
PharmaSUG 2012 - Paper PO13 

Creating Metadata Driven Macros to Gain Dynamism and Reduce Complexity in 
Macro Calls.  

Fernando Enriquez, PharmaNet/i3, Mexico City, Mexico 

ABSTRACT  
It often happens in clinical programming that we have to create standard derived data sets for several studies. It is 
always a good idea to create a macro and use it for all studies. The problem comes when there are too many 
parameters to consider for the study; large lists of changing values for parameters to be defined in the macro call, 
variable names changing in source data sets across studies, different categories to be derived or different value 
ranges for creating categories in the derived data sets. Many more problems can be listed and here is where 
metadata is useful to resolve such complexity when creating macro calls. 

Our metadata is a plain text file structured as a table in which the main macro can import as a data set to obtain all 
the parameters needed to process the derived data set with personalized specifications depending on the study; such 
values can represent categories to be processed with value ranges, lists of values, variable names, derivation 
specifications, filters, etc. This will give the main macro more dynamism and the macro user will find it easier to adjust 
the metadata file as needed without touching a single line of code - not even the macro call. 

This paper is directed towards SAS® Base programmers with some SAS Macro Language knowledge. 

INTRODUCTION 
The dynamism that a macro can give us to avoid recoding, save time, keep processes standardized and many other 
advantages can be affected when the source data sets are not standardized. Other considerations should be made 
when programming a macro to be used in several studies because, requirements will change across studies. This is 
when the use of metadata can make our programming more efficient by getting parameter values or deriving 
specifications through importing the metadata file into a data set.  

One important thing to note is that we can have as many metadata files as needed. For example, we can have a 
metadata file with a list of values, flags, source data set names and variable names; alternatively, we can create a 
metadata file with value ranges, category definitions and derivation specifications.  Such lists of complex parameter 
values can be easily set up in a metadata file instead of defining them in the macro call. This can be more difficult to 
do if the user does not know the macro parameter specifications, or if the user does not understand the macro code. 

CASE STUDY 
During the next sections a simple case study will be used to illustrate the metadata-driven macros approach. A 
sample reactions derived data set will be developed during the explanatory topics in this paper. Please note, this 
example is very simple and has been chosen just for illustrative purposes. This approach is, however, recommended 
for complex derivations where there are too many considerations requiring maximum flexibility in the macro 
programming and many parameter declarations. 

FIRST GLANCE 
This project needs a derived data set containing information on treatment reactions provided by patients through an 
electronic diary. This diary is filled out by patients after receiving each study drug dose as scheduled in the protocols.  
Patients should provide information from day 1 to day 7 following drug administration. The clinical study requires 
safety analysis of these reactions for all of its protocols.  Here are some of the considerations:  

 Diary data is collected by different vendors, so data comes in different formats and structures for each of the 
protocols. 

 Protocols target different populations; hence some of the ranges and derivations for analysis change. 

 Different lists of reaction information are collected for each of the protocols. 

 Descriptive reaction information from the vendors is different from the project descriptive reaction information. 
Synonyms, letter case, use of plural or singular, etc. are some of the details which complicate the incorporation 
of vendor data into the project database. 

 

The first step is to identify the needs of the derived data set. In this case study, we want to summarize all of the 
reported and not-reported diary information, including reaction description, visit numbers, day numbers, day dates, 
start date, stop dates and duration of the reactions. With this objective in mind, it is time to identify the dynamic parts 
to be included in the macro in order to create standard output regardless of the data source and study specifications. 

1 



Creating Metadata Driven Macros to Gain Dynamism and Reduce Complexity in Macro Calls, continued 

 

This is where pseudocode is used. 

USING PSEUDOCODE AS THE STARTING POINT 
Use pseudocode for sketching out the structure of the macro program before the actual coding takes place. This will 
help to identify the parts that will be dynamic in the programs (processes, variables, ranges, etc.), and will be included 
in the structure of the metadata file. The following illustrates some examples of pseudocode: 

Example 1: 

/*Transpose vendor’s data if it comes in a vertical structure*/ 
If macro variable “structure” = “vertical” then transpose data in order to have one record per patient/visit/day/reaction 
and sort it using the same variables in order to standardize the rest of the processing. 
 
Example 2: 

/*Read data sets*/ 
Read vendor’s data set keeping key variables and list of variables stored in macro variable “vars” gotten from 
metadata in order to derive just what is needed for specific study. 
 
