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ABSTRACT 
For studies with missing data, it is being increasingly recommended to provide sensitivity analyses that assume data 
are Missing Not at Random (MNAR). In certain therapeutic areas, MNAR assumptions about the missingness 
mechanism are even recommended for the primary analysis. MNAR assumptions can be modeled within several 
statistical frameworks, one of which is known as pattern-mixture models (PMMs). Certain PMM-based analyses for 
continuous outcomes can be formulated in such a way that the estimate of the difference between experimental and 
control treatments is expressed as a linear combination of Least Squares Means (LSMs) for different effects of a 
longitudinal model with correlated errors, weighted by the appropriate proportions of study drop-outs and completers. 
This approach requires special considerations for the estimation of the variance because the proportions of drop-outs 
and completers used in the linear combination of LSMs are themselves multinomial random variables and their 
variances need to be incorporated into the overall estimate. This can be done using a delta approximation method for 
variance estimation. In this paper, we present details of implementing such analyses (including delta variance 
estimation method ) using exclusively SAS/STAT ® core functionality, such as PROC MIXED, data steps, and PROC 
FCMP. To illustrate this approach, we are using an example of MNAR assumptions that take into account the 
reasons for discontinuation from the study. 

1. INTRODUCTION 
Longitudinal models with correlated errors, otherwise widely known as mixed models with repeated measures 
(MMRMs), have been increasingly used for the analysis of clinical trials with missing data. A longitudinal model is 
often used even though the primary objective is to estimate a treatment effect and test a null hypothesis of no 
treatment effect at a single specific time-point (typically at the end of double-blind period). The advantage of using an 
MMRM analysis in this context (compared to ANCOVA at the primary time-point) is that longitudinal models include 
all randomized subjects regardless of whether they completed the study (provided data for the primary time-point) or 
not. Model estimation and inference is done without performing any imputation of the missing data for subjects who 
discontinued early, yet partial data available for these subjects is fully utilized and contributes to the estimation of 
effects at the end of the double blind period and to the variance-covariance structure of the longitudinal model.  

A standard MMRM analysis relies on Missing at Random (MAR) assumptions regarding the mechanism behind 
missingness of the data. With MAR missingness depends only on the available data and is independent of the 
outcomes that are not observed. Under the MAR assumption, as long as a statistical model includes all observed 
variables that explain missingness, inference from that model will not be biased due to the missing data. In less 
technical terms, MAR assumptions imply the following: that the subjects with missing data (typically those that 
discontinue from the trial prematurely) follow the same trajectory (distribution) for the outcome variable after their 
discontinuation as the subjects with available data (study completers) with similar characteristics captured by 
observed data. If, on the other hand, missingness depends on the unobserved outcome and cannot be fully explained 
by available data, the mechanism is considered to be MNAR. In other words, with MNAR it is assumed that the post-
discontinuation outcomes of subjects with missing data are systematically different from those with observed data 
even after accounting for all relevant observed factors in the statistical model. 

While MAR assumptions may be reasonable for many studies, one can never rule out that the missingness 
mechanism for a study at hand is not MNAR (it is impossible to prove that missingness does not depend on 
unobserved data due to the fact that these data are missing). Because of this, regulatory and industry experts 
strongly recommend [1,2] that sensitivity analyses be performed for departures from MAR assumptions. In practice 
this requires analyzing the data under various MNAR scenarios that are clinically meaningful and plausible for a study 
at hand. In some cases, MAR assumptions can be considered as just not appropriate for the study, and MNAR 
assumptions have to be used for the primary analysis. We provide one example of MNAR assumptions in Section 2.  

Importantly, we cannot be sure of the dependencies, if any, between observed data values and missing data values , 
so a typical solution for this problem is to make some explicit assumptions regarding these dependencies or about 
the distribution of the unobserved outcomes, and impose these assumptions on the statistical model.    

 



Pattern-mixture models [3] provide one framework within which MNAR assumptions can be modeled and we provide 
a brief introduction to this framework in Section 2. There are different ways in which PMMs can be implemented [12]. 
One implementation strategy relies on Multiple Imputation (MI) (e.g., see reference [11] for a description of a general 
approach and reference [4] for an example of a particular PMM using MI functionality in SAS). Other approaches use 
maximum likelihood techniques as the basis for the estimation of an underlying statistical model, onto which 
additional (MNAR) assumptions are imposed [5, 7, 13]. In Section 2 of this paper, we describe one way of 
implementing PMMs in a maximum likelihood framework in SAS for the analysis of continuous outcomes. Unlike MI-
based implementations, this approach does not involve any explicit imputation, but similar to standard MMRM 
analysis, partial data from subjects that discontinued early are used for estimation of the parameters in the 
longitudinal model. With this strategy, the estimate of the experimental-control treatment difference is formulated as a 
linear combination of LSMs obtained from a standard MMRM, where each LSM in the linear combination can be 
weighted by proportions of subjects in different completer/drop-out groups. This estimate can be obtained using SAS 
procedure PROC MIXED. However, PROC MIXED does not compute a standard error for this estimate in a way that 
would account for the fact that weights used in the linear combination of LSMs are not constants, but rather 
multinomial random variables (proportions of subjects in different subgroups). Since these proportions are estimated 
from data, standard errors associated with their estimation need to be accounted for in the overall standard error of 
the treatment difference estimate. This can be accomplished using a so called delta approximation method [6]. We 
provide a general algorithm for its calculation in Section 3 with a detailed example using SAS code in Section 5.   

A maximum likelihood-based approach may be appealing to statisticians that prefer the “single answer” provided by 
an MMRM-type analysis to the random sampling (simulation) nature of an MI-based analysis, and who may have 
other concerns about MI, such as treatment of non-monotone missing data. It should be noted, however, that even 
when the underlying MNAR assumptions are the same (in terms of their clinical interpretation), MMRM-based 
implementation of PMMs and implementations based on explicit imputation (both single and multiple) can result in 
slightly different estimates of the mean difference between treatments as well as quite different standard errors of 
these estimates. We will further highlight this fact in Section 5. 

The main objective of this paper is to demonstrate how PMM-type analyses based on linear combinations of LSMs 
from an MMRM can be implemented in SAS, and how standard errors for the corresponding estimates of the 
experimental-control treatment differences can be computed with the delta method using standard SAS functionality. 
The approach is illustrated using, as an example, a particular set of MNAR assumptions based on reasons for 
discontinuation form the study which results in a particular instance of a PMM and a corresponding linear combination 
of LSMs. However, general principles and implementation strategy described in Sections 2 and 3 can be applied to 
impose other MNAR assumptions as long as the final estimate of the difference between treatments can be 
formulated as a linear combination of LSMs obtained from a longitudinal model. This article does not suggest that the 
set of MNAR assumptions and the way of implementing them as illustrated in this paper have some general 
advantages over other methods, including those results of which are provided in Section 5. The choice of the 
assumptions and the most appropriate method to implement them depends on various characteristics of the real-
world studies and would have to be considered on a case-by-case basis. We highlight some of the pros and cons of 
the MMRM-based and MI-based methods for PMM implementation in the conclusion section. 

