
Page 1 of 17

PharmaSUG 2012 – AD19

Making a List, Checking it Twice:
Efficient Production and Verification of Tables and Figures Using SAS®

Linda Collins, PharmaStat, LLC, Newark, CA

Elizabeth Li, PharmaStat, LLC, Newark, CA

ABSTRACT
Managing all the ‘moving parts’ of clinical data analysis is a daunting task. ‘Moving parts’
include inputs (raw data files, specifications), outputs (analysis files and reports) and processes
(programs and macros). Each process and output must be verified as correct and each program
executed in the proper sequence. Project leaders must be able to track the verification status of
each output. In this paper, we present techniques for managing analysis through an ‘inventory’
spreadsheet of analysis metadata. The metadata is used to generate ‘driver’ programs that
perform data selection and produce the tables, listings and figures (TLFs). Analysis programs
not only generate TLFs, but also create SAS® datasets with a consistent format for storing
summary results. The results datasets make it possible to automate independent programming
verification. In addition, it makes possible to track the status of the entire project in a summary
report by using the information from both the metadata and the results datasets. Furthermore, the
inventory approach is expected to be highly useful when standards for analysis results metadata
in define.xml are published.

KEY WORDS
Automated programming, SAS® program verification, program specifications, independent
programming, analysis results metadata

INTRODUCTION
Managing the production and quality of the SAS® outputs, such as tables, listings and figures
(TLFs), can be an overwhelming task in FDA regulated industries like biotechnology and
pharmaceutical. In this paper, we present techniques to improve programming efficiency of data
analysis and control quality of analysis results. This approach starts with recording analysis
results metadata in a TLF ‘inventory’ spreadsheet. From the metadata we automatically generate
a ‘driver’ program that performs data selection for each TLF. By using SAS® macros, we further
automate the verification of the analysis results through independent programming. At the end of
this process, a final status report can be generated to document the quality status of all tables and
figures. These techniques can be summarized as the following steps:

(1) Documentation of specifications

(2) Independent verification

(3) Automated quality status report

Page 2 of 17

Figure 1 is a flow chart that depicts the process, where the corresponding steps (1), (2), and (3)
are indicated. Following sections present details of the techniques.

Figure 1. Tables and Figures Production Process Flow Chart

Table/Listing/Figure
Specifications

(1)

Table and Figure
Program

Analysis
Dataset(s)

APTTM

Macros Analysis
Results
Dataset

Table and
Figure Output

Verification Table
and Figure
Program (2)

Verification
Analysis
Results
Dataset

Verification
Summary

Program (3)

Verification
Summary

Report

Single Table/
Figure

Verification
Report

Study Documents,
i.e. SAP, Protocol

SDTM
Dataset(s)

Analysis Data
Programs and
Verifications

Page 3 of 17

MAKING A LIST
Specifications are the key to efficient programming. We all know “there’s never enough time to
do it right but there’s plenty of time to do it over”. Programming efficiency is achieved by
“doing it right the first time”. Clear programming specifications are the foundation. The only
way to do it right is to know what ‘right’ means. Programming specifications include, but are not
limited to, the following:

1) What type of tables and figures are produced?

2) How are they connected to the mock-up shells?

3) What input datasets and variables are used?

4) What subsets of data are included?

5) What statistics will be generated?

6) What statistical tests, p-values will be reported for treatment group differences?

7) What are the titles and footnotes of each TLF?

8) SAS® program name for each TLF

In addition, management of quality control (QC) process includes, but not limited to, the
following:

1) What are the discrepancies in the results between production and verification for each
table/figure?

2) What is the verification status of each table/figure?

3) What is the percentage of total outputs that have been verified?

4) What is the visual review status of each TLF?

