the rules as specified in the Case Report Tabulation Data Definition Specification (define.xml)

version 1.0 [7]. An example of this is the rule that an ItemRef element must be uniquely defined within an

ItemGroupDef , through the uniqueness of the ItemOID attribute of the ItemRef.

 Check the consistency between the define.xml content and the SAS transport files. For example, an

ItemGroupDef element must contain an ItemRef element for each variable included in the corresponding
SAS transport file.

 Check the consistency between the define.xml and the SDTM metadata. An example of this is the

“Mandatory” attribute of the ItemRef element, which needs to be consistent with the SDTM Core attribute
(Required, Expected, Permissible).

Once we have the define.xml converted into relational SAS data sets, it will be easy to perform these validation checks
using the SAS Clinical Standards Toolkit.

USING THE SAS CLINICAL STANDARDS TOOLKIT

Before the macros in the SAS Clinical Standards Toolkit can be used there are a few tasks that need to be performed.:

- Setup of global macro variables.

This can be done either directly through %let statements, or by loading properties (used to create macro

variables) with the cst_setStandardProperties macro:
%cst_setStandardProperties(_cstStandard=CST-FRAMEWORK,_cstSubType=initialize);

%cst_setStandardProperties(_cstStandard=CDISC-CRTDDS,

 _cstStandardVersion=1.0,_cstSubType=initialize);

- Process input and output has to be defined by creating a process SASReferences data set. This data set is

then communicated with the cstutil_processsetup macro.

 An example of a SASReferences dataset for the process that creates a define.xml file is presented in Figure 13.

Figure 13: SASReferences data set

The following toolkit macros are typically used in the process to create a define.xml or to read a define.xml:

- crtdds_sdtmtodefine
This macro creates the 39 CRT-DDS data sets by using SDTM table, column, and study metadata (datasets
source_tables, source_columns and source_study).

- crtdds_validate
This macro validates the CRT-DDS data sets to make sure that they are in compliance with business rules
associated with the CRT-DDS standard

- crtdds_write
This macro creates the XML rendition of the CRT-DDS datasets, i.e. the define.xml

17

- crtdds_xmlvalidate
This macro performs XML schema validation of the define.xml file

- crtdds_read
This macro reads the define.xml file into the SAS representation of the CRT-DDS data model

CREATING ADDITIONAL METADATA FOR THE DEFINE.XML FILE

Some of the information that needs to be represented in the define.xml file cannot be automatically generated by SAS
and needs to be provided by the user. The user will need to add metadata directly to the CRT-DDS datasets, and then

generate the define.xml with the crtdds_write macro to include this additional metadata.

Examples include value level metadata and metadata describing supporting documents, such as annotated CRFs and
supplemental data definitions.

Future versions of the SAS Clinical Standards Toolkit will contain macros to further automate addition of this additional
metadata.

VALUE LEVEL METADATA

Value level metadata is needed for SDTM Findings domains like Vital Signs (VS) domain. The VSTESTCD variable
contains values like "WEIGHT" and "HEIGHT". We need to define metadata based on the value of VSTESTCD:

In XML this would look as follows:

<def:ValueListDef OID="VL.VS.VSTESTCD">

 <ItemRef ItemOID="IT.VS.VSTESTCD.HEIGHT" OrderNumber="1" Mandatory="No"/>

 <ItemRef ItemOID="IT.VS.VSTESTCD.WEIGHT" OrderNumber="2" Mandatory="No"/>

 <ItemRef ItemOID="IT.VS.VSTESTCD.DIABP" OrderNumber="3" Mandatory="No"/>

 <ItemRef ItemOID="IT.VS.VSTESTCD.FRMSIZE" OrderNumber="4" Mandatory="No"/>

…

</def:ValueListDef>

<ItemGroupDef OID="VS1" Name="VS" Repeating="Yes" IsReferenceData="No"

 SASDatasetName="VS" Domain="VS" Purpose="Tabulation"

 def:Label="Vital Signs" def:Class="Findings"

 def:Structure="One record per vital sign measurement per time point per visit per

subject"

 def:DomainKeys="STUDYID USUBJID VSTESTCD VISITNUM VSTPTREF VSTPTNUM"

18

 def:ArchiveLocationID="VS1">

 <ItemRef ItemOID="COL703" Mandatory="Yes" OrderNumber="1" Role="Identifier"/>

 <ItemRef ItemOID="COL704" Mandatory="Yes" OrderNumber="2" Role="Identifier"/>

 <ItemRef ItemOID="COL705" Mandatory="Yes" OrderNumber="3" Role="Identifier"/>

 <ItemRef ItemOID="COL706" Mandatory="Yes" OrderNumber="4" Role="Identifier"/>

 <ItemRef ItemOID="COL707" Mandatory="No" OrderNumber="5" Role="Identifier"/>

 <ItemRef ItemOID="COL708" Mandatory="No" OrderNumber="6" Role="Identifier"/>

 <ItemRef ItemOID="COL709" Mandatory="Yes" OrderNumber="7" Role="Topic"/>

…

 <ItemRef ItemOID="COL733" Mandatory="No" OrderNumber="31" Role="Timing"/>

 <def:leaf ID="VS1" xlink:href="../transport/vs.xpt">

 <def:title>Vital Signs SAS transport file</def:title>

 </def:leaf>

</ItemGroupDef>

<ItemDef OID="COL709" Name="VSTESTCD" DataType="text" Length="8" SASFieldName="VSTESTCD"

Comment="Short name of the measurement, test, or examination described in VSTEST. It can be

used as a column name when converting a dataset from a vertical to a horizontal format. The

value in VSTESTCD cannot be longer than 8 characters, nor can it start with a number

(e.g.'1TEST'). VSTESTCD cannot contain characters other than letters, numbers, or

underscores. Examples: SYSBP, DIABP, BMI." def:Label="Vital Signs Test Short Name">

 <CodeListRef CodeListOID="VSTESTCD"/>

 <def:ValueListRef ValueListOID="VL.VS.VSTESTCD"/>

</ItemDef>

<ItemDef OID="IT.VS.VSTESTCD.HEIGHT" Name="HEIGHT" DataType="float" Length="8"