2. PATTERN-MIXTURE MODELS AS LINEAR COMBINATIONS OF LEAST SQUARES 
MEANS 

PMMs are based on a joint modeling of (clinical) outcome and missingness. Assume that the entire outcome data 
matrix Y is divided into two components: Y୭ୠୱ, representing observed outcomes and Y୫୧ୱ, representing missing 
(unobserved) outcomes. Assume that X represents a set of (observed) covariates and R represents a matrix of 
indicators of missing in  jo ty ata and missingness: ness. PMMs use the follow g factorization of the int probabili of dpሺY୭ୠୱ, Y୫୧ୱ, R|Xሻ 	ൌ 	pሺR|Xሻ		pሺY୭ୠୱ, Y୫୧ୱ|	R, Xሻ 	ൌ 	pሺR|Xሻ		pሺY୭ୠୱ	|	R, Xሻ			pሺY୫୧ୱ	|	Y୭ୠୱ, R, Xሻ          (2.1) 

The indicators of missingness R can also be regarded as indicators of belonging to a particular pattern of missingness 
or, in other words, a group of subjects that share certain characteristics related to missingness, for example, time of 
discontinuation from the clinical study, reason for discontinuation, or a treatment arm to which subjects were 
randomized. The probability distribution pሺR|Xሻ	 can be viewed as a probability distribution of various missingness 
patterns. The factor pሺY୭ୠୱ	|	R, Xሻ represents a model for available data within each pattern R, and pሺY୫୧ୱ	|	Y୭ୠୱ, R, Xሻ 
represents a model for missing data conditioned on observed data within each pattern. The pattern-specific estimates 
are not typically of interest, so the average estimates across the missing data patterns are obtained to yield an overall 
result. Averaging is accomplished by the weighting of	pሺY୭ୠୱ	|	R, Xሻ			pሺY୫୧ୱ	|	Y୭ୠୱ, R wit rob espሺR|Xሻ.  , Xሻ h p abiliti

Pattern-mixture models are, by definition, under-identified because the probability pሺY୫୧ୱ	|	Y୭ୠୱ, R, Xሻ cannot be 
estimated without assumptions. In order to estimate PMMs, one needs to explicitly impose those assumptions, which 
are sometimes referred to as “identifying restrictions”, regarding the inestimable parameters. There are several 
methodologies for imposing these identifying restrictions.  

 



In this paper, we consider an approach where an MMRM model is first estimated from observed data in a standard 
MAR-type modeling framework with treatment arm, time, treatment-by-time interaction, and possibly some covariates 
included as effects. From this model, one can estimate various LSMs for outcome in different treatment arms and at 
different time-points. Subsequently, in order to obtain LSMs under departures from the MAR assumptions used to 
estimate the above model, one can impose certain identifying restrictions in such a way that LSMs for drop-out 
groups (patterns) are assumed be equal to specific LSMs from the MAR-based model reflecting desired clinical 
assumptions. An overall estimate of the treatment effect (overall LSM over completers and drop-outs) is then defined 
as a linear combination of LSMs for different patterns weighted by the probability of subjects belonging to each 
respective pattern. 

We will illustrate this approach using an analysis strategy the main features of which has been recommended in the 
past for trials with symptomatic treatment of chronic conditions (e.g., chronic pain). In such indications, regulatory 
agencies recommended the adoption of an approach where subjects who discontinue study treatment due to inability 
to tolerate it are assumed to revert to their baseline severity of symptoms and derive no further benefit from treatment 
after discontinuation. When single imputation methods were used in conjunction with ANCOVA, for this group of 
discontinued subjects, the outcome at the final time-point was imputed using the baseline observation carried forward 
(BOCF) method, while other subjects were imputed using last observation carried forward (LOCF). Using BOCF for 
those who discontinued due to intolerability resulted in a more conservative estimate of treatment effect, compared to 
using LOCF universally, because sometimes these subjects (often more numerous in the experimental treatment 
arm) did exhibit a considerable symptom relief prior to discontinuation, which would have been carried forward by the 
LOCF method to the final time-point, thus attributing a positive long-term treatment effect, contrary to regulatory 
recommendations and clinical objectives. However, a general concern with single imputation methods (both BOCF 
and LOCF) is that they can potentially underestimate the variance of the treatment effect estimate by not accounting 
for uncertainty about missing (imputed) data.  

In this paper, we demonstrate how similar clinical assumptions can be modeled with MMRM-based PMM analysis as 
opposed to a hybrid single imputation with BOCF and LOCF. Assume that there are K+1 visits in a study, with 0 being 
a baseline visit and K being a final time-point used for the primary endpoint. For simplicity, we assume that there are 
two treatment arms – experimental and control. For the purposes of our analysis, we will consider two types of 
primary reasons leading to subjects discontinuing the study treatment: adverse events and lack of efficacy, which we 
will designate together as lack of therapeutic benefit (LTB), vs. other reasons. The primary reasons of discontinuation 
are assumed to be collected as part of the study data and are identified by the study investigator. A standard MMRM 
model will include time (with baseline included as a separate time-point), treatment arm and treatment-by-time 
interaction as fixed effects and baseline efficacy score as covariate.  It can be implemented in SAS using PROC 
MIXED with R PEATED statement (time as repeated factor within subject).  E

Assume that ߤ௧,௞ represents an LSM estimated from this MMRM for a specific treatment arm and time-point, where 
subscript t denotes the treatment arm (t=0 for control and t=1 for experimental), and subscript k denotes the time-
point (k=0,1,…,K). We will also define the following LSMs for each treatment arm t at the last time-point K, which is 
our prima  a is time-point. ry nalys

௧,௄஼ߤ • ൌ  ௧,௄ : LSM that will be attributed to study completers, as denoted by the superscript C. Forߤ	
completers, the LSM is assumed to be equal to the LSM ߤ௧,௄ estimated from the MMRM model for the final 

t in each arm. time-poin

௧,௄௅்஻ߤ • ൌ  ௧,଴ : LSM that will be attributed to drop-outs due to lack of therapeutic benefit, as denoted by theߤ	
superscript LTB. For this group of drop-outs, the LSMs for the last post-baseline time-point K are assumed 
to be equal to the LSMs at baseline, ߤ௧,଴, thus not attributing any positive treatment effect as would, 

a post-baseline estimate of ߤ௧,௄ from the MMRM model.  otherwise, be estimated by 

௧,௄ை்ுߤ • ൌ	 ଵଶ ሺߤ௧,ଵ ൅ ,௧,ଶሻߤ ݇ ൒ 1 : LSM that will be attributed to drop-outs due to other reasons, as denoted by the 
superscript OTH. For this group of drop-outs, the LSMs for the last post-baseline time-point K are assumed 
to be equal to an average of LSMs at the first two post-baseline visits in the respective treatment arms. This 
way, the LSMs at the final time-point are effectively replaced by the LSMs from the earlier time-points to 
which these discontinued subjects contributed their data most. (Note, this assumption may be made more 
general and expressed as an average of all st-baseline visits except the final one).   po

Based on the LSMs defined above, an overall LSM, ߤ௧,௄	஺ , for a treatment arm t at the final time-point K (over 
completers and drop-outs as n by de oted  superscript A) is defined as follows. 

,௄஼ ௧,௄஼ ௅்஻ ௧,௄௅்஻ ை்ு ௄்ுߤ௧,௄	஺ ൌ ௧ߨ	 ൈ ߤ ൅ ௧,௄ߨ ൈ ߤ ൅ ௧,௄ߨ ൈ ௧,ைߤ ൌ 									ൌ ௧,௄஼ߨ ൈ ௧,௄ߤ ൅ ௧,௄௅்஻ߨ ൈ	ߤ௧,଴ ൅ ௧,௄ை்ுߨ ൈ ଵଶ ሺߤ௧,ଵ ൅  ௧,ଶሻ                        (2.2)ߤ

where ߨ௧,௄஼  ௧,௄ை்ுrepresent proportions of study completers and of drop-outs due to LTB and other reasonsߨ ௧,௄௅்஻,andߨ ,
respectively, which can be estimated from observed frequencies of completers and drop-outs. As can be noted from 

 



(2.2), this overall LSM for each treatment arm can be estimated using a linear combination of LSMs, ߤ௧,௞, obtained 
from a standard MAR-based MMRM; yet the overall LSMs ߤ௧,௄	஺  reflect departures from the original MAR assumptions.  

