
 

1 

PharmaSUG 2012 - Paper HW04 
 

Ready To Become Really Productive Using PROC SQL? 
Sunil K. Gupta, Gupta Programming, Simi Valley, CA 

 

 

ABSTRACT 
 
Using PROC SQL, can you identify at least four ways to: select and create variables, create macro variables, create 
or modify table structure, and change table content? Learn how to apply multiple PROC SQL programming options 
through task-based examples. This hands-on workshop reviews topics in table access, retrieval, structure and 
content, as well as creating macro variables.  References are provided for key PROC SQL books, relevant webinars, 
podcasts as well as key SAS® technical papers. 

INTRODUCTION 
 

PROC SQL;             /* Anatomy of PROC SQL */ 

 

CREATE table mytable as 

 

/* Nine Benefits: Validate/Create/Drop Views or Tables,    

                  Create/Alter/Update/Insert/Delete Variables */ 

 

/* Four Main Components: SELECT, FROM, WHERE, ORDER */ 

 

1. SELECT name, sex 

 

 /* Four selection options: ‘,’, label, ‘*’, distinct */ 

 /* Eight creation options: functions, summary function, constant,   

    character expression, select-case when, select-case <var_name> when, summary 

function with subset condition */ 

 /* Five macro variable creation options: into :, into : separated by,  

    into : - :, summary function into:, select-case into: */ 

 

2. FROM sashelp.class as class, 

   Mylib.students as students 

 

 /* Four join options: inner matching/outer LEFT/FULL/RIGHT JOIN */ 

 /* FROM <DS1> <FULL JOIN> <DS2>  ON <DS1.VAR1> = <DS2.VAR2> */ 

 

3. WHERE class.name = students.name and class.sex = ‘F’                

 

 /* Four subsetting options: direct/calculated variable, function, summary function */   

 /* Two main subquery options: one/multiple values with HAVING <Variable> <Operator> 

  (SELECT <Variable> FROM <Table> WHERE <Condition Expression>) */ 

 

4. ORDER by name 

/* Two sorting options: order/group by calculated, desc */ 

 

; QUIT; 

 
 



 

2 

PROC SQL Examples           
1. Basic example - Essential building block components (Columns, Joins, Condition, Sort) 
 
2. Selecting Column Definitions  
a. Basic Structure 
b. Column Attributes  
c. All Columns 
d. Distinct Columns 
e. Distinct Columns without Order By 
 
3. Creating Column Definitions  
a. Functions such as int() 
b. Functions such as max() 
c. Summary Functions such as sum() 
d. Constant 
e. Character String Expression  
f. Select-Case When Condition 
g. Select-Case <Var_Name> When Condition 
h. Summary function with subset condition 
 
4. Subsetting Tables  
a. Age Calculation 
b. Function such as index() 
 
5. Subqueries   
a. Resulting in One row  
b. Resulting in Multiple rows 
 
6. Creating Macro Variables 
a. One macro variable storing one value 
b. One macro variable storing multiple values 
 

SAMPLE DATA SET  
 
Below is the sample data set that will be used in the examples.  The data set sashelp.class is included with 
SAS/BASE. 
 

Obs Name Sex Age Height Weight 

1 Alice F 13 56.5 84.0 

2 Barbara F 13 65.3 98.0 

3 Carol F 14 62.8 102.5 

4 Jane F 12 59.8 84.5 

5 Janet F 15 62.5 112.5 

6 Joyce F 11 51.3 50.5 

7 Judy F 14 64.3 90.0 

8 Louise F 12 56.3 77.0 

9 Mary F 15 66.5 112.0 

10 Alfred M 14 69.0 112.5 

11 Henry M 14 63.5 102.5 

12 James M 12 57.3 83.0 

13 Jeffrey M 13 62.5 84.0 



 

3 

Obs Name Sex Age Height Weight 

14 John M 12 59.0 99.5 

15 Philip M 16 72.0 150.0 

16 Robert M 12 64.8 128.0 

17 Ronald M 15 67.0 133.0 

18 Thomas M 11 57.5 85.0 

19 William M 15 66.5 112.0 

 
                             Figure 1. Sample Dataset 

 
Example 1. Basic example - Essential building block components (Columns, Joins, Condition, Sort) 
 
Between the required PROC SQL and quit statements, in general, there is only one PROC SQL statement.  Each of 
the four components is included in this statement: columns, joins, conditions and sorts.  Note that when creating a 
table, it is recommended to create a new table to prevent SAS warning message about writing to the same table. 
 
