
1

Pharmasug 2012 - Paper CC32

Using File Modification Date Comparisons to Alert S tudy Teams of Potential SAS
Program Revisions between Shared Folders

Stephen Hunt, ICON Clinical Research, Redwood City, CA
Brian Fairfield-Carter, ICON Clinical Research, Redwood City, CA

ABSTRACT
In the absence of version control, communicating changes made to programs between development and production
areas (e.g., modifications to a select few blinded-area programs that must be copied over to an unblinded area for
re-delivery) can easily result in ‘stale’ code and outdated output without absolutely perfect coordination across the
entire study team. To compound things, there indubitably exists an inverse relationship between size of
programming teams and the timely and accurate communication within them. In such circumstances, an unblinded
programmer or statistician must often rely on their own manual verification of the state of files to be run in production
in situations of concurrent development (i.e., since members of a blinded team would be unable to verify or directly
compare against contents of an unblinded folder themselves). Therefore, comparing file modification dates
programmatically may be the best, first step towards evaluating consistency across folders intended to share the
same production code (such as between blinded and unblinded study teams).

INTRODUCTION
This paper demonstrates 3 methods for programmatically comparing SAS® program modification date/time stamps
between 2 study folders in order assure that all production environment output is up-to-date with any changes that
have occurred in development. What follows are a series of demonstrations on how to obtain both Windows and
UNIX modification dates dynamically for all SAS files in 2 comparator folders. Each method is intended to be simple
to apply for unblinded/recipient programmers who wish to compare large numbers of files across multiple study
folders in either the operating system/platform.

APPLICATION #1 - WINDOWS (OR UNIX VIA SAMBA):
The first instance to be demonstrated involves an HTA (HTML Application) written with JavaScript and VBScript
embedded within an HTML document. The application GUI itself is extremely rudimentary and consists solely of 2
browseforfolder input boxes and a clickable button to initiate the comparison script once the folder objects are
populated:

Display 1. View of Simple Application GUI

The BrowseForFolder method contains an element for pre-specifying the initial folder for browsing following clicking
upon the input text box (bolded section below indicates the specific server-path to begin browsing; users will need to
specify their own):

 set Folder=shell.browseforfolder(0,"Specify F older containing 'comparison' files and click
 'ok'.",&h0010," \\pa-legacysas-01\studies")

Once folders to compare are specified, the key elements performed by the application include (a) writing out a text
file to be populated with any/all differences found via VBScripts filesystemobject createtextfile method and (b)
obtaining the ‘datelastmodified’ file property via the following code:

 Set file1=fso.GetFile(“filename.sas”)
 moddate1=file. DateLastModified

The appearance of the differences text file opened within the ubiquitous notepad Windows application (whether
empty, thus signifying no difference found, or populated with differences) marks the completion of the application’s
processing. Differences are highlighted by program name by including modification dates within both folders and
presenting the file comparison in the direction of the difference (e.g., “File test.sas has been modified
more recently(2/25/2011 11:28:33 AM) in the destination vs. source folder (9/7/2011
2:52:45 PM). ”). The entirety of the code used for this simple application is copied below:

Using File Modification Date Comparisons to Alert Study Teams of Potential SAS Program Revisions between Shared Folders,
continued

2 2

 <HEAD>

 <script language="VBScript" event=onclick for=o ldfoldtext>

 Dim inlog, filehandle, outlog, fso, WshShell, F ilename_, shell

 Set fso=CreateObject("Scripting.FileSystemObjec t")
 Set WshShell=CreateObject("Wscript.Shell")
 set shell=createobject("shell.application")
 set Folder=shell.browseforfolder(0,"Specify ‘so urce' folder & click 'ok'.",&h0010,"C:\")
 on error resume next

 txtPath = Folder.ParentFolder.ParseName(Folder. Title).Path
 txtPath=replace(txtpath,"(","{(}")
 txtPath=replace(txtpath,")","{)}")

 if txtPath="" then
 wscript.quit
 end if

 document.getElementById("oldfoldtext").innerTex t=txtPath
 </script>

 <script language="VBScript" event=onclick for=n ewfoldtext>

 Dim inlog, filehandle, outlog, fso, WshShell, F ilename_, shell

 Set fso=CreateObject("Scripting.FileSystemObjec t")
 Set WshShell=CreateObject("Wscript.Shell")
 set shell=createobject("shell.application")
 set Folder=shell.browseforfolder(0,"Specify ‘co mparison' folder & click 'ok'.",&h0010,"C:\")
 on error resume next