Once the overall LSMs are computed as defined in (2.2) for each treatment arm, a difference between LSMs of the 
two treatments can be estimated as 

஺	ௗ,௄ߤ                                                                       ൌ ஺	ଵ,௄ߤ െ	ߤ଴,௄	஺                                                       (2.3)              

Then, a test of the null hypothesis of no treatment effect can be performed using a Wald statistic 

஺	ௗ,௄ߤ                                                         ஺	ௗ,௄ߤሺܧܵ/ ሻ                                                          (2.4)                  

where ܵܧሺߤௗ,௄	஺ ሻ is a standard error of the  ߤௗ,௄	஺  estimate. A special consideration should be given to the estimation of 
this standard error. The estimate should take into account the fact that the proportions ߨ௧,௄஼  ௧,௄ை்ுareߨ ௧,௄௅்஻,andߨ ,
estimates of the multinomial random variables, and thus their variances should be incorporated in the overall variance 
estimate. This can be done using a delta approximation method for variance estimation [6,7]. In the next section, we 
describe the delta method and how to implement it using information readily available from PROC MIXED. 

3. DELTA APPROXIMATION METHOD FOR VARIANCE ESTIMATION  
Assume an LSM of interest ߤ (e.g., ߤௗ,௄	஺ as described in the previous section) is expressed as a linear combination of 
LSMs ߤଵ, ߤଶ,…, ߤ௉ from a standard MMRM: ߤ ൌ ଵߨ ൈ ଵߤ ൅ ଶߨ ൈ ଶߤ ൅ ⋯൅ ௉ߨ ൈ  	                      (3.1)						 ௉ߤ

  
where ߨ௣ are proportions of subjects in specific groups (patterns) defined, for example, based on a combination of 
treatment arm, study completion status, and reason for discontinuation. LSMs ߤ௣	ሺ݌ ൌ 1,… , ܲ) are estimated from 
an MMRM with a vector of paramete  es ߚ ,…  E  of he LSMs ߤ௣can b  expressed in terms 
of model parameters and contrast co fi ts 

r timates ࢼ ൌ ሺ ଵ, ଶߚ , ெሻ. achߚ  t e
ef cien ܿ௠௣ 	௣ߤ : ൌ ܿଵ௣ ൈ ଵߚ ൅ ܿଶ௣ ൈ ଶߚ ൅ ⋯൅ ܿெ௣ ൈ 	                    (3.2)						 ெߚ

  
Variance of the overall LSM, ܸܽݎሺߤሻ  m thod [6,7  as follows. , can be estimated using a delta approximation e ሻߤሺݎܸܽ[ ൌ  	    (3.3)												ሻ′	ߤ∇ሺ	ሺ࣊ሻሿݒ݋ܥݎܸܽ	⊕	ሻࢼሺݒ݋ܥݎሾܸܽ	ߤ∇

  
where ∇ߤ  is a gradient vector of ߤ con n  of parti rivatives of ߤ pect to model parameters ߚ௠ and 
proportions ߨ௣. The elements of this g d l :

sisti g  al de  with res
ra ient vector are as fol ows  

	ߤ∇ ൌ ሺ డఓడఉభ , డఓడఉమ , … , డఓడఉಾ , డఓడగభ , డఓడగమ , … , డఓడగುሻ                  (3.4) 
 
Variance-covariance matrix can be obtained directly from the estimates of the MMRM. ܸܽݒ݋ܥݎሺࢼሻ	
Variance-covariance matrix ܸܽݒ݋ܥݎሺ࣊ሻ can be computed as variances and covariances of sampling proportions from 
a multinomial distribution: 

 

 
                        Diagonal elements (variances) ܸܽݒ݋ܥݎሺ࣊ሻሾ݅, ݅ሿ ൌ ௜ߨ ଵିగ೔ே ;
where N is the total number of subjects in the sample based on which ߨ௜ are estimated (e.g., number of subjects in a 
given treatment arm). 

	݅ ൌ 1,… , ܲ (3.5) 
 

 
           Of iances)  ܸܽݒ݋ܥݎሺ࣊ሻሾ݅, ݆ሿ ൌ െగ೔గೕே ; 	݅, ݆ ൌ 1,… , ܲ, ݅ ് ݆ (3.6) f-diagonal elements (covar
 
Notation 	ሾܸܽݒ݋ܥݎሺࢼሻ	⊕	ܸܽݒ݋ܥݎሺ࣊ሻሿ is u cate that the overall matrix is block-diagonal: sed to indiܸܽݒ݋ܥݎሺࢼሻ  

݋ܥݎܸܽ 0  (3.7)                            0 ሺ࣊ሻݒ 
 

Proportions ߨ௣ are estimated from a sample of study subjects as 
௡೛ே  , i.e., the number of subjects in group p divided 

by a total number of subjects N l categories (typically within each treatment arm).   over al

To facilitate the computation of ܸܽݎሺߤሻ as defined by equation (3.3), we will use the following data structure that can 
be represented and manipulated as a regular SAS dataset. 

 

 



 
Table 1: Data Structure with Elem ts for Delt  Method Variance lculation en a  Ca

Model Effect 
Model 

Parameter 
Estimate 

 ଵߤ
LSM 

Coefficients 

 ଵߨ
Estimate … 

 ௉ߤ
LSM 

Coefficients 

 ௉ߨ
Estimate 

 ௠ߚ߲ߤ߲

<Model Term, 
Level> ߚଵ ܿଵଵ ߨଵ … ܿଵ௉ ߨ௉ 

 
 ଵߚ߲ߤ߲

<Model Term, 
Level> ߚଶ ܿଶଵ ߨଵ … ܿଶ௉ ߨ௉ 

 
 ଶߚ߲ߤ߲

 …   …    
<Model Term, 

Level> ߚெ ܿெଵ ଵ … ܿெ௉ߨ  ߨ   ௉
 

  ௣ߨ߲ߤ߲ ெߚ߲ߤ߲
  … ଵߨ߲ߤ߲

  ௉ߨ߲ߤ߲

 
The elements of the gradient vector ∇ߤ are represented by the last column and last row of this data structure. They 
can be computed as follows using other values from this data structure. ൌ ∑ ܿ௠௣௉௣ୀଵ ൈ  డఓడఉ (3.8)                           ݌ߨ

೘
 డఓడగ೛ ൌ ∑ ܿ௣ெ ൈ ߚ                            (3.9) ௠௠ୀଵ ݉

 
PROC MIXED can be used to obtain parameter estimates ࢼ ൌ ሺߚଵ, ,ଶߚ … ,  ெሻ for the MMRM. We can useߚ
LSMESTIMATE statement in PROC MIXED to request the LSMs ߤ௣ and the overall LSM ߤ, the result of which will be 
stored in the ODS output dataset LSMESTIMATES. Specification of LSMs is made easier with the new non-positional 
syntax of LSMESTIMATE statement [8]. When this simplified syntax is used (see examples in Section 5), option E 
allow us to obtain automatically all the contrast coefficients ܿ௠௣  (corresponding to a positional syntax with the full 
model parameterization) for the requested LSMs. These coefficients can be captured in the ODS dataset COEF. 
Parameter estimates	ߚ௠, and their variance-covariance matrix ܸܽݒ݋ܥݎሺࢼሻ can also be readily obtained as ODS 
output datasets produced by PROC MIXED (SOLUTIONF and COVB respectively).  
 