1. Select name for all females. 
 

title1 "HOW Example 1: Basic Example with all four components"; 

title2 "Four components: A. Columns (), B. Joins (), C. Condition (), D. Sort ()"; 

title3 "Which components are required?"; 

proc sql; 

 select name 

 from sashelp.class 

 where sex = 'F' 

 order by name; 

quit; 

 

Name 

Alice 

Barbara 

Carol 

Jane 

Janet 

Joyce 

Judy 

Louise 

Mary 

 
Figure 2. All Female NAMES 



 

4 

Example 2. Selecting Column Definitions  
a. Basic Structure 
b. Column Attributes  
c. All Columns 
d. Distinct Columns 
e. Distinct Columns without Order By 
 
 
2a. Select name and sex for all females. 
 

Multiple columns are separated by „,‟. 
 

title1 "HOW Example 2a: Select Columns (name, sex)"; 

proc sql; 

 select name, sex 

 from sashelp.class 

 where sex = 'F' 

 order by name; 

quit; 

 

Name Sex 

Alice F 

Barbara F 

Carol F 

Jane F 

Janet F 

Joyce F 

Judy F 

Louise F 

Mary F 

 

Figure 3. All Female NAMES and SEX 
 
2b. Define attributes for name: label, format and length. 
 

Note that although name is a character variable, the length does not include „$‟ as in the DATA Step. 
 

title1 "HOW Example 2b: Select Columns (Add Attributes – label, format and length)"; 

proc sql; 

 select name label = 'My label' format = $10. length = 10 

 from sashelp.class 

 where sex = 'F' 

 order by name; 

quit; 

 

My label 

Alice 

Barbara 

Carol 

Jane 



 

5 

My label 

Janet 

Joyce 

Judy 

Louise 

Mary 

 

Figure 4. Attributes for NAME 
 
2c. Select all columns in table for all females. 
 

title1 "HOW Example 2c: Select All Columns (*)"; 

proc sql; 

 select * 

 from sashelp.class 

 where sex = 'F' 

 order by name; 

quit; 

 

Name Sex Age Height Weight 

Alice F 13 56.5 84 

Barbara F 13 65.3 98 

Carol F 14 62.8 102.5 

Jane F 12 59.8 84.5 

Janet F 15 62.5 112.5 

Joyce F 11 51.3 50.5 

Judy F 14 64.3 90 

Louise F 12 56.3 77 

Mary F 15 66.5 112 

 
                    Figure 5. All columns for all Females 

 
2d. Select distinct sex for all females. 
 

title1 "HOW Example 2d: Select Columns (distinct)"; 

proc sql; 

 select distinct sex 

 from sashelp.class 

 where sex = 'F' 

 order by name; 

quit; 

 

Sex 

F 

F 

F 



 

6 

Sex 

F 

F 

F 

F 

F 

F 

 

                    Figure 6. Distinct SEX for all Females 
 
2e. Select distinct sex for all females without repeats. 
 

title1 "HOW Example 2e: Selecting Columns (distinct) without order by clause"; 

proc sql; 

 select distinct sex 

 from sashelp.class 

 where sex = 'F'; 

quit; 

 

Sex 

F 

 

                                      Figure 7. Distinct SEX for all Females without ORDER BY NAME 
 
Example 3. Creating Column Definitions  
a. Functions such as int() 
b. Functions such as max() 
c. Summary Functions such as sum() 
d. Constant 
e. Character String Expression  
f. Select-Case When Condition 
g. Select-Case <Var_Name> When Condition 
h. Summary function with subset condition 
 
 

Note that new variable names are specified towards the end as compared to the beginning in the DATA Step.  In 
general for all new columns, remember to specify a length, especially since character columns can be truncated. 
 