 txtPath = Folder.ParentFolder.ParseName(Folder. Title).Path
 txtPath=replace(txtpath,"(","{(}")
 txtPath=replace(txtpath,")","{)}")

 if txtPath="" then
 wscript.quit
 end if

 document.getElementById("newfoldtext").value=tx tPath
 </script>

 <script language="VBScript" event=onclick for=s tartit>

 dim fso
 Set fso=CreateObject("Scripting.FileSystemObjec t")
 newfold=document.getElementById("newfoldtext"). value
 oldfold=document.getElementById("oldfoldtext"). value
 destfold=newfold

 retname=newfold & "\differences_found.txt"

 if fso.fileexists(retname)=true then
 fso.deletefile(retname)
 end if

 set o_f= fso.getfolder(oldfold)
 set fc= o_f.files
 set retfile=fso.createtextfile(retname,true)

 For Each f1 in fc

 file=f1.name

 if fso.getextensionname(ucase(f1.name))="SAS" then

 compfile1=oldfold & "\" & file
 compfile2=newfold & "\" & file

 if fso.fileexists(compfile1)=true and fso. fileexists(compfile2)=true then
 Set oldfile=fso.GetFile(compfile1)
 moddate1=oldfile.DateLastModified

 Set newfile=fso.GetFile(compfile2)
 moddate2=newfile.DateLastModified

 if moddate1>moddate2 then

Using File Modification Date Comparisons to Alert Study Teams of Potential SAS Program Revisions between Shared Folders,
continued

3 3

 retfile.writeline "File " & file & " has been modified more recently(" & moddate1
 & ") in the sourc e vs destination folder (" & moddate2 & ")."
 end if
 if moddate2>moddate1 then
 retfile.writeline "File " & file & " has been modified more recently(" & moddate1
 & ") in the desti nation vs source folder (" & moddate2 & ")."
 end if

 end if
 end if
 next

 retfile.close

 Set wshell=CreateObject("Wscript.Shell")
 wshell.run retname

 window.close()

 </script>

 </head>

 <body>

 <input type=text value="Click Here to specify F older containing 'source' Files" id=oldfoldtext
 size=100></input>

 <input type=text value="Click Here to specify F older containing 'comparison' Files" id=newfoldtext
 size=100></input>

 <input type=button value='Start File date/time comparison' id=startit></input>

 </body >

While the advantages of an HTML application include ease of use and familiarity via a GUI, the primary
disadvantage of the above seems to be speed. Particularly when working in the context of a local instantiation of the
application while referencing network folders, the embedded comparison script works via accessing file properties
over the WAN (Wide Area Network), which, depending on connection speed and number of files to be evaluated,
can take a considerable amount of time to process. Although by default the application only compares all files with a
“.sas” extension between folders, it could easily be adapted to check other file types that contribute to primary
production output (e.g., input source data sets or spreadsheets).

APPLICATION #2 - A PERL SCRIPT EXECUTED WITHIN UNIX :
In contrast to the first example, which demonstrated a HTML Application to be run within the Windows platform, the
next applies a few lines of Perl code submitted as a script via the UNIX command line to compare modification dates
between UNIX folders. While the inner workings and the instantiation method of the script (i.e., via command line)
are a bit different, the general concept and output method are the same. Again, the code in its entirety is included
below:

 #!/usr/local/bin/perl

 #################################
 ### compare_moddates.pl
 ###
 ### This script compares the file modification date s for matching files in 2 subdirectories
 ### specified as arguments.
 ###
 ### example call: perl compare_moddates. pl /pub/studies/folder1 /pub/studies/folder2
 ################################;

 use File::stat;
 use Time::localtime;

 my $folder1= "$ARGV[0]";
 my $folder2= "$ARGV[1]";

 if (-e '$folder2/diffs.txt')
 {
 system("rm $folder2 /diffs.txt");
 }

 opendir (DIR, $folder2) or die $!;

 open(OUTFILE,">$folder2/diffs.txt");

Using File Modification Date Comparisons to Alert Study Teams of Potential SAS Program Revisions between Shared Folders,
continued

4 4

 while (my $file = readdir(DIR))
 {
 next unless ($file=~m/\.sas $/);

 my $file1="$folder1/$file";
 my $file2="$folder2/$file";

 next unless (-e $file1);
 my $date1=ctime(stat($file1)- >mtime);

 next unless (- e $file2);
 my $date2=ctime(stat($file2)->mt ime);

 ne xt unless ($date1 ne $date2);

 print OUTFILE "Modificaton date of $file i s $date1 vs. $date2!\ n";
 }

 closedir(DIR);

 close(OUTFILE);

 system("gedit $folder2/diffs.txt");

As with the first application, the comparison folder is used as a baseline to generate a file list for comparing
modification dates between programs that exist in both folders, and any/all differences found are output to a text file,
which in this case is opened within the UNIX terminal window by gedit, a standard UNIX text editor application.