 Origin="CRF Page 11" def:Label="Height"/>

<ItemDef OID="IT.VS.VSTESTCD.WEIGHT" Name="WEIGHT" DataType="float" Length="8"

 Origin="CRF Page 11" def:Label="Weight"/>

<ItemDef OID="IT.VS.VSTESTCD.DIABP" Name="DIABP" DataType="integer" Length="8"

 Origin="CRF Page 11" def:Label="Diastolic Blood Pressure"/>

<ItemDef OID="IT.VS.VSTESTCD.FRMSIZE" Name="FRMSIZE" DataType="text" Length="6"

 Origin="CRF Page 11" def:Label="Frame Size">

 <CodeListRef CodeListOID="SIZE"/>

</ItemDef>

To be able to represent this information in the SAS CRT-DDS datasets we will need to add information to several
datasets, as can be seen in Figure 14.

The following datasets are involved:

ItemDefs contains the column metadata

ValueLists contains id of value lists

ValueListItemRefs contains id of each item in a value list – associates each value list item to a row in
the ItemDefs table

ItemValueListRefs associates each value list item to a row in the ItemDefs table

19

Figure 14: CRT-DDS Datasets related to value level metadata

This metadata can be specified by the user in a source_values dataset in a similar way as the source_columns

dataset. The data source_values set has the following structure:

create table srcmdata.source_values(label='Source Value Metadata') (

 SASref char(8) format=$8. label='SASreferences sourcedata libref',

 table char(32) format=$32. label='Table Name',

 column char(32) format=$32. label='Column Name',

 value char(32) format=$32. label='Column Value',

 label char(200) format=$200. label='Column Description',

 order num format=8. label='Column Order',

 type char(1) format=$1. label='Column Type',

 length num format=8. label='Column Length',

 displayformat char(32) format=$32. label='Display Format',

 xmldatatype char(8) format=$8. label='XML Data Type',

 xmlcodelist char(32) format=$32. label='SAS Format/XML Codelist',

 core char(10) format=$10. label='Column Required or Optional',

 origin char(40) format=$40. label='Column Origin',

 role char(128) format=$128. label='Column Role',

 term char(80) format=$80. label='Controlled Term or Format in Standard',

 algorithm char(2000) format=$2000. label='Computational Algorithm or Method',

 qualifiers char(200) format=$200. label='Column qualifiers (space delimited)',

 standard char(20) format=$20. label='Name of Standard',

 standardversion char(20) format=$20. label='Version of Standard',

 standardref char(200) format=$200. label='Associated reference(s) in Standard',

 comment char(1000) format=$1000. label='Comment'

);

The only difference between the source_columns and the source_values data set is the extra 'value' column in the

source_values dataset. Figure 15 shows an example of the source_values dataset.

20

Figure 15: Sample source_values dataset

The SAS program in Appendix 3 shows example SAS code to create the source_values data set. The code in Appendix
4 is an example that can be used to transform the source_values dataset to the SAS representation of the define.xml.

DOCUMENT METADATA

The define.xml supports metadata for additional documents that can help a reviewer understand the submission:
Annotated CRFs and Supplemental Data Definitions.

An example of how this metadata looks in XML:

<def:AnnotatedCRF>

 <def:DocumentRef leafID="lf.blankcrf"/>

</def:AnnotatedCRF>

<def:AnnotatedCRF>

 <def:DocumentRef leafID="lf.blankcrf2"></def:DocumentRef>

</def:AnnotatedCRF>

<def:SupplementalDoc>

 <def:DocumentRef leafID="lf.supplementaldoc"/>

</def:SupplementalDoc>

<def:leaf ID="lf.blankcrf" xlink:href="blankcrf.pdf">

 <def:title>Annotated Case Report Forms</def:title>

</def:leaf>

<def:leaf ID="lf.blankcrf2" xlink:href="blankcrf-add.pdf">

 <def:title>Annotated Case Report Forms (Addendum)</def:title>

</def:leaf>

<def:leaf ID="lf.supplementaldoc" xlink:href="supplementaldoc.pdf">

 <def:title>Reviewers Guide</def:title>

</def:leaf>

To be able to represent this information in the SAS CRT-DDS datasets we will need to add information to several
datasets. The following datasets are involved:

AnnotatedCRF contains document references to the annotated case report form

SupplementalDocs contains document references to the supplemental documentation

MDVLeaf contains the href link for each of the documents listed in the AnnotatedCRF and
SupplementalDocs tables.

MDVLeafTitles contains a descriptive title for each MDVLeaf item.

Figure 15 shows the relation between these tables in the SAS representation of the define.xml.

21

Figure 15: CRT-DDS Datasets related to document metadata

This metadata can be specified by the user in a source_documents dataset, which has the following structure:

 create table srcmdata.source_documents (

 SASref char(8) format=$8. label='SASreferences sourcedata libref',

 doctype char(10) format=$10.

 label='Document Type (CRF/DOC)',

 DocumentRef char(2000) format=$2000.

 label='The referenced Annotated CRF document',

 href char(512) format=$512.

 label='The pathname and filename of the target dataset relative to the define.xml',

 title char(2000) format=$2000.

 label='Meaningful description, label, or location of the document leaf'

);

Figure 17 gives an example of the source_documents dataset.

Figure 17: Sample source_documents dataset

The SAS program in Appendix 5 shows example SAS code to create the source_documents data set. The SAS code in
Appendix 6 is an example that can be used to transform the source_documents dataset to the SAS representation of
the define.xml.

CONCLUSION

The SAS Clinical Standards Toolkit provides metadata and macros to work with the CRT-DDS dataset representation of
the define.xml. The Toolkit is able to transform metadata into a define.xml that can be validated for both internal
consistency and consistency with the xml CRT-DDS schema.

