
PharmaSUG 2012 - Paper DS20

An Innovative ADaM Programming Tool for FDA Submission
Xiangchen (Bob) Cui, Vertex Pharmaceuticals, Cambridge, MA

Min Chen, Vertex Pharmaceuticals, Cambridge, MA
Tathabbai Pakalapati, Vertex Pharmaceuticals, Cambridge, MA

ABSTRACT

It is a good practice to include data definition tables (define.xml) and a reviewer’s guide along with ADaM datasets to
minimize the time to familiarize with submitted clinical data and expedite the approval process by FDA reviewers. It is
important to ensure consistency in metadata among data definition tables, reviewer’s guide and ADaM datasets. This
paper describes automated ADaM Programming Tool, consisting of six SAS macros, to streamline the process of
creating programming specification, compliance checking of specifications with FDA and CDISC requirements,
deriving ADaM datasets and generating define.xml and a reviewer’s guide. The tool also automates the processes of
version control of specifications, consistency checking of controlled terminology and value level metadata between
ADaM and define files, detection of empty variables in ADaM datasets, preparation of batch files, and addition of core
variables to both all ADaM datasets and define.xml at final run thereby achieving accuracy and efficiency.

INTRODUCTION

ADaM programming is an important and challenging part in biometrics deliverable life cycle. In addition to ADaM
datasets, sponsor needs to submit analysis reviewer guide and data definition tables (define.xml) to FDA reviewers.
Considering stringent timelines and frequent changes in statistical analysis plan it is always essential for a
sponsor/vendor to have an efficient ADaM processing mechanism to deliver data and supplemental documents with
high quality and accuracy. This paper presents an innovative ADaM Programming Tool to streamline the whole
process of creation of programming specification, compliance checking of metadata against FDA and CDISC
requirements, ADaM derivation, version control, tracking changes in specifications and generation of reviewer guide
and data definition tables. The tool consists of 6 macros: %get_adam_specs, %adam_attrib, %ctlist_checking,
%empty_var_checking, %get_adam_specs_final_call, %get_batch _file, and there are 10 step processes in the
programming tool to generate a complete ADaM package for FDA electronic submission.

Ten automations provided by the ADaM Programming Tool are summarized below and illustrated in the form of
flowchart in Display1.

1. Automatic compliance checking of metadata against CDISC standards

2. Automatic version control

3. Automatic track changes in analysis programming specification

4. Automatic define.xml generation

5. Automatic generation of ADaM dataset label and variable attributes in the form of macro variables

6. Automatic addition of core variables to both define.xml and ADaM datasets in the final run

7. Automatic consistency checking of controlled terminology and value level metadata between ADaM
datasets and programming specification

8. Automatic detection of empty variables in ADaM datasets

9. Automatic preparation of SAS scripts for final run of all ADaM specifications and combination of all
ADaM specifications into one Word document in a specified order

10. Automatic batch file preparation for the final run of ADaM datasets

Each step above is explained in detail in a separate section with real examples used in our FDA submission process.
Lastly, the paper tries to showcase the advantage of using the suggested ADaM Programming Tool to achieve high
operational efficiency.

1

An Innovative ADaM Programming Tool for FDA Submission, continued

Display 1 shows the process flow.

Individual Programming
Specification ADxx.doc

Display 1. Overall of Process Flow

Copy to ADxx.csv

ADxx_vars.sas7bdat

%adam_attrib
Generates 3 Global
Macro Variables:
ADaMLABEL
ADaMVARS
VAR_ATTRIB

Combine Each
Individual

Specification
into a

Reviewer’s
Guide

Combine Each
Individual

ADxx_vars.sas7
bdat Dataset for

define.xml

Save Each Version of
Specification in Word

and
ADxx_vars_date.sas

7bdat for Version
Control

Report any Changes
Tracking Changes

Final Batch Run and
Generate XPT Files

Final Package for FDA Electronic Submission

 Check Compliance

CT Term Check

 Detect
Empty Variables

%get_adam_specs

Non-compliant
Fix

Specs

Report

Compliant

Populate Variables
and their Attributes
in ADaM Dataset

Mismatch

Match

Issue

No Issue

 2

An Innovative ADaM Programming Tool for FDA Submission, continued

AN INTRODUCTION OF MODULARIZED WORD® SPECIFICATION FOR ADAM

An individual programming specification for ADaM in MS Word® format facilitates programmers and statisticians to
review and communicate derivation rules among them, as well as track the change. Display 2 shows the snapshot of
an ADaM programming specification. The specification for each domain is composed of three modules: domain
information table, variable information table, and an optional appendix or notes for a complex algorithm or derivation
rules. Information in the first two modules is the core for this ADaM programming tool and will be used for 10
automations listed in Introduction section.

Domain Information Table

Variable Information Table

Controlled
Terms
or
Value Level
Metadata

Display 2. Individual Programming Specifications in Word® Format

In the domain information table, description of the domain will serve as the label of ADaM dataset; in the variable
information table, the variable name, label, type, and the length will define the variable attributes of ADaM dataset.
‘Controlled Terms or Formats’ Column specifies controlled terminologies for necessary variables and defines formats
for date/time variables which will also be presented in define.xml.