A statistical analysis plan (SAP) with mock-up shells of TLFs is the preferred starting point for
the specifications. If such a document is not available, study protocol may provide a general idea
of what type of data analyses or summaries are required. Mock-up shells are great visual aid to
project what the output will look like. Here is an example of annotated mock-up table, which is
a tool to identify the analysis data, analysis variables, and any subset conditions (marked in red
text) to be used in data analysis. This example was taken from a re-analysis of a U.S Public
Health Service study of rifapentine and isoniazid in patients with HIV-related tuberculosis 1

1 Centers for Disease Control, U.S. Public Health Service Study 22, conducted by the Tuberculosis Trials
Consortium. Used with permission. Study design is available at
http://clinicaltrials.gov/ct2/show/record/NCT00023335

.

Page 4 of 17

Figure 1. Sample Annotated Table Mock-up Shell adamdata.ADSL

seg linlabel col1 col2 col3

 usubjid trt01pn
hivpfl complfl
st04mofn
st24mofn Notes

 Source 1 Table 5. Clinical Outcome in HIV Negative Patients with
Pulmonary Tuberculosis

 All:
hivpfl=’N’

 Rifapentine
Combination

Treatment
n/N (%)

Rifampin
Combination

Treatment
n/N (%) p-value

usubjid trt01pn
hivpfl complfl

1 Status at End of 4 Months Continuation Phase
 Treatment

Responsea
xx/xxx (xx.x%) xx/xxx (xx.x%) 0.xxxx st04mofn P-value is

chi-square
comparing
treatment
groups.

 Not Converted xx/xxx (xx.x%) xx/xxx (xx.x%)
 Did Not Complete

Treatmentb
xx/xxx (xx.x%) xx/xxx (xx.x%)

 Deathc xx/xxx (xx.x%) xx/xxx (xx.x%)

2 Status Through 24 Month Follow-up

 st24mofn Only this
segment:
complfl=’Y’

 Relapsed xx/xxx (xx.x%) xx/xxx (xx.x%) 0.xxxx P-value is
chi-square
comparing
treatment
groups.

 Sputum Negative xx/xxx (xx.x%) xx/xxx (xx.x%)
 Lost to Follow-up xx/xxx (xx.x%) xx/xxx (xx.x%)
 Deaths xx/xxx (xx.x%) xx/xxx (xx.x%)

Based on the study information, we can specify the TLFs to be produced in an Excel file (we
refer to this as the electronic table of contents, or eTOC.xls). The advantage of using an Excel
file is that it is machine readable. It can be used as a source for a SAS® macro program to
generate a “driver” program for generating outputs, as well as for automated program of quality
status report. This specification document is a central reference for analysis methods, in addition
to SAP. It usually provides more programming details than SAP for how outputs are generated.

Each report is assigned a ‘base program’ name and a suffix. The ‘base program’ name
corresponds to the name of a report macro with the same name, stored in the local macros folder.
A ‘driver generator’ program reads the eTOC file and writes a short ‘driver’ program for each
report output. ‘Driver’ programs contain a section of code to access the input data according to
the specifications, and then a call to the report macro.

Page 5 of 17

Figure 2 is an example of programming specifications (eTOC) in Excel structure.

Figure 2. Sample Excel File That Stores Specifications

ReportNo Titles BaseProg Order Variant

Source 1 Table 5 Clinical Outcome in HIV Negative
Patients with Pulmonary
Tuberculosis

ts1t5 hivn 01

Source 4 Table 3 Clinical Outcome in HIV Positive
Patients with Pulmonary
Tuberculosis

ts1t5 hivp 02

Figure 2. Sample Excel File That Stores Specifications (continued)
FNRef Dataset1 Select1 Vars1 Specifications QC

Level
QC
Visual

QC
Stat

F1, F2,
F3, F4

adamdata.
ADSL

HIVPFL=
'N'

usubjid
trt01pn hivpfl
complfl
st04mofn
st24mofn

Segment 1: include all pts
with HIVPFL=’N’. Chi-
Square is used to
compare trt01pn.
Segment 2: include all pts
with HIVPFL=’N’ and
complfl=’Y’. Chi-Square
is used to compare
trt01pn.