22

REFERENCES

1. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and
Research (CDER), Center for Biologics Evaluation and Research (CBER)”.
“Final Guidance for Industry: Providing Regulatory Submissions in Electronic Format--Human Pharmaceutical
Applications and Related Submissions Using the eCTD Specifications”. Revision 2, June 2008.
(http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM072349.pdf)

2. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and
Research (CDER). Study Data Specifications, Version 1.5.1, January 2010
(http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/FormsSubmissionRequirements/ElectronicSu
bmissions/UCM199759.pdf)

3. CDISC Study Data Tabulation Model, Version 1.1, April 28, 2005
(http://www.cdisc.org/content1605)

4. CDISC Study Data Tabulation Model Implementation Guide: Human Clinical Trials, Version 3.1.1, August 26, 2005
(http://www.cdisc.org/content1605)

5. CDISC Study Data Tabulation Model, Version 1.2, November 12, 2008
(http://www.cdisc.org/sdtm)

6. CDISC Study Data Tabulation Model Implementation Guide: Human Clinical Trials, Version 3.1.2, November 12,
2008 (http://www.cdisc.org/sdtm)

7. Case Report Tabulation Data Definition Specification (define.xml), Version 1.0, February 9, 2005
(http://www.cdisc.org/define-xml)

8. CDISC Operational Data Model (ODM), Version 1.2.1, January, 2005
(http://www.cdisc.org/odm)

9. Extensible Markup Language (XML) 1.0, Fourth Edition, August 16, 2006
(http://www.w3.org/TR/2006/REC-xml-20060816)

10. Eric T. Ray, 2003, Learning XML, Creating Self-Describing Data. 2
nd

 Edition, (O‟Reilly and Associates)

11. Eric van der Vlist, 2002, XML Schema, The W3C’s Object-Oriented Descriptions for XML (O‟Reilly and Associates)

12. Dough Tidwell, 2001, XSLT, Mastering XML Transformations. (O‟Reilly and Associates)

13. XML Schema Validation for Define.xml, Version 1.0, November 30, 2009
(http://www.cdisc.org/define-xml)

14. SAS Institute Inc. 2011. SAS® Clinical Standards Toolkit 1.4: User's Guide . Cary, NC: SAS Institute Inc.
(http://support.sas.com/documentation/onlinedoc/clinical/index.html)

15. Gene Lightfoot (2010). Implementing, Managing, and Validating a Clinical Standard Using SAS Clinical Standards
Toolkit 1.3. Proceedings of the 6th Pharmaceutical Users Software Exchange (PhUSE 2010, Berlin, Germany)
(http://www.lexjansen.com/phuse/2010/cd/CD14.pdf)

16. Julie Maddox, Mark Lambrecht (2010). define.xml – Tips and Techniques for creating CRT-DDS. Proceedings of
the 6th Pharmaceutical Users Software Exchange (PhUSE 2010, Berlin, Germany)
(http://www.lexjansen.com/phuse/2010/cd/CD09.pdf)

17. Lex Jansen (2011). Using the SAS® Clinical Standards Toolkit for define.xml creation. Proceedings of the
Pharmaceutical Industry SAS® Users Group (PharmaSUG 2011, Nashville, TN)
(http://www.lexjansen.com/pharmasug/2011/sas/pharmasug-2011-sas-hw02.pdf)

CONTACT INFORMATION

Lex Jansen,
SAS Institute Inc.
919-531-9860
Email: mailto:lex.jansen@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of
their respective companies.

http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM072349.pdf
http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/FormsSubmissionRequirements/ElectronicSubmissions/UCM199759.pdf
http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/FormsSubmissionRequirements/ElectronicSubmissions/UCM199759.pdf
http://www.cdisc.org/content1605
http://www.cdisc.org/content1605
http://www.cdisc.org/sdtm
http://www.cdisc.org/sdtm
http://www.cdisc.org/define-xml
http://www.cdisc.org/odm
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.oreilly.com/catalog/learnxml2/
http://www.oreilly.com/catalog/xmlschema/
http://www.oreilly.com/catalog/xslt/
http://www.cdisc.org/define-xml
http://support.sas.com/documentation/onlinedoc/clinical/index.html
http://www.lexjansen.com/phuse/2010/cd/CD14.pdf
http://www.lexjansen.com/phuse/2010/cd/CD09.pdf
http://www.sas.com/
http://www.lexjansen.com/pharmasug/2011/sas/pharmasug-2011-sas-hw02.pdf
mailto:lex.jansen@sas.com

23

APPENDIX 1

Complete SAS Data Sets representation of CRT-DDS version 1.0 (define.xml)
The data sets in bold are typically used in a define.xml meant for submission.

DefineDocument contains information specifically about he define.xml file, including description and
file creation date/time

Study contains descriptive information about each study included in the define.xml file

MetaDataVersion contains information about the data standards used in the study.

AnnotatedCRF contains document references to the annotated case report form

SupplementalDocs contains document references to the supplemental documentation

MDVLeaf contains the href link for each of the documents listed in the AnnotatedCRF and
SupplementalDocs tables.

MDVLeafTitles contains a descriptive title for each MDVLeaf item.

ComputationMethods contains description of computation methods

ValueLists contains id of value lists

ValueListItemRefs contains id of each item in a value list – associates each value list item to a row in
the ItemDefs table

ItemValueListRefs associates each value list item to a row in the ItemDefs table

ProtocolEventRefs contains a list of study events and the order they occur
StudyEventDefs contains descriptive information on the study events
StudyEventFormRefs associates a particular form to a specific study event

FormDefs contains a list of forms for the study
FormDefItemGroupRefs associates a table with a form definition
FormDefArchLayouts contains document references for the form layouts
Presentation contains how information on the study is presented

ItemGroupDefs contains metadata for each of the tables included in the study
ItemGroupAliases contains context and alias names for the table

ItemGroupLeaf contains href location to the specified table

ItemGroupLeafTitles contains descriptive title to table location

ItemGroupDefItemRefs associates the columns to the study tables

ItemDefs contains the column metadata
ItemQuestionTranslatedText contains translated text of questions
ItemQuestionExternal contains the name and version of external question dictionaries
ItemMURefs associates a column to a measurement unit
ItemRangeChecks contains information on range checks for data in a column
ItemRangeCheckValues contains information on range checks for data in a column
RCErrorTranslatedText error message to be used when a range check is violated
ItemRole contains the role of the column
ItemAliases contains context and alias names for the column

MeasurementUnits contains metadata about measurement units
MUTranslatedText contains translated text of measurement units

CodeLists contains name, type and SAS Format name of code lists

ExternalCodeLists contains name and versions of external code lists

CodeListItems contains a list of coded items for each code list

CLItemDecodeTranslatedText contains the full text for a coded item in the specified language

ImputationMethods contains description of imputation methods

24

APPENDIX 2

Data model for CRT-DDS (define.xml)
The tables in green are typically used in submission.