If all the necessary information is pulled from the output ODS datasets produced by PROC MIXED and stored in a 
dataset as described above, calculation of partial derivatives using equations (3.8) and (3.9) can be done in a SAS 
data step using arrays to compute డఓడఉ೘ on each row of the dataset, and using RETAIN statements to calculate డఓడగ೛ in 

columns. Partial derivatives computed in this way can be transferred into a row vector (3.4) and stored as SAS 
dataset with one record and M+P variables.  

Then matrix (3.7) needs to be constructed using ODS output dataset COVB for the upper left block and performing 
calculations in equations (3.5 and (3.6) for the lower right block. This matrix can be stored as a SAS dataset as well.  

After that, the only thing that remains to be done is to perform vector and matrix multiplication operations according to 
equation (3.3). This can be done either by using PROC IML or implemented with core SAS functionality. In Appendix 
1, we provide a macro that performs these operations using SAS/STAT procedure PROC FCMP.  

This section presented a general definition and data structures needed to compute the variance of a linear 
combination of LSMs using the delta approximation method. In Section 5, we provide a detailed example and SAS 
code for the analysis based on the MNAR assumptions based on reasons for subject discontinuation described in the 
previous section. 

4. EXAMPLE DATASET  
Implementation of a PMM-based analysis will be illustrated using an example study where efficacy endpoint is stored 
in a SAS dataset, DATAIN, with the following variables: 

• SUBJID – subject identification number; 
• TRT – treatment arm (0=control and 1=experimental); 

 



• DISCRSNN – completion or reason for discontinuation (0=completer, 1=lack of therapeutic benefit, including 
AEs or lack of efficacy, and 2=other reason for discontinuation); 

• TIMEPTN – timepoint (0=Baseline, 1, 2,3,4, 5 for post-baseline study visits 1 through 5); 
• SCORE – a continuous efficacy score, where higher values correspond to better outcomes; 
• SCOREB – efficacy score at baseline 

In this example dataset, percentages of drop-outs are very similar between the control and experimental arms, as 
well as across categories of reasons for discontinuations considered here, with just a slightly higher percentage of 
subjects discontinuing due to LTB from the control arm (see Table 2). 
 

Table 2: Percentage of Subjects Completing and Discontinuing from the Study

 Discontinued Subjects (%) 

Reason for Discontinuation Control Arm Experimental Arm 

Completers 79% 80% 

Lack of Therapeutic Benefit 7% 5% 

Other Reason for Discontinuation 14% 15% 

 

Figure 1 shows mean efficacy scores across visits plotted separately for study completers and two groups of drop-
outs. Subjects dropping out due to reasons other than LTB, follow a similar trajectory to completers. Subjects 
dropping out due to LTB from the control group showed some improvement but a less steady one compared to 
completers. Drop-outs due to LTB from the experimental arm, although improved between baseline and Visit 1, show 
a subsequent plateau and deterioration prior to discontinuation.   

 

Figure 1: Mean Efficacy Scores by Visit and Completer/Drop-out Groups

  
 

5. SAS CODE AND RESULTS FOR THE EXAMPLE DATASET  
In this section we illustrate how to perform the PMM analyses described in Section 2 and 3 for the example dataset 
introduced in Section 4. 

The overall difference between the experimental and control treatments based on assumptions expressed by 
tio ne l wequa ns (2.2) and (2.3) is defi d as fol o s: 					ߤௗ,ହ	஺ ൌ ଵ,ହ஼ߨ ൈ ଵ,ହߤ ൅ ଵ,ହ௅்஻ߨ ൈ	ߤଵ,଴ ൅ ଵ,ହை்ுߨ ൈ ଵଶ ሺߤଵ,ଵ ൅ ଵ,ଶሻߤ െ	ߨ଴,ହ஼ ൈ ଴,ହߤ െ ଴,ହ௅்஻ߨ ൈ	ߤ଴,଴ െ ଴,ହை்ுߨ ൈ ଵଶ ሺߤ଴,ଵ ൅  ଴,ଶሻ       (5.1)ߤ

We will employ the following SAS-friendly notation (which we will later use in SAS code) for the elements of equation 
(5.1): 

 



•  =   mu1: LSM for experimental arm at time-point 5 (post-baseline Visit 5) ߤଵ,ହߤ  =   
• 
• mu2: LSM for experimental arm at time-point 0 (baseline) ଵ,଴ଵଶ ሺߤଵ,ଵ
•  =   mu4: negative of LSM for control arm at time-point 5 (post-baseline Visit 5) 

൅ ,଴ߤଵ,ଶሻ =  mu3: average of LSMs for experimental arm at time-points (post-baseline Visits) 1 and 2 െߤ
• ଴,  mu5: negative of LSM for control arm at time-point 0 (baseline) 

ହെߤ ଴ =  
• ଵ ሺߤ଴,ଵ ൅  ଴,ଶሻ =  mu6: negative of average of LSMs for control arm at time-points (post-baseline Visits) 1ߤ

 2 
െଶ
and

• ஼  =  &pi1: proportion of subjects in the experimental arm completing study through the final 
point 5 

ଵ,ହߨ
t e-

ߨ •    &pi2: proportion of drop-outs from the experimental arm by time-point 5 due to LTB 
imଵ,ହ௅்஻ =

•  ହை்ு =   &pi3: proportion of drop-outs from the experimental arm by time-point 5 due to other 
r ons 
,ଵߨ
eas

•  ஼  =   &pi4: proportion of subjects in the control arm completing study through the final time-
t 5 

଴,ହߨ
in

•   &pi5: proportion of drop-outs from the control arm by time-point 5 due to LTB 
poߨ଴,ହ௅்஻ = 

 ଴,ହை்ு =  &pi6: proportion of drop-outs from the experimental arm by time-point 5 due to otherߨ •
reasons 

 
Proportions of completers and drop-outs will be assumed to be stored in SAS macro variables &pi1 through &pi6, 
computation of which can be facilitated by a macro %nobscount provided in Appendix 1 which counts the number of 
observations in a specified subset of records from an input dataset. 

Using this notation, the LSM difference between treatment arms (ߤௗ,ହ	஺ ) at the final time-point 5 can be expressed as 
follows: 

mu_diff_PMM = &pi1 * mu1 + &pi2 * mu2 + &pi3 * mu3 + &pi4 * mu4 + &pi5 * mu5 + &pi6 * mu6   (5.2) 

This lends itself easily to the general notation used in equation (3.1), so that we can now follow equations (3.2) – (3.7) 
to calculate the variance of mu_diff_PMM using the delta method. 

SAS Code Fragment 1 illustrates how the LSMs involved in the linear combination (5.2) can be computed using 
PROC MIXED and LSMESTIMATE statements. In this procedure call, we are using a repeated measures model for 
the efficacy score variable SCORE with a repeated factor SUBJID and a Toeplitz type covariance matrix for 
correlated errors. Model includes treatment (TRT), time-point (TIMEPTN), and TRT*TIMEPTN interaction as fixed 
effects as well as baseline score SCOREB as covariate. (The interaction of baseline with time could also be 
included.) Data includes all 6 levels of TIMEPTN (baseline plus 5 post-baseline visits). Including baseline time-point 
allows us to estimate LSM of each treatment arm at baseline (mu2 and mu5) from the TRT*TIMEPTN effect at 
TIMEPTN=0. 