2 Compl
eted

Done

F1, F2,
F3, F5

adamdata.
ADSL

HIVPFL=
'Y'

usubjid
trt01pn hivpfl
complfl
st04mofn
st24mofn

Segment 1: include all pts
with HIVPFL=’Y’. Fisher’s
exact test is used to
compare trt01pn.
Segment 2: include all pts
with HIVPFL=’Y’ and
complfl=’Y’. Fisher’s
exact test is used to
compare trt01pn.

2 On-
going

Done

A driver SAS® program can be created based on the information in Figure 2. Here is the
generated code:
/** ---**
** Program: ts1t5-hivn.sas
** Order: hivn
** Variant: 01
** Generated: 07NOV2011
** Report No: Source 1 Table 5
** Title 1: Clinical Outcome in HIV Negative Patients with Pulmonary Tuberculosis
** Inputfile: adamdata.ADSL
** Outputfile: ts1t5-hivn-01.rtf
** --**/

BaseProg -Order

Order
Variant

ReportNo

Dataset1
BaseProg –Order-Variant

Titles1

Page 6 of 17

data file1 ;
 set adamdata.ADSL ;
 where (HIVPFL='N') ;
 keep usubjid trt01pn hivpfl complfl st04mofn st24mofn;
run ;

%ts1t5 (
 order = hivn ,
 variant = 01
) ;

The code used to produce this ‘driver’ program is shown in Appendix A at the end of this paper.

Each driver program produces a single output. However, a base program may be used for any
number of variations, usually subset analyses. The programmers do not modify the driver
programs. Any changes are made in the eTOC Excel file. The driver generator program is rerun
subsequently. The programmers write the report macro that is called by the driver program. The
report macro is tested using the driver or drivers.

Our company uses an internally developed SAS® macro library, analysis productivity tools
(APT™), for clinical data analysis. Using the APT™ macros, a programmer can easily generate
summary tables.

Figure 3 is a sample output from APT SAS® macros

Figure 3 Sample Output:
Source 1 Table 5 Clinical Outcome in HIV Negative Patients with Pulmonary Tuberculosis

Once-weekly
isoniazid/rifapentine

n/N (%)

Twice-weekly
isonizid/rifampin

n/N (%) p-value
Status at End of 4 Month Continuation Phase
 Treatment Response 471 / 502 (93.8%) 458 / 502 (91.2%) 0.2335^
 Not Converted 5 / 502 (1.0%) 6 / 502 (1.2%)
 Did Not Complete Treatment 21 / 502 (4.2%) 35 / 502 (7.0%)
 Deaths 5 / 502 (1.0%) 3 / 502 (0.6%)

Status Through 24 Month Follow-up
 Relapsed 41 / 471 (8.7%) 21 / 458 (4.6%) 0.0622
 Sputum Negative 371 / 471 (78.8%) 368 / 458 (80.3%)
 Lost to Follow-up 41 / 471 (8.7%) 45 / 458 (9.8%)
 Deaths 18 / 471 (3.8%) 24 / 458 (5.2%)

^ Warning: 25% of the cells have expected counts less than 5. Chi-Square may not be a valid test.
Report Status: DRAFT Created: 18DEC11 09:53 Source: CDC_TB\TLGs\ts1t5_hivn.sas

One essential feature of this process is that the production program generates not only an output
file, but also a results SAS® dataset, which has standardized structure. The results from a
verification program are stored in a SAS dataset with the same structure. This makes it possible
to automate the comparison of the analysis results from production and verification.

Dataset1

Select1
Vars1

BaseProg

Page 7 of 17

The saved results dataset is shown below. The variable SEGLABL identifies the section or
‘segment’ of statistics and LINLABEL contains the labeling information for a specific row. The
statistics are set up as formatted character strings in variables COL1 through COL3.