DefineDocument

*PK FileOID: CHAR(128)

 CreationDateTime: CHAR(24)

 Archival: CHAR(3)

 AsOfDateTime: CHAR(24)

 Description: CHAR(2000)

* FileType: CHAR(13)

 Granularity: CHAR(15)

 Id: CHAR(128)

 ODMVersion: CHAR(2000)

 Originator: CHAR(2000)

 PriorFileOID: CHAR(128)

 SourceSystem: CHAR(2000)

 SourceSystemVersion: CHAR(2000)

+ PK_DefineDocument(FileOID)

Study

*PK OID: CHAR(128)

* StudyName: CHAR(128)

* StudyDescription: CHAR(2000)

* ProtocolName: CHAR(128)

*FK FK_DefineDocument: CHAR(128)

+ FK_Study_DefineDocument(FK_DefineDocument)

+ PK_Study(OID)

MeasurementUnits

*PK OID: CHAR(128)

* Name: CHAR(128)

*FK FK_Study: CHAR(128)

+ FK_MeasurementUnits_Study(FK_Study)

+ PK_MeasurementUnits(OID)

MUTranslatedText

 TranslatedText: CHAR(2000)

 lang: CHAR(128)

*FK FK_MeasurementUnits: CHAR(128)

+ FK_MUTranslatedT_MeasurementUn(FK_MeasurementUnits)

MetaDataVersion

*PK OID: CHAR(128)

* Name: CHAR(128)

 Description: CHAR(2000)

 IncludedOID: CHAR(128)

 IncludedStudyOID: CHAR(128)

* DefineVersion: CHAR(2000)

* StandardName: CHAR(2000)

* StandardVersion: CHAR(2000)

*FK FK_Study: CHAR(128)

+ FK_MetaDataVersion_Study(FK_Study)

+ PK_MetaDataVersion(OID)

AnnotatedCRFs

 DocumentRef: CHAR(2000)

*FK leafID: CHAR(128)

*FK FK_MetaDataVersion: CHAR(128)

+ FK_AnnotatedCRFs_MDVLeaf(leafID)

+ FK_AnnotatedCRFs_MetaDataVers(FK_MetaDataVersion)

SupplementalDocs

 DocumentRef: CHAR(2000)

*FK leafID: CHAR(128)

*FK FK_MetaDataVersion: CHAR(128)

+ FK_SupplementalD_MetaDataVersi(FK_MetaDataVersion)

+ FK_SupplementalDocs_MDVLeaf(leafID)

MDVLeaf

*PK ID: CHAR(128)

 href: CHAR(512)

*FK FK_MetaDataVersion: CHAR(128)

+ FK_MDVLeaf_MetaDataVersion(FK_MetaDataVersion)

+ PK_MDVLeaf(ID)

MDVLeafTitles

 title: CHAR(2000)

*FK FK_MDVLeaf: CHAR(128)

+ FK_MDVLeafTitles_MDVLeaf(FK_MDVLeaf)

ComputationMethods

*PK OID: CHAR(128)

 method: CHAR(2000)

*FK FK_MetaDataVersion: CHAR(128)

+ FK_ComputationMe_MetaDataVersi(FK_MetaDataVersion)

+ PK_ComputationMethods(OID)

ValueLists

*PK OID: CHAR(128)

*FK FK_MetaDataVersion: CHAR(128)

+ FK_ValueLists_MetaDataVersion(FK_MetaDataVersion)

+ PK_ValueLists(OID)
ValueListItemRefs

*FK ItemOID: CHAR(128)

 OrderNumber: NUMBER(8,2)

* Mandatory: CHAR(3)

 KeySequence: NUMBER(8,2)

 FK ImputationMethodOID: CHAR(128)

 Role: CHAR(128)

 FK RoleCodeListOID: CHAR(128)

*FK FK_ValueLists: CHAR(128)

+ FK_ValueListItem_ImputationMet(ImputationMethodOID)

+ FK_ValueListItemRefs_ItemDefs(ItemOID)

+ FK_ValueListItemRef_ValueLists(FK_ValueLists)

+ FK_ValueListItemRefs_CodeLists(RoleCodeListOID)

ProtocolEv entRefs

* Mandatory: CHAR(3)

 OrderNumber: NUMBER(8,2)

*FK StudyEventOID: CHAR(128)

*FK FK_MetaDataVersion: CHAR(128)

+ FK_ProtocolEvent_MetaDataVersi(FK_MetaDataVersion)

+ FK_ProtocolEvent_StudyEventDef(StudyEventOID)

StudyEv entDefs

*PK OID: CHAR(128)

 Category: CHAR(2000)

* Name: CHAR(128)

* Repeating: CHAR(3)

* Type: CHAR(11)

*FK FK_MetaDataVersion: CHAR(128)

+ FK_StudyEventDef_MetaDataVersi(FK_MetaDataVersion)

+ PK_StudyEventDefs(OID)

StudyEv entFormRefs

*FK FormOID: CHAR(128)

* Mandatory: CHAR(3)

 OrderNumber: NUMBER(8,2)

*FK FK_StudyEventDefs: CHAR(128)

+ FK_StudyEventFor_StudyEventDef(FK_StudyEventDefs)

+ FK_StudyEventFormRefs_FormDefs(FormOID)

FormDefs

*PK OID: CHAR(128)

* Name: CHAR(128)

* Repeating: CHAR(3)

*FK FK_MetaDataVersion: CHAR(128)

+ FK_FormDefs_MetaDataVersion(FK_MetaDataVersion)