3a. Create age and calculated age using functions. 
 

title1 "HOW Example 3a: Creating Column using Functions int((age+150)/10) as myage"; 

proc sql; 

 select age, int((age+150)/10) as myage length = 8 format = 3. 

 from sashelp.class; 

quit; 

 

Age myage 

14 16 

13 16 

13 16 

14 16 



 

7 

Age myage 

14 16 

12 16 

12 16 

15 16 

13 16 

12 16 

11 16 

14 16 

12 16 

15 16 

16 16 

12 16 

15 16 

11 16 

15 16 

 

                                                              Figure 8. AGE and MYAGE columns 
 
3b. Create height, weight and max of height and weight. 
 

title1 "HOW Example 3b: Creating Column using Functions max(height, weight) as 

maxval"; 

proc sql; 

 select height, weight,  

  max(height, weight) as maxval length = 8 format = 3. 

 from sashelp.class; 

quit; 

 

Height Weight maxval 

69 112.5 113 

56.5 84 84 

65.3 98 98 

62.8 102.5 103 

63.5 102.5 103 

57.3 83 83 

59.8 84.5 85 

62.5 112.5 113 

62.5 84 84 

59 99.5 100 



 

8 

Height Weight maxval 

51.3 50.5 51 

64.3 90 90 

56.3 77 77 

66.5 112 112 

72 150 150 

64.8 128 128 

67 133 133 

57.5 85 85 

66.5 112 112 

 
                                                              Figure 9. HEIGHT, WEIGHT and MAXVAL columns 
 
3c1. Create weight and percent of total weight using summary functions. 
 

The new summary variable is added back to the data set.  Note that this would generally require multiple DATA Steps 
or often SAS procedures such as PROC MEANS. 

title1 "HOW Example 3c1: Creating Column using Summary Functions( 

(weight/sum(weight))*100) as wpercnt"; 

proc sql; 

 select weight,  

  ((weight/sum(weight))*100) as wpercnt length = 8 format = 4.1 

 from sashelp.class; 

quit; 

 

Weight wpercnt 

112.5 5.9 

84 4.4 

98 5.2 

102.5 5.4 

102.5 5.4 

83 4.4 

84.5 4.4 

112.5 5.9 

84 4.4 

99.5 5.2 

50.5 2.7 

90 4.7 

77 4.1 

112 5.9 

150 7.9 



 

9 

Weight wpercnt 

128 6.7 

133 7.0 

85 4.5 

112 5.9 

 
                                                   Figure 10. WEIGHT and WPERCNT columns 
 
3c2. Create sex, weight and percent of total weight by sex. 
 

The previous PROC SQL code can be grouped by sex to get weight percents by sex instead of by overall weight.  
Once sum_weight is created, it can be used on the wpercnt calculation with the CALCULATED keyword before 
sum_weight. 
 

title1 "HOW Example 3c2: Creating Column Group by Sex (sum(weight)  

(weight/sum(weight))*100) as wpercnt"; 

proc sql; 

 select sex, weight, sum(weight) as sum_weight,  

  ((weight/sum(weight))*100) as wpercnt length = 8 format = 4.1 

 from sashelp.class 

 group by sex; 

quit; 

 

Sex Weight sum_weight wpercnt 

F 90 811 11.1 

F 84.5 811 10.4 

F 50.5 811 6.2 

F 98 811 12.1 

F 102.5 811 12.6 

F 112 811 13.8 

F 77 811 9.5 

F 84 811 10.4 

F 112.5 811 13.9 

M 150 1090 13.8 

M 83 1090 7.6 

M 102.5 1090 9.4 

M 99.5 1090 9.1 

M 112 1090 10.3 

M 112.5 1090 10.3 

M 84 1090 7.7 

M 85 1090 7.8 



 

10 

Sex Weight sum_weight wpercnt 

M 133 1090 12.2 

M 128 1090 11.7 

 

                                      Figure 11. SEX, WEIGHT, SUM_WEIGHT and WPERCNT columns 
 
3c3. Create sex, name and total sex by sex. 
 

Another example of adding count by sex back to the data set. 
 

title1 "HOW Example 3c3: Creating Column Group by Sex for each name count(sex) as 

gender_cnt"; 

proc sql; 

 select sex, name, count(sex) as gender_cnt length=8 format=4.0 

 from sashelp.class 

 group by sex 

 order by sex; 

quit; 

 

Sex Name gender_cnt 

F Judy 9 

F Jane 9 

F Joyce 9 

F Barbara 9 

F Carol 9 

F Mary 9 

F Louise 9 

F Alice 9 

F Janet 9 

M Philip 10 

M James 10 

M Henry 10 

M John 10 

M William 10 

M Alfred 10 

M Jeffrey 10 

M Thomas 10 

M Ronald 10 

M Robert 10 

 

                                                  Figure 12. SEX, NAME and GENDER_CNT columns 
 
 
 



 