Figure 4. Saved Results Dataset for Report “Source 1 Table 5 Clinical Outcome in HIV Negative
Patients with Pulmonary Tuberculosis”

CHECKING IT TWICE
Table and figure programs are independently verified by a different programmer using the same
set of specifications and source data. For each table or figure, the production program generates
not only an output file, but also a SAS® dataset that stores the analysis results using the standard
table macros as shown above. The independent verification program, (not using the standard
macros), generates a SAS® dataset that stores analysis results for each table or figure. The
verification program will use the logic described in the specifications and produce statistics in a
dataset format that mimics the one shown above for the production program.

At the end of each independent verification program, SAS® macros are called to compare the
results from production and verification sides and generate a verification report. In the example
shown, the compare macro will use SEG, SEGLABL, and LINLABEL as merge keys, and then
compare the values of COL1 through COL3 for each matching record.

Here are the verification steps:
1) Comparing the two analysis results datasets generated from production program and

verification program for each table or figure
2) Generating verification (discrepancies) report for individual tables or figures
3) Resolving discrepancies between production programs and verification programs
4) Repeating 1) to 3), until all the discrepancies are resolved

Page 8 of 17

seg match linlabel statcol valid_value report_value
1 Y TREATMENT RESPONSE 1 471 / 502 (93.8%) 471 / 502 (93.8%)
1 N TREATMENT RESPONSE 2 458 / 502 (91.2%) 457 / 502 (91.2%)
1 N TREATMENT RESPONSE 3 0.2710^ 0.2335^
1 Y NOT CONVERTED 1 5 / 502 (1.0%) 5 / 502 (1.0%)
1 Y NOT CONVERTED 2 6 / 502 (1.2%) 6 / 502 (1.2%)
1 Y DID NOT COMPLETE

TREATMENT [B]
1 21 / 502 (4.2%) 21 / 502 (4.2%)

1 Y DID NOT COMPLETE
TREATMENT [B]

2 35 / 502 (7.0%) 35 / 502 (7.0%)

1 Y DEATHS [C] 1 5 / 502 (1.0%) 5 / 502 (1.0%)
1 Y DEATHS [C] 2 3 / 502 (0.6%) 3 / 502 (0.6%)
2 Y

This table shows an example of a validation compare where certain results do not match between
the production program (‘report_value’) and the validation program (‘valid_value’). When a
mismatch occurs within a statistic segment, all of the rows for that segment are shown: this is
often useful in diagnosing the source of the mismatch. When all of the rows match (as in
segment 2), then the report shows only a summary line with ‘MATCH’ set to ‘Y’. This provides
a confirmation that the segment was in fact checked and passed verification.

A SAS® macro performs following activities to generate the single verification report in an Excel
file format (see above):

1. Merge production and verification results into one dataset, by segment and line label
2. Compare the two sets of analysis results
3. Flag the discrepancies in the merged data
4. Transpose the results in table columns into rows with a column identifier
5. If a segment of results match between production and verification, a single row will be

printed in the verification report

Both production and verification programmers will use the verification report (Figure 5) to
identify any causes of the discrepancies and resolve them. The possible causes and solutions are:

1. Specifications are not clearly understood by both programmers (i.e. data selection or sub
setting doesn’t match)
→ Update the specifications clearly to reduce ambiguity.

2. Values of segment or line label don’t match
→ Fix the values of segment or line label.

3. Bugs in either production or verification program or both
→ Debug and update programs, then re-generate outputs.

When both production and verification results match, the report looks something like in Figure 6.
There is only one row for each segment that matches, and the only value filled in is the ‘MATCH’
column, which is set to ‘Y’. The automated compare of this table is now considered complete.

Page 9 of 17

Figure 6. Sample Verification Report of Analysis Results Matched between Production
and Verification programs
seg match linlabel statcol valid_value report_value comment
1 Y
2 Y

AUTOMATED QC REPORT
Once production and verification programs are being created and individual outputs are being
generated, another SAS® macro can be used to keep track of the progress of production and
verification process at a detailed level or at a summary level. The following tables show
examples of the QC status report.