+ PK_FormDefs(OID)

FormDefItemGroupRefs

*FK ItemGroupOID: CHAR(128)

* Mandatory: CHAR(3)

 OrderNumber: NUMBER(8,2)

*FK FK_FormDefs: CHAR(128)

+ FK_FormDefItemGr_ItemGroupDefs(ItemGroupOID)

+ FK_FormDefItemGroupRe_FormDefs(FK_FormDefs)

+ PK_FormDefItemGroupDefs(ItemGroupOID)

FormDefArchLayouts

*PK OID: CHAR(128)

* PdfFileName: CHAR(512)

 FK PresentationOID: CHAR(128)

*FK FK_FormDefs: CHAR(128)

+ FK_FormDefArchLay_Presentation(PresentationOID)

+ FK_FormDefArchLayouts_FormDefs(FK_FormDefs)

+ PK_FormDefArchLayouts(OID)

ItemGroupDefs

*PK OID: CHAR(128)

* Name: CHAR(128)

* Repeating: CHAR(3)

 IsReferenceData: CHAR(3)

 SASDatasetName: CHAR(8)

 Domain: CHAR(2000)

 Origin: CHAR(2000)

 Role: CHAR(128)

 Purpose: CHAR(2000)

 Comment: CHAR(2000)

* Label: CHAR(2000)

 Class: CHAR(2000)

 Structure: CHAR(2000)

 DomainKeys: CHAR(2000)

* ArchiveLocationID: CHAR(128)

*FK FK_MetaDataVersion: CHAR(128)

+ FK_ItemGroupDefs_MetaDataVers(FK_MetaDataVersion)

+ PK_ItemGroupDefs(OID)

ItemGroupDefitemRefs

*FK ItemOID: CHAR(128)

* Mandatory: CHAR(3)

 OrderNumber: NUMBER(8,2)

 KeySequence: NUMBER(8,2)

 FK ImputationMethodOID: CHAR(128)

 Role: CHAR(128)

 FK RoleCodeListOID: CHAR(128)

*FK FK_ItemGroupDefs: CHAR(128)

+ FK_ItemGroupDefi_ImputationMet(ImputationMethodOID)

+ FK_ItemGroupDefi_ItemGroupDefs(FK_ItemGroupDefs)

+ FK_ItemGroupDefitemR_CodeLists(RoleCodeListOID)

+ FK_ItemGroupDefitemRef_ItemDefs(ItemOID)

ItemGroupAliases

* Context: CHAR(2000)

* Name: CHAR(2000)

*FK FK_ItemGroupDefs: CHAR(128)

+ FK_ItemGroupAlia_ItemGroupDefs(FK_ItemGroupDefs)

ItemGroupLeaf

*PK ID: CHAR(128)

 href: CHAR(512)

*FK FK_ItemGroupDefs: CHAR(128)

+ FK_ItemGroupLeaf_ItemGroupDefs(FK_ItemGroupDefs)

+ PK_ItemGroupLeaf(ID)

ItemGroupLeafTitles

 title: CHAR(2000)

*FK FK_ItemGroupLeaf: CHAR(128)

+ FK_ItemGroupLeaf_ItemGroupLeaf(FK_ItemGroupLeaf)

ItemDefs

*PK OID: CHAR(128)

* Name: CHAR(128)

* DataType: CHAR(8)

 Length: NUMBER(8,2)

 SignificantDigits: NUMBER(8,2)

 SASFieldName: CHAR(8)

 SDSVarName: CHAR(8)

 Origin: CHAR(2000)

 Comment: CHAR(2000)

 FK CodeListRef: CHAR(128)

 Label: CHAR(2000)

 DisplayFormat: CHAR(2000)

 FK ComputationMethodOID: CHAR(128)

*FK FK_MetaDataVersion: CHAR(128)

+ FK_ItemDefs_CodeLists(CodeListRef)

+ FK_ItemDefs_ComputationMethods(ComputationMethodOID)

+ FK_ItemDefs_MetaDataVersion(FK_MetaDataVersion)

+ PK_ItemDefs(OID)
ItemQuestionTranslatedText

 TranslatedText: CHAR(2000)

 lang: CHAR(17)

*FK FK_ItemDefs: CHAR(128)

+ FK_ItemQuestionTransl_ItemDefs(FK_ItemDefs)

ItemQuestionExternal

 Dictionary: CHAR(2000)

 Version: CHAR(2000)

 Code: CHAR(2000)

*FK FK_ItemDefs: CHAR(128)

+ FK_ItemQuestionExtern_ItemDefs(FK_ItemDefs)

ItemMURefs

*FK MeasurementUnitOID: CHAR(128)

*FK FK_ItemDefs: CHAR(128)

+ FK_ItemMURefs_ItemDefs(FK_ItemDefs)

+ FK_ItemMURefs_MeasurementUnits(MeasurementUnitOID)

ItemRangeChecks

*PK OID: CHAR(128)

* Comparator: CHAR(5)

* SoftHard: CHAR(4)

 FK MURefOID: CHAR(128)

*FK FK_ItemDefs: CHAR(128)

+ FK_ItemRangeChec_MeasurementUn(MURefOID)

+ FK_ItemRangeChecks_ItemDefs(FK_ItemDefs)

+ PK_ItemRangeChecks(OID)

ItemRangeCheckValues

 CheckValue: CHAR(512)

*FK FK_ItemRangeChecks: CHAR(128)

+ FK_ItemRangeChec_ItemRangeChec(FK_ItemRangeChecks)

RCErrorTranslatedText

 TranslatedText: CHAR(2000)

 lang: CHAR(17)

*FK FK_ItemRangeChecks: CHAR(128)

+ FK_RCErrorTransl_ItemRangeChec(FK_ItemRangeChecks)

ItemRole

 Name: CHAR(2000)

*FK FK_ItemDefs: CHAR(128)

+ FK_ItemRole_ItemDefs(FK_ItemDefs)

ItemAliases

* Context: CHAR(2000)

* Name: CHAR(2000)

 FK FK_ItemDefs: CHAR(128)