We are using a non-positional syntax in the LSMESTMATE statement [8,10] which allows us to request contrast 
(LSM) estimates in a format where only non-zero coefficients involved in the contrast are specified, without regard to 
the ordering of parameters in the model parameterization.  For example, when requesting an LSM estimate for the 
fixed effect TRT*TIMEPTN, the format would be as follows: 

LSMESTIMATE TRT*TIMEPTN '<Label>' [<coefficient>, <level# of TRT> <level# of TIMEPTN>] / 
<options>; 

Note that “level #” for each factor indeed refers to the level and not the value of the factor. For example, for TRT 
which takes values 0 and 1, to estimate LSM for the control arm, level # is 1, and for the experimental arm, level # is 
2. In order to estimate LSM of the experimental arm at Visit 5, values in square brackets would be [1, 2 6], indicating 
level #2 for TRT and level #6 for TIMEPTN. Nothing else would need to be specified, as this would be the only term 
with a non-zero coefficient in the corresponding contrast. In the code below, labels in each LSMESTIMATE statement 
describe the LSM that is calculated using this non-positional syntax.  

We can use the output from this PROC MIXED to compute variance of the LSM difference between treatments as 
described in equations (3.2) – (3.7). We will pull information from different ODS output datasets to construct a dataset 
containing information described in Table 1. 

Model parameter estimates ࢼ ൌ ሺߚଵ, ,ଶߚ … ,  ெሻ are located in the ODS output dataset SOLUTIONF. From thisߚ
dataset, we need to use the variables as shown in the left panel of Table 3, where the values of the ESTIMATE 
variable contain parameters ߚ௠for each model effect identified by EFFECT variable and levels of CLASS effects TRT 
and TIMEPTN. 

 

 



SAS CODE Fragment 1 

ODS OUTPUT CovParms=CovParms CovB=CovB SolutionF=SolutionF Coef=Coef 
LSMEstimates=LSMEstimates; 
PROC MIXED DATA=DATAIN METHOD=reml EMPIRICAL; 
 CLASS SUBJID TRT TIMEPTN; 
   MODEL SCORE = TRT TIMEPTN TRT*TIMEPTN SCOREB/  SOLUTION COVB; 
 REPEATED timeptn / TYPE=toep SUBJECT=SUBJID; 

 
* Non-positional syntax for LSMs: TRT*TIMEPTN [<coeff>,<TRT_level#, TIMEPTN_level#>]; 
    LSMESTIMATE TRT*TIMEPTN '1. mu1: Experimental at Timepoint 5'  [1, 2 6] / E; 
    LSMESTIMATE TRT*TIMEPTN '2. mu2: Experimental at Baseline'     [1, 2 1] / E; 
    LSMESTIMATE TRT*TIMEPTN '3. mu3: 1/2*(Experimental at Timepoint 1 + Experimental  
                                     at Timepoint 2)' [0.5, 2 2] [0.5, 2 3] / E; 
    LSMESTIMATE TRT*TIMEPTN '4. mu4: -Control at Timepoint 5'     [-1, 1 6] / E; 
    LSMESTIMATE TRT*TIMEPTN '5. mu5: -Control at Baseline'        [-1, 1 1] / E ; 
    LSMESTIMATE TRT*TIMEPTN '6. mu6: -1/2*(Control at Timepoint 1 + Control at  
                                      Timepoint 2)' [-0.5, 1 2] [-0.5, 1 3] / E; 
    LSMESTIMATE TRT*TIMEPTN 'mu_diff_PMM: (Experimental-Control) at Time-point 5'  
   [&pi1, 2 6] [&pi2, 2 1]  [&pi3_half, 2 2]  [&pi3_half, 2 3] 
        [-&pi4, 1 6] [-&pi5, 1 1] [-&pi6_half, 1 2] [-&pi6_half, 1 3] / E; 
run; 

LSM (contrast) coefficients ܿ௠௣  (see equation 4) for each LSM involved in the linear combination mu_diff_PMM can be 
obtained from the ODS output dataset COEF, the structure of which is shown in the right panel of Table 3. The 
LMATRIX variable in this dataset corresponds to the number of the LSMESTIMATE statement that was specified in 
the call to PROC MIXED. In Table 3, a fragment of the COEF dataset is shown corresponding to the LSM “mu1” 
(records with LMATRIX=1). ROW1 variable represents the coefficients ( ܿ௠௠௨ଵ) for all model effects for this LSM 
estimate. 

Table 3: Structure of the ODS output datasets from PROC MIXED 

ODS Dataset SOLUTIONF  ODS Dataset COEF (fragment) 
Effect TRT TIMEPTN Estimate  LMatrix Effect TRT TIMEPTN Row1 
Intercept _ _ 87.6462 1 Intercept _ _ 1 
TRT 0 _ -16.6337 1 TRT 0 _ 0 
TRT 1 _ 0 1 TRT 1 _ 1 
TIMEPTN _ 0 -47.8973 1 TIMEPTN _ 0 0 
TIMEPTN _ 1 -13.1025 1 TIMEPTN _ 1 0 
TIMEPTN _ 2 -9.4208 1 TIMEPTN _ 2 0 
TIMEPTN _ 3 -5.1077 1 TIMEPTN _ 3 0 
TIMEPTN _ 4 -1.4617 1 TIMEPTN _ 4 0 
TIMEPTN _ 5 0 1 TIMEPTN _ 5 1 
TRT*TIMEPTN 0 0 16.8269 1 TRT*TIMEPTN 0 0 0 
TRT*TIMEPTN 0 1 -6.2583 1 TRT*TIMEPTN 0 1 0 
TRT*TIMEPTN 0 2 2.8260 1 TRT*TIMEPTN 0 2 0 
TRT*TIMEPTN 0 3 1.4565 1 TRT*TIMEPTN 0 3 0 
TRT*TIMEPTN 0 4 1.1285 1 TRT*TIMEPTN 0 4 0 
TRT*TIMEPTN 0 5 0 1 TRT*TIMEPTN 0 5 0 
TRT*TIMEPTN 1 0 0 1 TRT*TIMEPTN 1 0 0 
TRT*TIMEPTN 1 1 0 1 TRT*TIMEPTN 1 1 0 
TRT*TIMEPTN 1 2 0 1 TRT*TIMEPTN 1 2 0 
TRT*TIMEPTN 1 3 0 1 TRT*TIMEPTN 1 3 0 
TRT*TIMEPTN 1 4 0 1 TRT*TIMEPTN 1 4 0 
TRT*TIMEPTN 1 5 0 1 TRT*TIMEPTN 1 5 1 
scoreb _ _ 0.7976 1 scoreb _ _ 197.43

... ... ... ... ... 

We can transpose dataset COEF (using PROC TRANSPOSE for variable ROW1, by EFFECT, TRT, TIMEPTN, and 
with ID=LMatrix), to get coefficients ܿ௠௣  for different LSMs (p=mu1, mu2,..., mu6) as columns (variables COEFMU1 
– COEFMU6): 

 



   ܿ௠"௠௨ଵ" ܿ௠"௠௨ଶ" ... ܿ௠"௠௨ହ" ܿ௠"௠௨଺" 
Effect TRT TIMEPTN COEFMU1 

(COEF.ROW1 
where 

LMATRIX=1) 

COEFMU2 
(COEF.ROW1 

where 
LMATRIX=2) 

 
... 