Figure 7. Sample Output of QC Status Report – Detailed Level

Table
Number Title Program

Production
Program

Status

Verification
Program

Status
Validation

Status
Visual
Review

Figure 1.1 Survival Curves by Disease
Phase

f_mort_01 Program does not
exist

Program does not
exist Not

Available
Completed

Figure 1.1.2 Mean and Standard Deviation
of ALT Value Over Time

f_mean_alt Program exists but
inputs do not

Program exists
but inputs do not Not

Available
On-going

Table 1.1 Patient Disposition t_disp_01 Inputs exist but
output does not

Inputs exist but
output does not Not

Available
Issue(s)
found

Table 1.1.2 Patient Demographics t_demog Output is older than
inputs

Output is older
than inputs Not

Current,
Matched

Completed

Table 3.1 Overall Summary of Adverse
Event

t_ae_01 Output exists and is
current

Output exists and
is current Matched

Here are the steps to generate the detailed level and summary level QC status reports:
• Import the Excel file (=eTOC.xls tab=Reports), where TLF specifications are stored. This

is the ‘backbone’ of the summary, and is used by the summary report to define all of the
expected outputs. The count of outputs in this file provides the denominator for the
percentages of outputs broken out by status. The TOC file also links report outputs to the
names of source files for the purpose of comparing timestamps.

• Read file information from the operating system for all files in the locations defined for
analysis datasets, production programs, production results datasets, verification programs,
and verification output reports. The timestamps on these files allow the program to
determine whether a given output is ‘current’. ‘Current’ means that the output has a later
timestamp than any of its immediate inputs (date files and programs). The code that
gathers this information is shown below:

filename dirbat "dirall.bat";
data _null_ ;
file dirbat notitles ;
length cmd $200 ;

Page 10 of 17

cmd = 'dir "' || "..\..\ADaM\Derived Data*.*" || '" > vsum_adam.lst '
put cmd ;
cmd = 'dir "' || "..\Programs*.*" || '" > vsum_prog.lst ';
put cmd ;
cmd = 'dir "' || "..\Derived Data*.*" || '" > vsum_outputs.lst ';
put cmd ;
cmd = 'dir "' || "..\Validation*.*" || '" > vsum_vprog.lst ';
put cmd ;
cmd = 'dir "' || "..\Validation Outputs*.*" || '" > vsum_vexcel.lst ';
put cmd ;
run;
x "dirall";

• Read in individual verification report spreadsheets for each output, to determine whether
the production and verification results matched or not. The program cycles through all of
the spreadsheet names found in the verification output directory, opens each file, and
checks whether all of the rows in the spreadsheet have the value ‘Y’ in the ‘MATCH’
column. If so, the output is considered verified.

• Based on output names from different sources and the creation dates and time stamps,
classify outputs according to a) whether all components exist, b) whether they are current,
and c) whether they have a validation match.

• Generate detailed report (see Table 6).
• Generate summary (counts and frequency) for each category in 6) (see Figure 8 below).

Figure 8. Sample Output of QC Status Report – Summary Level

When QC is in Progress

Total

(N=156)

Production Program Status
 Program does not exist 20 (12.8%)
 Program exists but inputs do not 1 (0.6%)
 Inputs exist but output does not 5 (3.2%)
 Output is older than inputs 10 (6.4%)
 Output exists and is current 129 (82.7%)

Verification Program Status
 Program does not exist 27 (17.3%)
 Program exists but inputs do not 1 (0.6%)
 Inputs exist but output does not 8 (5.1%)
 Not Current, Not Matched 15 (9.6%)
 Not Current, Matched 1 (0.6%)

 Current, Not Matched 9 (5.9%)
 Current, Matched 95 (60.9%)

Visual Review

 Complete 80 (51.3%)
 On-going 10 (6.4%)
 Issue(s) found 5 (3.2%)

Page 11 of 17

When all the issues are resolved, the summary of QC status report should look something like
Figure 9.