Display 2. Terminal Screenshot of Command-Line Call of Script

In the command call above, the ‘compare_moddates’ actually is an alias of ‘perl compare_moddates.pl’, which is the
actual script name and method of calling Perl at the command line, while testfold1 and testfold2 are subdirectories
immediately below the parent directory shown at the command line. Besides individual folder names, relative
pathnames (e.g., ../../testfold3) or full path names (/export/home/hunts/testfold1) are permissible.

Display 3. Screenshot of Output Generated

The difference in processing speed is distinct advantage of the UNIX-side script over the HTA: Entire directories with
hundreds of programs can be compared in just a few seconds. This of course will vary depending upon the amount
of memory allocated on your particular UNIX server.

APPLICATION #3 - A SAS PROGRAM WITHIN UNIX:
SAS within UNIX does not include a function for determining modification dates of files (probably reflecting the fact
that UNIX itself is rather limited in this fashion). However, UNIX does provide a similar comparison functionality
within the confines of the ‘find’ command (type ‘man find’ at the UNIX command line for details). In short, ‘find’ has
the ability to compare all files in a folder against one specific comparator file using the ‘-newer’ option:

Using File Modification Date Comparisons to Alert Study Teams of Potential SAS Program Revisions between Shared Folders,
continued

5 5

Display 4. Screenshot Example of Using then ‘-newer ’ UNIX Option

While this is useful for discovering more general changes to a folder relative to a static file, it’s not quite as useful as
a file-by-file comparison (i.e., since not all possible comparison files have an identical date/time stamp in all
likelihood, this might miss a change in a source file resulting from a rollback to a previous version, for example).
However, by using SAS to pipe out a comparison list of files followed by a macro loop applied to the comparison list,
the x-command (or call system) can be using within SAS to direct the UNIX ‘find‘ to generate a file-by-file comparison
and accompanying output list of differences. All code used is presented below:

 %let folder1=%str(/export/home/hunts/testfold 1);
 %let folder2=%str(/export/home/hunts/testfold 2);

 DATA _null_;

 *** GET A LIST OF THE COMPARITOR SAS FILES AN D OUTPUT TO A TEMPORARY FILE.;
 call system("ls &folder2 | grep .sas > list2. txt");
 run;

 DATA folder2;
 length pgmname $200;
 infile "list2.txt";
 input pgmname;
 run;

 DATA folder2;
 set folder2;

 c+1;

 *** GET THE TOTAL NUMBER OF PROGRAMS.;
 call symput('tot',compress(c));
 run;

 *** CREATE AN EMPTY 'SHELL' FILE FOR CONTAINI NG ANY DIFFERENCES FOUND.;
 x "ls xyz123abc789.sas > &folder2/diffs_sas.t xt";

 %macro compdate;

 %do i=1 %to &tot;

 DATA _null_;
 set folder2;

 if c=&i;
 call symput('filename1',"&folder1/"||trim(lef t(pgmname)));
 call symput('filename2',"&folder2/"||trim(lef t(pgmname)));
 run;

 x "find &filename1 -newer &filename2 >> &fold er2/diffs_sas.txt";

 %end;

 %mend compdate;

 %compdate;

 x "gedit &folder2/diffs_sas.txt &";

Using File Modification Date Comparisons to Alert Study Teams of Potential SAS Program Revisions between Shared Folders,
continued

6 6

CONCLUSION
In the absence of version control, study teams sharing files between production and development areas have to be
both cautious and diligent of development-side modifications impacting concurrent output production. This paper has
presented 3 distinct methods for comparing input sources (typically, but not limited to, SAS code) across folders to
ensure that potential modifications are programmatically identified for further investigation (e.g., targeted ‘diff’ utility
usage or manual review of individual files) and reconciliation completed satisfactorily prior to output delivery.

REFERENCES
SAS Knowledge Base. “Usage Note 40934: Retrieve file size, create time, and last modified date of an external file”
HTTP://SUPPORT.SAS.COM/KB/40/934.HTML

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Author name(s): Stephen Hunt and Brian Fairfield-Carter
Company: ICON Clinical Research
Address: Suite 500, 303 Twin Dolphin Rd.,
City state ZIP: Redwood City, CA 94065

 E-mail: Stephen.Hunt@iconplc.com
 B.Fairfield-Carter@iconplc.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