COEFMU5 
(COEF.ROW1 

where 
LMATRIX=5) 

COEFMU6 
(COEF.ROW1 

where 
LMATRIX=6) 

Intercept _ _ 1 1 ... -1 -1 
TRT 0 _ 0 0 ... -1 -1 
TRT 1 _ 1 1 ... 0 0 
TIMEPTN _ 0 0 1 ... -1 0 
TIMEPTN _ 1 0 0 ... 0 -0.5 
TIMEPTN _ 2 0 0 ... 0 -0.5 
TIMEPTN _ 3 0 0 ... 0 0 
TIMEPTN _ 4 0 0 ... 0 0 
TIMEPTN _ 5 1 0 ... 0 0 
TRT*TIMEPTN 0 0 0 0 ... -1 0 
TRT*TIMEPTN 0 1 0 0 ... 0 -0.5 
TRT*TIMEPTN 0 2 0 0 ... 0 -0.5 
TRT*TIMEPTN 0 3 0 0 ... 0 0 
TRT*TIMEPTN 0 4 0 0 ... 0 0 
TRT*TIMEPTN 0 5 0 0 ... 0 0 
TRT*TIMEPTN 1 0 0 1 ... 0 0 
TRT*TIMEPTN 1 1 0 0 ... 0 0 
TRT*TIMEPTN 1 2 0 0 ... 0 0 
TRT*TIMEPTN 1 3 0 0 ... 0 0 
TRT*TIMEPTN 1 4 0 0 ... 0 0 
TRT*TIMEPTN 1 5 1 0 ... 0 0 
scoreb _ _ 197.43 197.43 ... -197.4 -197.4 

If we merge this dataset with the ESTIMATE variable from SOLUTIONF (merge by Effect, TRT and TIMEPTN) and 
add variables containing proportions of completers and drop-outs, we will have assembled all the data described in 
Table 1 needed to compute partial derivatives using equations (3.8) and (3.9). The full dataset, which we refer to as 
MU_ALL, would have the following structure: 

Table 3: Structure of the Dataset MU_ALL Containing Info ation for omputing a Vector of Partial 
Derivatives 

 rm  C

ଵ=&pi1ߨ ௠௠௨ଵ ... ܿ௠௠௨଺ܿ ݉ߚ    ଺=&pi6ߨ ...

Effect TRT TIMEPTN Estimate COEFMU1 ... COEFMU6 Pi1 ... Pi6 
 

Partial derivatives of mu_diff_PMM with respect to model parameters, as defined in equation (3.8), can now be 
computed in a data step as shown in SAS Code Fragment 2, processing data in each row in order to compute each 
derivative  డ	௠௨_ௗ௜௙௙_௉ெெడఉ೘ . 

SAS Code Fragment 2 

DATA DER_PARAM(drop=i); 
 set MU_ALL; 
 
 array c(6) C1 - C6 ; 
 array pi(6) Pi1 – Pi6 ; 
 
 DER_BETA=0; 
 do i=1 to 6; DER_BETA = DER_BETA +c[i]*pi[i]; end; 
run; 

 

Partial derivatives of mu_diff_PMM with respect to proportions of completers and drop-outs, as defined in equation 
(3.9), can be computed in a data step as shown in SAS Code Fragment 3, processing data in columns with the help 
of a RETAIN statement in order to compute each derivative డ	௠௨_ௗ௜௙௙_௉ெெడగ೛ , ݌ ൌ 1,… ,6.  

 



SAS Code Fragment 3 

 
DATA DER_PI(keep=DER_Pi1 - DER_Pi6); 
 set MU_ALL; 
 
 retain DER_Pi1 - DER_Pi6 0; 
 
 array c(6) C1 - C6 ; 
 array pi(6) Pi1 - Pi6 ; 
 array der_pi(6) DER_Pi1 - DER_Pi6 ; 
   
 do i=1 to 6; der_pi[i] = der_pi[i]+c[i]*Estimate; end; 
 
 *** At the last row, output derivatives with respect to proportions ***; 
 *** &M is a macro variable containing number of parameters in the model ***; 
 if paramn=&M then output; 
run; 

 

Partial derivatives with respect to model parameters computed in the dataset DER_PARAM, variable DER_BETA 
(see SAS Code Fragment 2) and partial derivatives with respect to proportions computed in the dataset DER_PI (see 
SAS Code Fragment 3) need to be placed together in a row vector as defined in equation (3.4). A dataset DER_ALL 
can be created containing variables COL1 through COL28 as follows: 

Table 4: Structure of Dataset DER_ALL Containing Vector of Partial Derivatives 
DER_PARAM
.DER_BETA 

where 
PARAMN=1 

... DER_PARAM.
DER_BETA 
where 

PARAMN=22 

DER_PI. 
DER_PI1 

... DER_PI. 
DER_PI6 

COL1 ... COL22 COL23 ... COL28 

 

Variance-covariance matrix defined in (3.7) consists of two components: variance-covariance matrix of the model 
parameter estimates, and variance-covariance matrix for proportions of completers and drop-outs. 

Variance-covariance matrix of the model parameter estimates is readily available in the ODS output dataset COVB 
from PROC MIXED. This dataset contains variables EFFECT, TRT, TIMEPTN (which identify model parameters 
similar to other ODS output datasets), a variable ROW with a sequential number for each parameter, and variables 
COL1 through COL<M>, where M is the number of parameters in the model. A value of COL<m> on a record where 
ROW=<l> represents variance (covariance) ܸܽݒ݋ܥݎሺ࢒ߚ,  ሻ. Thus, variables COL1 through COL<M> could be used࢓ߚ
directly as the upper left block of the matrix defined in (3.7).  

The lower right block of the matrix in (3.7), variance-covariance matrix ܸܽݒ݋ܥݎሺ࣊ሻ for proportions has two diagonal 
blocks itself: one a 3x3 matrix ܸܽݒ݋ܥݎ൫࣊࢖࢞ࢋ൯	corresponding to the multinomial proportions in the experimental arm ࣊࢖࢞ࢋ ൌ ሾ1݅݌, ,2݅݌ ࢔࢕ࢉ࣊ ሻ,  in the control arm࢔࢕ࢉሺ࣊ݒ݋ܥݎܸܽ ,3ሿ, and the other݅݌ ൌ ሾ4݅݌, ,5݅݌  6ሿ. We can use a macro݅݌
%varmultinom provided in Appendix 1, which implements formulas in (3.5) and (3.6) to compute the elements of 
these matrices using multinomial proportions as input. 

The ent -covariance matrix will have the following structure: ire varianceܸܽݒ݋ܥݎሺࢼሻ = COVB (COL1 through COL<M>)  0 0 
݋ܥݎܸܽ 0  ሺ࣊࢖࢞ࢋሻ ݒ 0 
 ሻ࢔࢕ࢉሺ࣊ݒ݋ܥݎܸܽ 0 0 

 

Assuming that this matrix is stored in a SAS dataset, VARMAT, the last step in the calculations is defined by equation 
(3.3) and requires vector-matrix multiplication DER_ALL × VARMAT × DER_ALLT, where DER_ALLT is a transposed 
dataset obtained from DER_ALL (column vector). This operation can be performed using macro %vmvt provided in 
Appendix 1 which uses functionality of PROC FCMP. 