Figure 9. Sample Output of QC Status Report – Summary Level

When All QC issues are resolved

Total

(N=156)

Production Program Status
 Program does not exist 0
 Program exists but inputs do not 0
 Inputs exist but output does not 0
 Output is older than inputs 0
 Output exists and is current 156 (100%)

Verification Program Status
 Program does not exist 0
 Program exists but inputs do not 0
 Inputs exist but output does not 0
 Not Current, Not Matched 0
 Not Current, Matched 0
 Current, Not Matched 0
 Current, Matched 156 (100%)

Visual Review

 Complete 156 (100%)
 On-going 0
 Issue(s) found 0

As a side benefit, determining if all programs are ‘current’ in the production and verification
directories makes it possible to dynamically generate a batch file to re-execute all of the
programs that actually require a rerun due to a change in the source data or program. The
generated batch file for the production directory would look like the one shown below. A
generated batch file with no detail rows confirms that all of the outputs are current.

REM ---
REM batch_run_stale.bat
REM Execute all stale table programs
REM If this file contains no lines then all outputs are current
REM ---
"C:\Program Files\SAS\SASFoundation\9.2(32-bit)\sas.exe " t_s1t5_hivn.sas -CONFIG
"C:\Program Files\SAS\SASFoundation\9.2(32-bit)\SASV9.CFG"
"C:\Program Files\SAS\SASFoundation\9.2(32-bit)\sas.exe " t_s2t1_hivp.sas -CONFIG
"C:\Program Files\SAS\SASFoundation\9.2(32-bit)\SASV9.CFG"

Page 12 of 17

THE FUTURE OF ANALYSIS METADATA
The current standard for DEFINE.XML (version1.0) does not describe analysis results metadata.
Nevertheless, this is a topic that has been discussed in CDISC documents and has been proposed
as part of the next version of the DEFINE standard. The proposed types of information
described in the ADaM version 2.1 document include items such as those shown below:

Description of Analysis Metadata2

Metadata Field

Definition of field
DISPLAY IDENTIFIER Unique identifier for the specific analysis display
DISPLAY NAME Title of display
RESULT IDENTIFIER Identifies the specific analysis result within a display

PARAM Analysis parameter
PARAMCD Analysis parameter code
ANALYSIS VARIABLE Analysis variable being analyzed
REASON Rationale for performing this analysis
DATASET Dataset(s) used in the analysis.
SELECTION CRITERIA Specific and sufficient selection criteria for analysis subset and / or numerator

DOCUMENTATION Textual description of the analysis performed

PROGRAMMING
STATEMENTS

The analysis syntax used to perform the analysis

For this information to feed into a define.xml that describes analysis results metadata, there will
need to be more detailed requirements for the content. In addition, a schema for the define.xml
will need to be updated to accommodate analysis results. An updated style sheet will also be
needed to provide a display format for this information. These standards and the XML elements
needed are not available as of this writing. However, there is a compelling case to be made that
analysis results documentation provides important traceability between analysis datasets and the
reported results. Current ADaM documents such as the ADaM Examples in Commonly Used
Statistical Analysis Methods, Version 1.0 contain examples of the type of metadata content that
the authors consider useful. Although these documents do not prescribe either methods for
managing this metadata nor a display format, there is a clear interest in encouraging sponsors to
start thinking about how to manage this crucial link in the chain of logic.

Example of Analysis Results Metadata3

Metadata Field

Metadata
DISPLAY IDENTIFIER Table 14-3.01
DISPLAY NAME Primary Endpoint Analysis: ADAS Cog (11) - Change from Baseline to

Week 24 - LOCF
RESULT IDENTIFIER Pairwise treatment comparisons

PARAM ADAS-Cog (11) Total Score
PARAMCD ACTOT11
ANALYSIS VARIABLE CHG
REASON Primary efficacy analysis as pre-specified in protocol

2 See: CDISC Analysis Data Model, Version 2.1 pp. 24 (www.cdisc.org)
3 See: CDISC Analysis Data Model, Version 2.1 pp. 24 (www.cdisc.org)

Page 13 of 17

DATASET ADQSADAS
SELECTION CRITERIA ITTFL='Y' and AVISIT='Week 24' and PARAMCD='ACTOT11'

DOCUMENTATION Linear model analysis of ADAS-Cog(11) total score change from
baseline at Week 24 for pairwise treatment comparisons and adjusted
means; missing values imputed using LOCF, Efficacy population. Used
randomized treatment as class variable; site group as class variable; and
baseline ADAS-Cog score in model.