Example 3: 

/*Incorporate vendor diary information in study database*/ 

Sort vendor data set and merge it with metadata to incorporate a link between vendor data set and study data set. 

 

Sort study data set and merge it with metadata to incorporate a link between vendor data set and study data set. 

 

Merge vendor data set with study data set using the already created metadata link. 

 

Example 3 is a clear case where metadata can work efficiently by providing a link between vendor data and study 
data sets.  Once this is incorporated in the design of the metadata, it is very clear and easy to establish this link, while 
conventional macro calls using ordinary parameters can be confusing. An example will be described in the next 
section. 

Once you identify all the potential dynamic parts in the processing, then the metadata can be built together with the 
actual macro code. Keep in mind that macro coding and creation of the metadata files will take more time to complete 
than conventional programming, but will save time when they are used to produce output for several studies. 

BUILDING THE METADATA FILE 
Now that we have a full picture of the macro and its needs, it is time to build the metadata file. The metadata is a 
plain text file, delimited by either tabs or special characters. Its structure is similar to a data set. The first row is used 
to define the variable names and the following rows contain the values.  The file should be saved with a descriptive 
name and extension, such as variables.meta. Using the reactions data set as an example, the metadata file structure 
can be something like this: 

 

Example 4: 

var |study_desc |vendor_desc |label  |type |flag 

chls |chills          |Chills  |Chills  |se |1 

swe |swelling  |Induration |Swelling  |se |0       swelling vs Induration now linked 

red |redness   |Erythema |Redness |lr |1       redness vs Erythema now linked 

 

Example 4 illustrates how processing of inconsistent data from the vendor and study data are simplified with the 
metadata structure because now equivalent values are described in a flexible file, which makes macro processing 
very simple and intuitive.  Implementing this in conventional macro calls would be confusing and the macro calls 
could look overwhelming.  

2 



Creating Metadata Driven Macros to Gain Dynamism and Reduce Complexity in Macro Calls, continued 

 

If variable names change for other studies, you can just adjust them as follows. Please note if you don’t need to 
derive something already declared in the template, a Boolean flag is enough to indicate that, as illustrated in Example 
5. 

 

Example 5: 

var |study_desc |vendor_desc |label  |type |flag 

chils |chills          |Chills  |Chills  |se |1       flag set to 1 to derive this reaction 

indur |swelling  |Induration |Swelling  |se |0       flag set to 0 when no needed 

ery |redness   |Erythema |Redness |lr |1       flag set to 1 to derive this reaction 

 

Once we have the metadata file structure, it can be used as a template to replicate for each study. Note that while 
you can create metadata using other file format, such as a spreadsheet, for this paper’s purpose, a delimited plain 
text file is used to make things easy to understand.  

Remember to document the metadata files.  You can create a separate metadata file to describe the whole set of 
metadata files that created for your project.  That way, any independent programmer can easily understand how to 
configure the metadata files for a certain study. 

READING METADATA FROM THE MACRO 
Now that we have the macro pseudocode and metadata structure in place, actual coding can occur. One of the most 
important things when coding the macro is the incorporation of metadata files into the SAS environment.  One 
example of reading the metadata is the described in Example 6. 

 

Example 6: 

PROC IMPORT DATAFILE="variables.meta"  DBMS=dlm OUT=variable_meta REPLACE; 

  DELIMITER="|"; 

  GETNAMES=yes; 

RUN; 

 

Once the metadata values are imported to the WORK library (or any other defined library) as a SAS data set, it can 
be used to get all parameter values required for the macro to process the derived data set. You can use this data set 
to create merges, get variable names, lists of items, etc. 

Let’s say the ranges metadata was created and imported  We can easily use information from the SAS data set to 
obtain the required values and define several macro variables to be used in a process within the macro, as shown in 
Example 7. 

 

Example 7: 

PROC SQL NOPRINT; 

   SELECT MIN(lower), MAX(higher) INTO: lower, :higher 

   FROM ranges_meta; 

QUIT; 

CREATING THE MACRO CALLING PROGRAM 
Once the macro program and metadata file(s) are ready, the last element required is the macro calling program. This 
consists of a simple macro call line without parameter values, as shown in Example 8. 