+ FK_ItemAliases_ItemDefs(FK_ItemDefs)

ItemValueListRefs

*FK ValueListOID: CHAR(128)

*FK FK_ItemDefs: CHAR(128)

+ FK_ItemValueListRef_ValueLists(ValueListOID)

+ FK_ItemValueListRefs_ItemDefs(FK_ItemDefs)

CodeLists

*PK OID: CHAR(128)

* Name: CHAR(128)

* DataType: CHAR(7)

 SASFormatName: CHAR(8)

*FK FK_MetaDataVersion: CHAR(128)

+ FK_CodeLists_MetaDataVersion(FK_MetaDataVersion)

+ PK_CodeLists(OID)

ExternalCodeLists

 Dictionary: CHAR(2000)

 Version: CHAR(2000)

*FK FK_CodeLists: CHAR(128)

+ FK_ExternalCodeLists_CodeLists(FK_CodeLists)

CodeListItems

*PK OID: CHAR(128)

* CodedValue: CHAR(512)

*FK FK_CodeLists: CHAR(128)

 Rank: NUMBER(8,2)

+ FK_CodeListItems_CodeLists(FK_CodeLists)

+ PK_CodeListItems(OID)

CLItemDecodeTranslatedText

 TranslatedText: CHAR(2000)

 lang: CHAR(17)

*FK FK_CodeListItems: CHAR(128)

+ FK_CLItemDecodeT_CodeListItems(FK_CodeListItems)

ImputationMethods

*PK OID: CHAR(128)

 method: CHAR(2000)

*FK FK_MetaDataVersion: CHAR(128)

+ FK_ImputationMet_MetaDataVersi(FK_MetaDataVersion)

+ PK_ImputationMethods(OID)

Presentation

*PK OID: CHAR(128)

 presentation: CHAR(2000)

 lang: CHAR(17)

*FK FK_MetaDataVersion: CHAR(128)

+ FK_Presentation_MetaDataVersi(FK_MetaDataVersion)

+ PK_Presentation(OID)

25

APPENDIX 3

Example SAS code to create the source_values data set

proc sql;

create table srcmdata.source_values(label='Source Value Metadata') (

 SASref char(8) format=$8. label='SASreferences sourcedata libref',

 table char(32) format=$32. label='Table Name',

 column char(32) format=$32. label='Column Name',

 value char(32) format=$32. label='Column Value',

 label char(200) format=$200. label='Column Description',

 order num format=8. label='Column Order',

 type char(1) format=$1. label='Column Type',

 length num format=8. label='Column Length',

 displayformat char(32) format=$32. label='Display Format',

 xmldatatype char(8) format=$8. label='XML Data Type',

 xmlcodelist char(32) format=$32. label='SAS Format/XML Codelist',

 core char(10) format=$10. label='Column Required or Optional',

 origin char(40) format=$40. label='Column Origin',

 role char(128) format=$128. label='Column Role',

 term char(80) format=$80. label='Controlled Term or Format in Standard',

 algorithm char(2000) format=$2000. label='Computational Algorithm or Method',

 qualifiers char(200) format=$200. label='Column qualifiers (space delimited)',

 standard char(20) format=$20. label='Name of Standard',

 standardversion char(20) format=$20. label='Version of Standard',

 standardref char(200) format=$200. label='Associated reference(s) in Standard',

 comment char(1000) format=$1000. label='Comment'

);

 insert into srcmdata.source_values

 values("SRCDATA","EG","EGTESTCD","PRI","PR Interval",1,"",.,"","","","","","","","","",

 "CDISC-SDTM","3.1.2","","Just a comment")

 values("SRCDATA","EG","EGTESTCD","QRSI","QRS Interval",2,"",.,"","","","","","","","","",

 "CDISC-SDTM","3.1.2","","")

 values("SRCDATA","EG","EGTESTCD","QTI","QT Interval",3,"",.,"","","","","","","","","",

 "CDISC-SDTM","3.1.2","","")

 values("SRCDATA","EG","EGTESTCD","QTCB","QTcB - Bazett's Correction Formula",4,

 "",.,"","","","","","","",

 "QTcB = QT interval / square root of (60 / heart rate)","","CDISC-SDTM","3.1.2","","")

 values("SRCDATA","EG","EGTESTCD","QTCF","QTcF - Fridericia's Correction Formula",5,

 "",.,"","","","","","","",

 "QTcF = QT interval / cubic root of (60 / heart rate)","","CDISC-SDTM","3.1.2","","")

 values("SRCDATA","IE","IETESTCD","INCL02","Acceptable chest X-Ray",1,"",.,"","","","","","","",

 "","","CDISC-SDTM","3.1.2","","")

 values("SRCDATA","IE","IETESTCD","INCL10","Systolic BP > 180",2,"",.,"","","","","","","",

 "","","CDISC-SDTM","3.1.2","","")

 values("SRCDATA","LB","LBTESTCD","CALCIUM","Calcium",1,"",.,"","","","","","","","","",

 "CDISC-SDTM","3.1.2","","")

 values("SRCDATA","LB","LBTESTCD","CHLORIDE","Chloride",2,"",.,"","","","","","","","","",

 "CDISC-SDTM","3.1.2","","")

 values("SRCDATA","LB","LBTESTCD","POTASS","Potassium",3,"",.,"","","","","","","","","",

 "CDISC-SDTM","3.1.2","","")

 values("SRCDATA","LB","LBTESTCD","SODIUM","Sodium",4,"",.,"","","","","","","","","",

 "CDISC-SDTM","3.1.2","","")

 values("SRCDATA","PE","PETESTCD","CARDIO","Cardiovascular",1,"",.,"","","","","","","",

 "","","CDISC-SDTM","3.1.2","","")

 values("SRCDATA","PE","PETESTCD","ENT","Ear/Nose/Throat",2,"",.,"","","","","","","","","",

 "CDISC-SDTM","3.1.2","","")

 values("SRCDATA","PE","PETESTCD","RESP","Respiratory",3,"",.,"","","","","","","","","",