PROGRAMMING
STATEMENTS

PROC GLM; CLASS SITEGR1 TRTP; MODEL CHG = TRTP
SITEGR1 BASE; ESTIMATE 'H VS L' TRTP 0 1 -1; ESTIMATE 'H VS
P' TRTP -1 1 0; ESTIMATE 'L VS P' TRTP -1 0 1; LSMEANS TRTP /
OM STDERR PDIFF CL; RUN;

The inventory approach outlined here can easily provide a basis for analysis results section of
define.xml documentation. While the current primary use of the inventory spreadsheet is as
automation tool and project management tool, we envision elaborating on this design when a
results metadata standard is available. Many elements of the metadata in the list above are
already maintained in the inventory spreadsheet: additional fields could be added easily. We
would anticipate using the inventory spreadsheet as an additional input to a define.xml generator.

Using the same table inventory spreadsheet to generate analyses as well as document them is a
promising approach. Using a single source for both processes can make it easier to produce and
verify reports, and make it easier for the ultimate audience –the statistical reviewer - to
understand them.

Page 14 of 17

DISCUSSION
In this paper, we presented techniques to increase programming efficiency of data analysis and
control quality of analysis results. Using SAS® macros to compare analysis results from
independent programs as well as to track of the production and verification progress can speed
up the verification process. In addition to the automation, visual review of the TLFs is an
important part of the QC process. Developing a check list for the visual review of outputs can
ensure a consistent review and improve the quality of the TLFs.

Acknowledgement
Our special thanks go to Dr. Chad Heilig for his support of this presentation. The US Public
Health Service/Tuberculosis Trials Consortium Study 22 information is used in Figures 1, 3, 4
and 5 with permission.

Thank you to Monika Kawohl for comments on the draft version.

References
CDISC Analysis Data Model, Version 2.1 (www.cdisc.org)

ADaM Examples in Commonly Used Statistical Analysis Methods, Version 1.0 (www.cdisc.org)

Contact Information

Your comments and questions are valued and encouraged. Contact the authors at:

Linda Collins
PharmaStat, LLC
39899 Balentine Drive, Suite 109
Newark, CA 94560
Work Phone: 510 656-2080
lcollins@pharmastat.com

Elizabeth Li
PharmaStat, LLC
39899 Balentine Drive, Suite 109
Newark, CA 94560
Work Phone: 510 656-2080
elizabethli@pharmastat.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

http://www.cdisc.org/�
http://www.cdisc.org/�
mailto:lcollins@pharmastat.com�
mailto:elizabethli@pharmastat.com�

Page 15 of 17

Appendix A. SAS Code
1: Code to generate ‘driver’ programs from Excel metadata. Input source is the table ‘inventory’
spreadsheet eTOC.xls. The output is one ‘driver’ program file per row in the spreadsheet.