Results provided in Table 5 represent the difference between experimental and control arms at time-point 5 as 
obtained from three analysis methods. MMRM-PMM represents the approach described above in this paper. MMRM-
LOCF/BOCF represents the analysis where missing values were first imputed using single imputation BOCF for 
subjects discontinued due to LTB and single imputation LOCF for subjects that discontinued due to other reasons. 
The imputed dataset was then analyzed using the same mixed model with repeated measures as for the MMRM-

 



PMM (identical MODEL and REPEATED statements), but without the PMM component for the estimate of the 
treatment effect at time-point 5 (LSESTIMATE with coeeficients [1, 2,6] [-1,1 6]). It should be noted that MMRM-PMM 
and MMRM-LOCF/BOCF approaches rely on similar clinical assumptions with respect to the treatment effect (benefit) 
attributed to drop-outs, but the computational/statistical methodology of implementing these assumptions are 
different. The MMRM-MAR analysis represents a MAR-based MMRM with the model identical to the one used in the 
MMRM-PMM and MMRM-LOCF/BOCF analyses, but with no prior imputations or PMM component. This method 
differs from the first two in the underlying clinical assumptions (under MAR, it is assumed that drop-outs will follow a 
trajectory similar to completers after discontinuation). 

Table 5: Analysis results for the example dataset.

 Difference (Experimental - Control) 

Method Least Squares Mean Estimate Standard Error P-value 
MMRM-PMM 16.39 3.65 <0.0001 

MMRM-LOCF/BOCF 17.05 4.01 <0.0001 
MMRM-MAR 16.63 4.10 <0.0001 

 

The results presented in Table 5 reveal two, perhaps surprising, findings. The MMRM-PMM approach provides a 
smaller estimate of the difference between treatments than both the MMRM-LOCF/BOCF and MMRM-MAR methods. 
Interestingly, the MMRM-PMM estimate is closer to the MMRM-MAR estimate than to that of the MMRM-
LOCF/BOCF, despite the fact that the assumptions of MMRM-PMM and MMRM-LOCF/BOCF are clinically more 
similar than those of MMRM-PMM and MMRM-MAR.  

A second surprising finding is that, although MMRM-PMM estimate of the treatment difference is smaller than that of 
MMRM-LOCF/BOCF, the MMRM-PMM method has a smaller standard error compared to the single imputation-
based method MMRM-LOCF/BOCF. This standard error is also smaller than that of the MMRM-MAR.  

These are phenomena that we observed with other PMMs (based on different clinical assumptions) implemented as 
linear combinations of LSMs. It is important to note that the MMRM-PMM analysis is rooted in an MMRM model that 
is estimated using MAR assumptions and unimputed data in the first place, and then the LSMs from this model are 
“reassigned” to subgroups of patients at various time-points using appropriate “weights”. This is quite different from 
imputing data first, and then estimating a statistical model based on data containing imputations. The use of “weights” 
involved in the linear combination of LSMs results not only in weighting of the corresponding LSMs, but also of their 
individual standard errors, which results in a decreased overall standard error. A correction factor added by the delta 
method accounts for the fact the “weights” (proportions of completers and drop-outs) are estimates of random 
variables and does not offset the reduction in the overall standard error caused by “weights” in the linear combination 
of LSMs. In general, the standard error for treatment effect from the MMRM-based PMM approach is often smaller 
than that from standard MMRM using the MAR assumption. This goes against expectations: the PMM approach 
generally introduces assumptions for the missing data that diverge from what is seen in the observed data, so one 
would expect the standard error of the estimate of treatment effect under the PMM to be larger, rather than smaller. 
The standard error is often smaller under MMRM-based PMM because the standard error of MMRM-based PMM 
does not reflect the variability of the data postulated by the MNAR scenario; rather it reflects the variances and 
correlations of the data at time points as estimated from the standard MAR model. A more in-depth discussion of 
these aspects is beyond the scope of this paper and the authors hope to elaborate them in another publication in a 
near future.  

6. CONCLUSION  
In this paper, we demonstrated how certain types of MNAR assumptions regarding missingness in clinical trials can 
be implemented within a PMM-type framework using linear combinations of LSMs obtained from a standard MMRM. 
This analysis, including estimation of the standard error based on the delta approximation method, can be performed 
based on the information that is readily available from the PROC MIXED output with some additional relatively simply 
computations using core SAS/STAT functionality. These computations can be effectively implemented using data 
structures presented in this paper. The proposed implementation strategy is a general one that can be used to 
impose different sets of MNAR assumptions on a standard MMRM and is not confined to a specific example used for 
illustration in this paper.   

Maximum likelihood-based and MI-based implementations of PMM each have their advantages and disadvantages 
that a statistician may need to weigh in the context of a given study. Maximum likelihood-based strategies are 
attractive because of a “single result” that they provide at the end of the analysis and the fact that missing data are 
not explicitly imputed (“invented”). This is in contrast to the MI-based approaches that perform explicit imputations 
and rely on random sampling and thus can produce slightly variable results depending on the random number 
generator sequence used. Such variations, however, are quite minor especially if a sufficiently large number of 
imputations are produced. Currently there is also no consensus on the appropriate way to treat non-monotone 

 



missing data (subjects with intermediate missing visits) with MI in the context of MNAR assumptions. MI-based 
implementations, on the other hand, have an advantage that factors that are relevant to missingness but not relevant 
to analysis can be included in the imputation model in order to better estimate the distribution of unobserved 
outcomes or express MNAR assumptions that rely on such factors, and then subsequently be dropped from the 
analysis model. This cannot be achieved with the maximum likelihood-based PMM implementation. As pointed out in 
Section 5, an MMRM-based and imputation-based implementation of similar clinical assumptions about missingness 
can result in somewhat different estimates of the treatment difference. Also, while the MMRM-based PMM approach 
would result in a smaller estimate of the treatment difference compared to a standard MAR-based MMRM (provided 
that the underlying MNAR assumptions are more conservative than MAR), the standard error from the MMRM-based 
PMM approach can often be smaller than that of a MAR-based MMRM, as discussed above, and possibly smaller 
than that of a single imputation-based approach with clinically similar assumptions. Thus, results from the MMRM-
based PMM analysis would impact the clinical interpretation of the magnitude of the treatment effect (with MMRM-
based PMM estimate being more conservative), but likely not the hypothesis test for statistical significance based on 
the Wald statistic. 

REFERENCES 
[1] European Medicines Agency. “Guideline on Missing Data in Confirmatory Clinical Trials. 2 July 2010. 
EMA/CPMP/EWP/1776/99 Rev. 1”. 
http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2010/09/WC500096793.pdf 

[2] National Research Council. 2010. The Prevention and Treatment of Missing Data in Clinical Trials. Panel on 
Handling Missing Data in Clinical Trials. Committee on National Statistics, Division of Behavioral and Social Sciences 
and Education. Washington, DC: The National Academic Press. 

[3] Little R.J.A. 1993. Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical 
Association 88: 125-134. 

[4] Ratitch B., O’Kelly M. “Implementation of Pattern-Mixture Models Using Standard SAS/STAT Procedures.” 
PharmaSUG 2011.  http://www.pharmasug.org/proceedings/2011/SP/PharmaSUG-2011-SP04.pdf 

[5] Hedeker D., Gibbons, R.D. 1997. Application of Random-Effects Pattern-Mixture Models for Missing Data in 
Longitudinal Studies. Psychological Methods 2(1):64-78. 

[6] Oehlert, G. W. 1992. A note on the delta method. American Statistician 46: 27–29.  