11 

3d. Create constant for all records. 
 

title1 "HOW Example 3d: Creating Column using 'my constant' as myname"; 

proc sql; 

 select   

  'my constant' as myname length = 15 

 from sashelp.class; 

quit; 

 

myname 

my constant 

my constant 

my constant 

my constant 

my constant 

my constant 

my constant 

my constant 

my constant 

my constant 

my constant 

my constant 

my constant 

my constant 

my constant 

my constant 

my constant 

my constant 

my constant 

 

                                                                      Figure 13. MYNAME column 
 
3e. Create character expression name and sex. 
 

title1 "HOW Example 3e: Creating Column using character expression '  name || ',' || 

sex as namesex"; 

proc sql; 

 select   

  name || "," || sex as namesex length = 35 

 from sashelp.class; 

quit; 

 



 

12 

namesex 

Alfred  ,M 

Alice   ,F 

Barbara ,F 

Carol   ,F 

Henry   ,M 

James   ,M 

Jane    ,F 

Janet   ,F 

Jeffrey ,M 

John    ,M 

Joyce   ,F 

Judy    ,F 

Louise  ,F 

Mary    ,F 

Philip  ,M 

Robert  ,M 

Ronald  ,M 

Thomas  ,M 

William ,M 

 
                                                                      Figure 14. NAMESEX column 
 
3f. Create age and new column agegrp based on age values. 
 

For any type of conditional logic within PROC SQL, you will need to apply the select-case clause. 
 

title1 "HOW Example 3f: Creating Column using select-case when to create agegrp"; 

proc sql; 

 select  age, 

  case   

       when age > 0 and age < 13  then 1 

       when age between 13 and 15 then 2 

       when age > 15              then 3 

     else                           . 

  end as agegrp length = 8 

 from sashelp.class; 

quit; 

 

Age agegrp 

14 2 

13 2 

13 2 



 

13 

Age agegrp 

14 2 

14 2 

12 1 

12 1 

15 2 

13 2 

12 1 

11 1 

14 2 

12 1 

15 2 

16 3 

12 1 

15 2 

11 1 

15 2 

 

                                                              Figure 15. AGE and AGEGRP columns 
 
3g. Alternative to create sex and new column sexgrp based on sex values. 
 

For any type of conditional logic within PROC SQL, you will need to apply the select-case clause.  You have the 
option to specify sex only once after CASE.  Each when clause will automatically insert sex as part of the evaluation. 
 

title1 "HOW Example 3f: Creating Column using select-case when to create sexgrp"; 

proc sql; 

 select  sex, 

  case sex 

       when ‘M’  then 1     /* similar to when sex = ‘M’ */ 

       when ‘F’  then 2     /* similar to when sex = ‘F’ */ 

     else        . 

  end as sexgrp length = 4 

 from sashelp.class; 

quit; 

 
3h. Create count of males and females. 
 

This is an alternative to applying the WHERE clause. 

 

title1 "HOW Example 3h: Creating Columns using where condition in summary function"; 

proc sql; 

 select   

  sum(sex=’M’) as nmale length = 4, sum(sex=’F’) as nfemale length = 4  

 from sashelp.class; 

quit; 

 



 

14 

nmale nfemale 

10 9 

 
                                                              Figure 16. NMALE and NFEMALE columns 
 
Example 4. Subsetting Tables  
a. Age Calculation 
b. Function such as index() 
 
 
4a. Select age and new column agegrp based on age values for agegrp = 3. 
 

title1 "HOW Example 4a: Subsetting tables using calculated agegrp column"; 

proc sql; 

 select  age, 

  case   

       when age > 0 and age < 13  then 1 

       when age between 13 and 15 then 2 

       when age > 15              then 3 

     else                           . 

  end as agegrp length = 4 

 from sashelp.class 

 where calculated agegrp = 3; 

quit; 

 

Age agegrp 

16 3 

 

                                                              Figure 17. AGE and AGEGRP columns 
 
4b. Select name, sex where name contains ‘J’. 
 

title1 "HOW Example 4b: Subsetting tables using Function index()"; 

proc sql; 

 select   

  name, sex 

 from sashelp.class 

 where index(name, 'J') > 0; 

quit; 

 

Name Sex 

James M 

Jane F 

Janet F 

Jeffrey M 

John M 

Joyce F 

Judy F 

 

                                                              Figure 18. NAME and SEX columns 
 
Example 5. Subqueries   
a. Resulting in One row  
b. Resulting in Multiple rows 



 

15 

 

 

5a. Select sex, weight where weight is greater than the average weight. 
 