 

Example 8: 

%create_reactions_dataset(); 

3 



Creating Metadata Driven Macros to Gain Dynamism and Reduce Complexity in Macro Calls, continued 

 

BASIC METADATA-DRIVEN MACRO STRUCTURE 
Once all elements are in place (the actual macro program, the metadata file(s) and the macro calling program) a 
basic structure can be implemented so that the maximum benefits are obtained. 

 Save the macro program in a general folder which can be used for all studies. 
 Create a program in a single study, containing the macro call (no parameters defined in main macro). 
 Save the metadata templates in a general folder and copy it to a single study and define values as necessary, 

this structure makes it easy and intuitive for macro users to define parameter values.  
 

CONSIDERATIONS 
 Use this approach only when you anticipate re-use of the macro for multiple clinical studies. 

 Use this approach only when you anticipate complex dynamism in the macro which would require a lot of 
parameter definitions. 

 The macro program and metadata work closely together, hence a good analysis when creating the pseudocode 
will lead to flexible and complete metadata an efficient re-use of macro code. 

 Follow good programming practices when coding the macro. For instance, detailed comments in the program are 
very useful when an unfamiliar programmer needs to update the code. 

 And independent and original validation program should be written for every output release to catch errors when 
configuring the metadata or bugs in the macro code. 

 Even though more that one metadata file can be created for the macro processing, try to create no more than 
two or three metadata files to cover your needs.  Otherwise, the complexity in conventional macro calls will be 
transferred to this metadata structure. Keep things simple. 

CONCLUSION 
Having a simple metadata-driven macro structure in place will save time for your team, and will make the team’s work 
easier.  Macro experts are no longer needed to create an standardized data set, and even people who do not know 
the programming language can easily set up the metadata file and produce the data set without modifying a single 
line of code!!!. 

ACKNOWLEDGMENTS 
Thanks to PharmaNet/i3 who gave me support for presenting this poster and facilitated everything needed to present 
and attend PharmaSUG 2012 in San Francisco, CA. 

Thanks to Nancy Brucken for giving me answers to my questions about dynamics and details for submitting this 
paper, and for her suggestions in final paper submission. 

Thanks to Brad Danner for sharing his experiences in poster design from previous PharmaSUG events. 

Thanks to the Mexican Team and Mark Matthews at PharmaNet/i3 who took the time to check this paper and related 
poster to provide their opinions and advices. 

RECOMMENDED PAPERS/PRESENTATIONS AT PHARMASUG 2012 
If you read and are interested in this paper and related poster, you also might be interested in: 

 Data Standards and Quality: Building Flexible ADaM Analysis Variable Metadata by Songhui Zhu & Lin Ya. 

 Industry Basics: Metadata: Some Fundamental Truths by Frank DiIorio. 

 Techniques and Tutorials: Building the Better Macro: Best Practices for the Design of Reliable, Effective Tools by 
Frank DiIorio. 

 

4 



Creating Metadata Driven Macros to Gain Dynamism and Reduce Complexity in Macro Calls, continued 

 

5 

CONTACT INFORMATION 
Your comments and questions are valued and encouraged. Contact the author at: 

Name: Fernando Enriquez 
Enterprise: PharmaNet/i3 
Address: Platon Edificio 64 Departamento 002 
City, State ZIP: Ecatepec, Estado de Mexico 55018 
Work Phone: +52 (55) 2593 9398  
E-mail: fenriquez@pharmanet-i3.com, fernando_hispano@hotmail.com  
Web: http://mx.linkedin.com/pub/fernando-alonso-enriquez-bocardo/45/90/4a1 
Twitter: @ferhispano  
 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration.  

Other brand and product names are trademarks of their respective companies.  

 

mailto:fenriquez@pharmanet-i3.com
mailto:fernando_hispano@hotmail.com
http://mx.linkedin.com/pub/fernando-alonso-enriquez-bocardo/45/90/4a1

	ABSTRACT 
	INTRODUCTION
	CASE STUDY
	FIRST GLANCE

	USING PSEUDOCODE AS THE STARTING POINT
	BUILDING THE METADATA FILE

	READING METADATA FROM THE MACRO
	CREATING THE MACRO CALLING PROGRAM
	BASIC METADATA-DRIVEN MACRO STRUCTURE

	CONSIDERATIONS
	CONCLUSION
	ACKNOWLEDGMENTS
	RECOMMENDED PAPERS/PRESENTATIONS AT PHARMASUG 2012
	CONTACT INFORMATION