[7] Hedeker, D. “Missing Data in Longitudinal Studies.” Presentation slides. 
http://www.uic.edu/classes/bstt/bstt513/missbLS.pdf 

[8] SAS Institute Inc. 2008. SAS/STAT ® 9.2 User’s Guide. Cary, NC: SAS Institute Inc. 

[9] Roger, J. Discussion of Incomplete and Enriched Data Analysis and Sensitivity Analysis presented by Geert 
Molenberghs. Drug Information Association (DIA) Meeting, Special Interest Area Communities (SIAC) - Statistics, 
January 2010. 

[10] Kiernan, K., Tobias, R., Gibbs, P., Tao, J. CONTRAST and ESTIMATE Statements Made Easy: The 
LSMESTIMATE Statement. SAS Global Forum 2011, paper 351-2011. 
http://support.sas.com/resources/papers/proceedings11/351-2011.pdf 

[11] Molenberghs G., Kenward M.G. 2007. Missing Data in Clinical Studies. Wiley. 

[12] Thijs H., Molenberghs G. 2002. Strategies to Fit Pattern-Mixture Models. Biostatistics 3(2): 245-265. 

[13] Roger, J., Kenward, M. Repeated measures approach to “What if” questions for longitudinal studies with 
withdrawal. PSI Conference, Brighton. 18th May 2009. 

APPENDIX 1 
This appendix contains several utility macros referred to in Section 5.  The full code of the implementation described 
in Section 5 can be made available upon reader’s request. 
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Macro %nobscount 
%macro nobscount(datain=, wherein=, mvname=); 
 
 *** Macro "nobscount" counts the number of observations in the input dataset.  
        Output is saved in a macro variable. 
  Macro arguments: 
   "datain"  : input dataset to count observation in 
   "wherein" : conditions to select a subset of observation in the input 
dataset 
   "mvname"  : macro variable name to store the computed number of 
observations  
 
        Sample call - counting completers in control arm:  
        %nobscount(datain=DATAIN1, wherein=%str(TRT=0 and TIMEPTN=1 and DISCRSNN=0), 
mvname=n0_com);   
 ***; 
 
 %global &mvname; 
 %local nobsloc; 
 
 data temp1; set &datain; where &wherein; run; 
 
 %let dsid=%sysfunc(open(temp1,in)); 
 %if &dsid > 0 %then %do;  
  %let nobsloc=%sysfunc(attrn(&dsid,nobs)); 
  %let &mvname = &nobsloc; 
  %let rc=%sysfunc(close(&dsid));  
 %end; 
 
  %else %put open for data set &datain failed - %sysfunc(sysmsg()); 
%mend nobscount; 
 
Macro % varmultinom 
 
%macro varmultinom(datain=, dataout=, pi_list=, var_list=, n=, tot=); 
 
 *** Macro "varmultinom" computes variance-covariance matrix for a multinomial 
distribution. 
  Input consists of a dataset containing one record and <n> variables 
containing <n> multinomial  
         proportions pi_i. 
  Output is saved in a a dataset that has <n> records and <n> variables, where 
each value  
         corresponds to the variance/covariance of pi_i and pi_j. 
  Macro arguments: 
   "datain"  : input dataset containing one record and <n> variables 
containing <n>  
                            multinomial proportions 
   "dataout" : output dataset name to store the computed variance/covarince 
matrix 
   "pi_list"  : list of variable names, separated by space, containing 
multinomial  
                            proportions in the input dataset 
   "var_list"  : list of variable names, separated by space, to be used in 
the output dataset  
                            "dataout" 
   "n"   : number of proportions in the input dataset 
   "tot"  : sample size (N) based on which multinomial proportions were 
estimated 
 
        Sample call - computing variance-covariance matrix for proportions in 
experimental arm:  
        %varmultinom(datain=mult1, dataout=mult11, pi_list=%str(PI1-PI3),  
                     var_list=%str(COL23-COL25), n=3, tot=&tot1); 

 



            &tot1 is a macro variable containing number of subjects in experimental 
arm. 
   
    ***; 
 
 data &dataout(keep=&var_list); 
  set &datain; 
 
  array pi(&n) &pi_list; 
  array varl(&n) &var_list; 
 
  do i=1 to &n; 
   do j=1 to &n; 
    if i=j then varl[j]=pi[j]*(1-pi[j])/&tot; 
    else varl[j]=-pi[i]*pi[j]/&tot; 
   end; 
   output; 
  end; 
 
 drop i j; 
 run; 
%mend varmultinom; 
 
 
Macro %obsnvars 
%macro obsnvars(ds=); 
 *** Macro "obsnvars" counts the number of observations and variables in the input 
dataset.  
  Output is saved in global macro variables "nvars" and "nobs". 
  Macro arguments: 
   "ds"  : input dataset to count observation and variables in 
 ***; 
  %global nvars nobs; 
  
  /* Open input data set  */ 
  %let dsid = %sysfunc(open(&ds)); 
 
  /* If the data set exists, then get the number of observations and variables */ 
  %if &dsid %then 
   %do; 
      %let nobs =%sysfunc(attrn(&dsid,nobs)); 
      %let nvars=%sysfunc(attrn(&dsid,nvars)); 
      %let rc = %sysfunc(close(&dsid)); 
   %end; 
 
  /* Otherwise, write a message that the data set could not be opened */ 
  %else %put open for data set &dset failed - %sysfunc(sysmsg()); 
%mend obsnvars; 
 
 
Macro %vmvt 
 
%macro vmvt(vec=, mat=, prod=); 
 
 *** Macro "vmvt" performs maltiplication of VECTOR * MATRIX * VECTOR' where 
MATRIX is a square  
        matrix of the same dimentions as the length of row VECTOR and VECTOR' is a 
transposed column     
        vector. VECTOR and MATRIX are assumed to be stored in SAS datasets, the names 
of which are  
        passed as arguments to the macro. The product is a scalar stored in a macro 
variable. 
        PROC FCMP gives access to a number of built-in CALLs and functions for 
manipulating matrices.  
    The code below uses FCMP’s READ_ARRAY function and its MULT call. 

 



 

 Macro arguments: 
  "vec"     : Name of the dataset containing the VECTOR 
  "matrix"     : Name of the dataset containing the MATRIX 
  "prod"     : Name of a global macro variable that will contain  
         the result of multiplication 
 ***; 
 
 %local ld1 ld2 rd1 rd2; 
 
 %obsnvars(ds=&vec); 
 %let ld1=&nobs; 
 %let ld2=&nvars; 
 
 %obsnvars(ds=&mat); 
 %let rd1=&nobs; 
 %let rd2=&nvars; 
 
 %if (&rd1 ne &rd2) or (&ld1 ne 1) or (&ld2 ne &rd1) %then  
  %put Vector or matrix dimentions are not suitable - operation not performed; 
 
 %if (&rd1 = &rd2) and (&ld1 = 1) and (&ld2 = &rd1) %then %do; 
  proc fcmp; 
     array left[&ld1,&ld2] / nosymbols; 
     rc = read_array("&vec", left); 
   
            array right[&rd1,&rd2] / nosymbols; 
     rc = read_array("&mat", right); 
     
     array result[&ld1,&rd2] / nosymbols; 
     call mult(left, right, result); 
           
     array left_t[&ld2,1] / nosymbols; 
     call transpose(left, left_t); 
          
     array prod[1,1] / nosymbols; 
     call mult(result, left_t, prod); 
     
     %global &prod; 
     call symput("&prod", trim(left(put(prod[1,1],best.))) ); 
    run; 
    quit; 
 %end; 
%mend vmvt; 
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