Notice that with subqueries, you can select records from one table based on a 

conditions in another table. 

 

title1 "HOW Example 5a: Using Subquery Conditions resulting in one row"; 

title2 'Select by sex, sex and weight, weight greater than the overall average 

weight'; 

title3 'Three part approach: subquery results, population, confirm subset'; 

 

proc sql; 

 create table mean_wgt as 

 select avg(weight) as m_wgt from sashelp.class; 

 

 select m_wgt from mean_wgt; 

quit; 

 

proc sql; 

 Select sex, weight 

 from sashelp.class  

 order by sex, weight;  

quit; 

 

proc sql; 

 Select sex, weight 

 from sashelp.class  

  having weight >  

  (select m_wgt from mean_wgt);  

quit; 

 

 

100.0263 

 

                                                                           Figure 19. AVG(MEAN) 
 
 

Sex Weight 

F 50.5 

F 77 

F 84 

F 84.5 

F 90 

F 98 

F 102.5 

F 112 

F 112.5 

M 83 

M 84 

M 85 



 

16 

Sex Weight 

M 99.5 

M 102.5 

M 112 

M 112.5 

M 128 

M 133 

M 150 

 

                                                           Figure 20. All SEX and WEIGHT records 
 

Sex Weight 

M 112.5 

F 102.5 

M 102.5 

F 112.5 

F 112 

M 150 

M 128 

M 133 

M 112 

 

                                       Figure 21. SEX and WEIGHT records greater than AVG(WEIGHT) 
 
5b. Select age where age does not equal any female ages. 
 

title1 "HOW Example 5b: Using Subquery Conditions resulting in multiple rows"; 

title2 'Select by sex, sex and age, for non-matching female ages'; 

title3 'Three part approach: subquery results, population, confirm subset'; 

 

proc sql; 

 select distinct age from sashelp.class where sex = "F" order by age; 

quit; 

 

proc sql; 

 Select sex, age 

 from sashelp.class  

 order by sex; 

quit; 

 

proc sql; 

 Select sex, age 

 from sashelp.class  

  having age ~in  

 (select distinct age from sashelp.class where sex = "F") ;  

quit; 

 



 

17 

Age 

11 

12 

13 

14 

15 

 

                                                                    Figure 22. Distinct AGE column 
 
 

Sex Age 

F 14 

F 12 

F 11 

F 13 

F 14 

F 15 

F 12 

F 13 

F 15 

M 16 

M 12 

M 14 

M 12 

M 15 

M 14 

M 13 

M 11 

M 15 

M 12 

 

                                                                    Figure 23. All SEX and AGE records 
 

Sex Age 

M 16 

 

 
                                                                    Figure 24. Only Male AGE record 
 



 

18 

Example 6. Creating Macro Variables 
a. One macro variable storing one value 
b. One macro variable storing multiple values 
 

6a. Create macro variable storing total male count. 
 

Best to assure selection criteria displays desired single result before saving to macro variable. 
 

title1 "HOW Example 6a: Creating macro variable resulting in one row"; 

title2 'Count of males'; 

title3 'Two part approach: value to save, macro variable name'; 

 

proc sql; 

 select count(sex) as gender_cnt  

 from sashelp.class 

 where sex = 'M'; 

quit; 

 

proc sql; 

 select count(sex) as gender_cnt into :male_cnt  

 from sashelp.class 

 where sex = 'M'; 

quit; 

%put 'Number of Males = ' &male_cnt; 

 

gender_cnt 

10 
Number of Males = 10 

 

                                                                Figure 25. GENERDER_CNT column 
 
 
 
 
6b. Create macro variable storing male names. 
 