/*[Import the Excel file (=eTOC.xls tab=Reports), where TLF specifications are stored]*/
PROC IMPORT OUT= WORK.etoc DATAFILE= "..\Metadata\eTOC.xls" DBMS=EXCEL REPLACE;
AEXC;
SHEET="Reports";
GETNAMES=YES;
RUN;

/*[Create the output file name] This section is executed once for each row in the spreadsheet*/
proc printto print = "ts1t5-hivn.sas" new;
run;

options linesize = 200 ;
data _null_ ;
set etoc;
change=put(today(),date9.);

/*[Put a driver program header information]*/
if (baseprog = trim("ts1t5")) and (order = trim("hivn")) and (variant = trim("01")) ;
file print notitles pagesize = 32000 ;
length txt $250 ;
txt ="/** ---**" ;
put @1 txt $200. ;
txt ="** Program: s1t5-hivn.sas" ;
put @1 txt $200. ;
txt ="** Order: " || left(trim(order));
put @1 txt $200. ;
txt ="** Variant: " || left(trim(variant));
put @1 txt $200. ;
txt ="** Generated: " || left(trim(change));
put @1 txt $200. ;
txt =" ";
put @1 txt $200. ;
txt ="** Report No: " || left(trim(reportno));
put @1 txt $200. ;
if scan(titles,1,'|') ne ' ' then do ;
 txt ="** Title 1: " || left(trim(scan(titles,1,'|'))) ;
 put @1 txt $200. ;
end ;
if scan(titles,2,'|') ne ' ' then do ;
 txt ="** Title 2: " || left(trim(scan(titles,2,'|')));
 put @1 txt $200. ;
end ;

 /*[. . check for additional ‘|’ characters in the titles variable . . .]*/
txt =" ";
put @1 txt $200. ;

BaseProg -Order

Page 16 of 17

if dataset1 ne ' ' then do ;
 txt ="** Inputfile: " || left(trim(dataset1));
 put @1 txt $200. ;
end ;

 /*[. . . check for additional dataset2, dataset3,...]*/

txt ="** Outputfile: ts1t5-hivn.rtf" ;
put @1 txt $200. ;
txt ="** --**/" ;
put @1 txt $200. ;
txt =" ";
put @1 txt $200. ;

/*[Write a driver program code]*/
if dataset1 ne ' ' then do ;
 txt =" ";
 put @1 txt $200. ;
 txt ="data file1 ;" ;
 put @1 txt $200. ;
 txt =" set " || left(trim(dataset1)) || " ;" ;
 put @1 txt $200. ;
 if select1 ne ' ' then do ;
 if scan(select1,2, '|') ne ' ' then do ;
 txt =" where (" ;
 put @1 txt $200. ;
 do wrd = 1 to 200 ;
 txt = " " || scan(select1,wrd, '|') ;
 if txt ne " " then put @1 txt $200. ;
 end ;
 txt = ") ;" ;
 put @1 txt $200. ;
 end ;
 else do ;
 txt =" where (" || left(trim(select1)) || ") ;" ;
 put @1 txt $200. ;
 end ;
 end ;
 if vars1 ne ' ' then do ;
 if length(vars1) < 190 then do ;
 txt =" keep " || left(trim(vars1)) || " ;" ;
 put @1 txt $200. ;
 end ;
 else do x = 1 to length(vars1) ;
 if scan(vars1,x) ne ' ' then do ;
 txt =" keep " || left(trim(scan(vars1,x))) || " ;" ;
 put @1 txt $200. ;
 end ;
 end ;
end ;
txt ="run ; " ;
put @1 txt $200. ;
end ;

 /*[. . . use similar code for additional datasets and subsets: dataset2, dataset3,...select2,
select3, …, vars2, vars3,…]*/
txt =" ";
put @1 txt $200. ;

Page 17 of 17

txt ="%" || left(trim(baseprog)) || " (" ;
put @1 txt $200. ;
txt =" order = " || left(trim(order)) || " , " ;
put @1 txt $200. ;
txt =" variant = " || left(trim(variant)) || " " ;
put @1 txt $200. ;
txt =") ; " ;
put @1 txt $200. ;
txt =" ";
run ;

	ABSTRACT
	KEY WORDS
	INTRODUCTION
	MAKING A LIST
	CHECKING IT TWICE
	AUTOMATED QC REPORT
	THE FUTURE OF ANALYSIS METADATA
	DISCUSSION
	Acknowledgement
	References
	Contact Information
	Appendix A. SAS Code