 "CDISC-SDTM","3.1.2","","")

 values("SRCDATA","PE","PETESTCD","SKIN","Skin",4,"",.,"","","","","","","","","",

 "CDISC-SDTM","3.1.2","","")

 values("SRCDATA","SC","SCTESTCD","INITIALS","Initials",1,"",.,"","","","","","","","","",

 "CDISC-SDTM","3.1.2","","")

 values("SRCDATA","SC","SCTESTCD","RACEOTH","Race, Other",2,"",.,"","","","","","","",

 "","","CDISC-SDTM","3.1.2","","")

 values("SRCDATA","SUPPAE","QNAM","AECONIA",

 "Interaction between add'l and trial meds",1,"",.,"","","","","","","","","",

 "CDISC-SDTM","3.1.2","","")

 values("SRCDATA","SUPPAE","QNAM","AETRTEM","Treatment emergent",2,"",.,"","","","","","","",

 "","","CDISC-SDTM","3.1.2","","")

 values("SRCDATA","TI","IETESTCD","EXCL01",

 "Systolic BP > 180",4,"",.,"","","","","","","","","","CDISC-SDTM","3.1.2","","")

 values("SRCDATA","TI","IETESTCD","EXCL02",

 "Diastolic BP > 120",3,"",.,"","","","","","","","","","CDISC-SDTM","3.1.2","","")

26

 values("SRCDATA","TI","IETESTCD","INCL01",

 "Age between 18 and 70",2,"",.,"","","","","","","","","","CDISC-SDTM","3.1.2","","")

 values("SRCDATA","TI","IETESTCD","INCL02",

 "Acceptable chest X-Ray",1,"",.,"","","","","","","","","","CDISC-SDTM","3.1.2","","")

 values("SRCDATA","VS","VSTESTCD","HEIGHT","Height",1,"",.,"","","","","","","","","",

 "CDISC-SDTM","3.1.2","","")

 values("SRCDATA","VS","VSTESTCD","WEIGHT","Weight",2,"",.,"","","","","","","","","",

 "CDISC-SDTM","3.1.2","","")

 values("SRCDATA","VS","VSTESTCD","DIABP",

 "Diastolic Blood Pressure",3,"",.,"","","","","","","","","","CDISC-SDTM","3.1.2","","")

 values("SRCDATA","VS","VSTESTCD","FRMSIZE",

 "Frame Size",4,"",.,"","","","","","","","","","CDISC-SDTM","3.1.2","","")

 values("SRCDATA","VS","VSTESTCD","HR","Heart Rate",5,"",.,"","","","","","","","","",

 "CDISC-SDTM","3.1.2","","")

 values("SRCDATA","VS","VSTESTCD","PULSEPR",

 "Pulse Pressure",6,"",.,"","","","","","","","","","CDISC-SDTM","3.1.2","","")

 values("SRCDATA","VS","VSTESTCD","SYSBP",

 "Systolic Blood Pressure",7,"",.,"","","","","","","","","","CDISC-SDTM","3.1.2","","")

 ;

 quit;

 data srcmdata.source_values(label='Source Value Metadata');

 set srcmdata.source_values;

 select (value);

 when ('INCL02', 'INCL10', 'INCL01', 'INCL02', 'EXCL01', 'EXCL02',

 'AETRTEM', 'AECONIA') xmlcodelist="NY";

 when ('FRMSIZE') xmlcodelist="SIZE";

 otherwise;

 end;

 select (value);

 when ('FRMSIZE', 'INCL02', 'INCL01', 'INCL10', 'INCL02', 'EXCL01', 'EXCL02',

 'AETRTEM', 'AECONIA', 'INITIALS', 'RACEOTH') do; xmldatatype='text'; type='C'; end;

 when ('CALCIUM', 'POTASS') do; xmldatatype='float'; type='N'; end;

 when ('QTCB', 'QTCF', 'HEIGHT', 'WEIGHT') do; xmldatatype='float'; type='N'; end;

 otherwise do; xmldatatype='integer'; type='N'; end;

 end;

 select (value);

 when ('INCL02','INCL10', 'INCL01', 'INCL02', 'EXCL01', 'EXCL02', 'AETRTEM', 'AECONIA')

length=2;

 when ('INITIALS') length=3;

 when ('RACEOTH') length=10;

 when ('FRMSIZE') length=6;

 when ('QTCB', 'QTCF') length=5;

 otherwise length=8;

 end;

 select (value);

 when ('POTASS') displayformat='8.2';

 when ('CALCIUM') displayformat='8.2';

 when ('QTCB', 'QTCF') displayformat='5.1';

 when ('HEIGHT') displayformat='3.0';

 when ('WEIGHT') displayformat='5.1';

 otherwise;

 end;

 select (table);

 when ('EG') Origin="eDT";

 when ('LB') Origin="eDT";

 when ('VS') Origin="CRF Page 11";

 when ('IE') Origin="CRF Page 5";

 when ('PE') Origin="CRF Page 10";

 when ('SC') Origin="CRF Page 6";

 when ('SUPPAE') Origin="CRF Page 17";

 when ('TI') Origin="CRF Page 14";

 otherwise;

 end;

 if xmldatatype='text' then qualifiers='UPPERCASE';

 core = 'Perm';

 run;

27

APPENDIX 4

Example SAS code to create the data sets that are related to Value Level metadata

*Lookup OID for the SDTM 3.1.2 standard in MetaDataVersion;

proc sql noprint;

 select OID into :mdv_oid from srcdata.MetaDataVersion

 where name="CDISC-SDTM 3.1.2";

quit;

%let ds1=_srcval1;

%let ds2=_srcval2;

%let ds3=_srcval3;

%let ds4=_srcval4;

%let ds5=_srcval5;

%let ds6=_srcval6;

%* Create data set with table, column and ItemDef/@OID *;

proc sql;

 create table &ds1 as

 select a.*, b.Name as column

 from

 (select a.Name as table, b.ItemOiD as FK_ItemDefs

 from srcdata.ItemGroupDefs a left join srcdata.ItemGroupDefItemRefs b

 on (a.oid = b.fk_itemgroupdefs) and (a.fk_metadataversion = "&mdv_oid")) a

 left join srcdata.ItemDefs b

 on (a.FK_ItemDefs =b.OID) and (b.fk_metadataversion = "&mdv_oid");

quit;