Best to assure selection criteria displays desired multiple results before saving to macro variable. 
 

title1 "HOW Example 6b: Creating macro variables resulting in multiple rows"; 

title2 'Count of males'; 

title3 'Two part approach: value to save, macro variable names'; 

 

proc sql; 

 select name as male 

 from sashelp.class 

 where sex = 'M'; 

quit; 

 

proc sql; 

 select name into :male_name separated by ', '  

 from sashelp.class 

 where sex = 'M'; 

quit; 

%put 'Names of Males = ' &male_name; 

 

male 

Alfred 

Henry 

James 



 

19 

male 

Jeffrey 

John 

Philip 

Robert 

Ronald 

Thomas 

William 

Names of Males = Alfred, Henry, James, Jeffrey, John, Philip, Robert, Ronald, Thomas, 

William 

                                                                Figure 26. Male NAMES column 

 

SUMMARY 
 
By understanding the subtle differences in the various combinations for selecting, joining, subsetting,and sorting 
using PROC SQL, you are more empowered to apply and remember the syntax.  With the added bonus of creating 
one or more macro variables storing one or more values, SAS programmers can do it all with one powerful and 
unique procedure. 
 
As presented, there are four main components to PROC SQL: select, joins, where, order.  There are four column 
selection options, six column creation options and five macro variable creation options.  For joining tables, there are 
four outer join options.  For subsetting tables, there are three options and two subquery options.  For sorting tables, 
there are two options. 
 
Some examples of PROC SQL‟s flexibility include merging back summary-level information in one step as compared 
to multiple data steps or using PROC MEANS.  Other useful table structure and content operators that are beyond 
the scope of this paper include: alter, drop, update, insert and delete.  Please visit my SASCommunity.org page for 
updates to my list of top 10 PROC SQL papers. 

REFERENCES 
 
Bhat,Gajanan, “Merging Tables in DATA Step vs. PROC SQL: Convenience and Efficiency Issues”, SUGI 26, 
Coder‟s Corner 
 
DeFoor, Jimmy, “Proc SQL – A Primer for SAS® Programmers”, SUGI 31, Tutorials 
 
Gupta, Sunil K., Quick Results with PROC SQL, http://www.sascommunity.org/wiki/Quick_Results_with_Proc_SQL 
 
Lafler, Kirk Paul, “A Hands-On Tour Inside the World of PROC SQL”, SUGI 31 Hands-On Workshop 
 
Lafler, Kirk Paul, “Frame Your View of Data with the SQL Procedure” 
 
Lafler, Kirk Paul, “Querying the Data Warehouse with the SQL Procedure SELECT Statement”, SUGI 23 
 
Lafler, Kirk Paul, “Ten Great Reasons to Learn SAS Software's SQL Procedure”, SUGI 23, Hands-On Workshop 
 
Lafler, Kirk Paul, “Undocumented and Hard-to-find SQL Features”, SUGI 28, Advanced Tutorials 
 
Lafler, Kirk Paul, PROC SQL Tips and Techniques Webcast:  
http://support.sas.com/publishing/bbu/webinar/Lafler_junewebinar.wmv 
 
Whitlock, Ian, “PROC SQL - Is it a Required Tool for Good SAS Programming?”, SUGI 26, Beginning Tutorials 
 
Williams, Christianna, “PROC SQL for DATA Step Die-hards”, SAS Global Forum 2008 

http://www.sascommunity.org/wiki/Quick_Results_with_Proc_SQL
http://support.sas.com/publishing/bbu/webinar/Lafler_junewebinar.wmv


 

20 

 
Winn, Thomas, “Introduction to Using Proc SQL”, SUGI 22, Beginning Tutorials 

CONTACT INFORMATION 
 
The author welcomes your comments and suggestions. 
Sunil K. Gupta 
Senior SAS Consultant 
Gupta Programming 
213 Goldenwood Circle  
Simi Valley, CA 93065 
Phone: (805)-577-8877                       E-mail: Sunil@GuptaProgramming.com 
www.GuptaProgramming.com 
www.SASSavvy.com 
 
Sunil is a best selling SAS author and global corporate trainer.  Currently, he is a Senior SAS Consultant at Gupta 
Programming. Most recently, he launched www.SASSavvy.com and released two popular e-guides on Quick Results 
with PROC SQL and Anatomy of SAS Macros.  He has been using SAS® software for over 18 years and is a SAS 
Base Certified Professional.  He is also the author of Quick Results with the Output Delivery System, Data 
Management and Reporting Made Easy with SAS Learning Edition 2.0, and Sharpening Your SAS Skills.  Most 
recently, he is teaching his latest popular courses, Maximizing Productivity and Efficiency using PROC SQL and Best 
Practices in SAS Statistical Programming in Regulatory Submission. 
 

 
 
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration.  Other brand and product names are 
trademarks of their respective companies.  

http://www.guptaprogramming.com/
http://www.sassavvy.com/
http://www.sassavvy.com/