%* Create fk_metadataversion and ValueListDef/@OID *;

data &ds2;

length fk_metadataversion ValueListOID ItemOID ComputationMethodOID $128 Mandatory $3;

 set sampdata.source_values;

 fk_metadataversion="&mdv_oid";

 ValueListOID=cats("VL.", table, ".", column);

 ItemOID=catx(".", "IT", table, column, value);

 if not missing(algorithm) then ComputationMethodOID=catx(".", "CM", table, column, value);

 Mandatory = ifc(upcase(core)='REQ','Yes','No', 'No');

run;

%* join to get ItemOID and the CodeList OID *;

proc sql;

 create table &ds3 as

 select a.*, b.OID as CodeListRef from

 (select a.*, b.FK_ItemDefs

 from &ds2 a left join &ds1 b

 on (a.table = b.table) and (a.column = b.column)) a

 left join

 srcdata.CodeLists b

 on (a.xmlcodelist =b.Name) and (b.fk_metadataversion = "&mdv_oid")

 order by ItemOID, order;

quit;

%**;

%* Create output data sets *;

%**;

proc sort data=&ds3 out=&ds4(keep=ValueListOID fk_metadataversion) nodupkey;

by ValueListOID;

run;

data srcdata.ValueLists;

 set srcdata.ValueLists &ds4(rename=(ValueListOID=OID));

run;

%**;

proc sort data=&ds3 out=&ds5(keep=ValueListOID FK_ItemDefs) nodupkey;

by ValueListOID FK_ItemDefs;

run;

data srcdata.ItemValueListRefs;

 set srcdata.ItemValueListRefs &ds5;

run;

%**;

data srcdata.ValueListItemRefs

 (keep=ItemOID OrderNumber Mandatory KeySequence

28

 ImputationMethodOID Role RoleCodeListOID FK_ValueLists);

 set srcdata.ValueListItemRefs

 &ds3(rename=(ValueListOID=FK_ValueLists order=OrderNumber));

run;

%**;

%* add to existing ItemDefs;

data srcdata.ItemDefs;

 set srcdata.ItemDefs

 &ds3(drop=SASRef FK_ItemDefs ValueListOID xmlcodelist Mandatory SASref algorithm table column

order type core role term qualifiers standard standardversion standardref

 rename=(value=Name ItemOID=OID xmldatatype=DataType));

run;

%**;

proc sort data=&ds3 out=&ds6(keep=fk_metadataversion ComputationMethodOID algorithm where=(not

missing(algorithm)));

by ComputationMethodOID;

run;

%* add to existing ComputationMethods;

data srcdata.ComputationMethods;

 set srcdata.ComputationMethods &ds6(rename=(ComputationMethodOID=OID algorithm=Method));

run;

29

APPENDIX 5

Example SAS code to create the source_documents data set

proc sql;

 create table srcmdata.source_documents (

 SASref char(8) format=$8. label='SASreferences sourcedata libref',

 doctype char(10) format=$10. label='Document Type (CRF/DOC)',

 DocumentRef char(2000) format=$2000. label='The referenced Annotated CRF document',

 href char(512) format=$512.

 label='The pathname and filename of the target dataset relative to the define.xml',

 title char(2000) format=$2000.

 label='Meaningful description, label, or location of the document leaf'

);

 /* doctype DocumentRef href title */

 insert into srcmdata.source_documents

 values("SRCDATA", "CRF", "", "blankcrf.pdf", "Annotated Case Report Forms")

 values("SRCDATA", "CRF", "", "blankcrf_add.pdf", "Annotated Case Report Forms

(Addendum)")

 values("SRCDATA", "DOC", "", "reviewersguide.pdf", "Reviewers Guide")

 ;

quit;

30

APPENDIX 6
Example SAS code to create the data sets that are related to Document metadata (Annotated CRF and

Supplemental Data Definitions)

*Lookup OID for the SDTM 3.1.2 standard in MetaDataVersion;

proc sql noprint;

 select OID into :mdv_oid from srcdata.MetaDataVersion

 where name="CDISC-SDTM 3.1.2";

quit;

proc sort data=sampdata.source_documents out=sourcedocs;

by SASRef doctype href;

run;

data sourcedocs;

 retain _cstcounter;

 length fk_metadataversion $128 leafid $64 _cstcounter 8;

 set sourcedocs;

 by SASRef doctype href;

 fk_metadataversion=strip("&mdv_oid");

 if first.doctype then do;

 _cstcounter=1;

 select (doctype);

 when ('CRF') leafid='lf.blankcrf';

 when ('DOC') leafid='lf.supplementaldoc';

 otherwise;

 end;

 end;

 else do;

 _cstcounter=sum(_cstcounter,1);

 if upcase(doctype) = 'CRF'

 then leafid=cats('lf.blankcrf', put(_cstcounter, best.));

 if upcase(doctype) = 'DOC'

 then leafid=cats('lf.supplementaldoc', put(_cstcounter, best.));

 end;

run;

%**;

%* Create output data sets *;

%**;

data srcdata.AnnotatedCRFs(keep=documentref leafid fk_metadataversion);

 set srcdata.AnnotatedCRFs

 sourcedocs(where=(upcase(doctype)="CRF"));

run;

data srcdata.SupplementalDocs(keep=documentref leafid fk_metadataversion);

 set srcdata.SupplementalDocs

 sourcedocs(where=(upcase(doctype)="DOC"));

run;

data srcdata.MDVLeaf(keep=id href fk_metadataversion);

 set srcdata.MDVLeaf

 sourcedocs(rename=(leafid=id) where=(upcase(doctype) in ("CRF" "DOC")));

run;

data srcdata.MDVLeafTitles(keep=title fk_mdvleaf);

 set srcdata.MDVLeafTitles

 sourcedocs(rename=(leafid=fk_mdvleaf) where=(upcase(doctype) in ("CRF" "DOC")));

run;