The contents of the Word programming specification are copied to a comma delimited document, as shown in Display
3, to be imported to a SAS dataset.

 3

An Innovative ADaM Programming Tool for FDA Submission, continued

Display 3. Individual Programming Specification in Comma-Delimited CSV Format

AUTOMATION 1: COMPLIANCE CHECKING WITH FDA SUBMISSION REQUIREMENTS
AND CDSIC ADAM PROGRAMMING REQUIREMENTS FOR MODULARIZED ADAM
SPECIFICATIONS

GUIDELINE FOR WRITING ADAM SPECIFICATION AND COMPLIANCE CHECKING RULES

As shown in Display 2, each domain specification is modularized to facilitate the programming. CDISC ADaM
Implementation Guideline clearly defines ADSL and Basic Data Structure (BDS) data. CDISC ADaM validation
checks define associated validation checks to ensure high quality in submitted analysis datasets. Our programming
specifications are checked against these validation rules so that the submitted analysis dataset metadata will be
compliant to CDISC ADaM Guideline. Our macro based approach also checks the compliance of domain information,
the compliance between domain and variable information, the requirements or key words for each column in
programming specifications, and the existence of decoded variables defined in ‘Controlled Terms or Formats’
Column. The guideline for writing ADaM programming specification and the compliance checking rules, which are
objective and programmable, for ADaM metadata are listed in the Appendix 1.

A MACRO TO RETRIEVE INFORMATION FROM SPECIFICATION AND COMPLIANCE CHECKING

A macro %get_adam_specs is used to read the information from the individual domain programming specification in
CSV format, retrieve the useful domain information and variable information based on the standard structure of the
given specification, performs ADaM compliance checking with CDISC requirements and FDA submission
requirements, and outputs non-compliance reports if any. SAS datasets with ADaM specification information will be
generated only when the specifications are compliant with the rules predefined in Appendix 1. Other functions of this
macro will be introduced in subsequent sections.

The macro call is shown as follows.

 4

An Innovative ADaM Programming Tool for FDA Submission, continued

%macro get_adam_specs(indir =, /* path of input ADaM specs */
 Specsnm =, /* specs name, e.g. adsl.csv */
 Outdir =, /* path for output data/reports */
 Newdtnm =, /* dataset name for new specs */
 Runorder =999, /* Run order for a specific domain */
 track_specs =N, /* Y: activate tracking change */
 olddir =, /* path of old specs */
 predtnm =, /* dataset name for old specs */
 generate_xml=N, /* Y: generate define.xml */
 xmldir =, /* path for define.xml */
 final_run =N /* Y: add core vars to define.xml */
);

Where,
INDIR: Full Path for ADaM programming specification.
SPECSNM: Name of ADaM programming specification.
OUTDIR: Full Path for output reports or SAS dataset which contains ADaM specs information.
NEWDTNM: A valid SAS dataset name for SAS dataset containing current specs information.
RUNORDER: A valid numeral, defining the order for a specific domain to run (in the final run).
TRACK_SPECS: Flag for audit trail. If TRACK_SPECS is assigned to Y, the macro will compare dataset for the
new specs (NEWDTNM) at working folder (OUTDIR) with dataset for the old specs (PREDTNM) in the history
folder (OLDDIR).
OLDDIR: Full Path for history folder of SAS dataset containing old specs information.
PREDTNM: A valid SAS dataset name for SAS dataset containing old specs information.
GENERATE_XML: Flag for define.xml generation. If GENERATE_XML is assigned to Y, the macro will generate
define.xml for all the existing SAS datasets under the working (OUTDIR) folder.
XMLDIR: Full Path for define.xml.
FINAL_RUN: Flag for Final Run. If FINAL_RUN is assigned to Y, the macro will add core variables to both the
final ADaM datasets and define.xml

If one of the compliance checking rules is not satisfied, non-compliance reports in RTF format will be reported.
Displays 4-8 show the compliance checking reports for unfulfilled requirements.

Display 4. Non-Compliance Report for Domain Information Table

Display 5. Non-Compliance Report for Variable Information Table

 5

An Innovative ADaM Programming Tool for FDA Submission, continued

Display 6. Non-Compliance Report for Duplicate Variables

Display 7. Non-Compliance Report for Inconsistently Defined Key Variables

Display 8. Non-Compliance Report for Decoded Variables

COMPARISON WITH OPENCDISC VALIDATION

Compared with OpenCDISC Validation which normally occurs at the very end of ADaM programming activities, the
compliance checking by the tool focuses on the ADaM metadata now, including variable presence. The ADaM
programming specification is the ONLY source needed in the macro, which makes it possible to perform compliance
checking and finalize the ADaM metadata at the very early stage even before actual ADaM datasets are generated.
Specifically, the checking rules such as compliance checking of domain information, compliance checking between
domain and variable information, key words checking for each column in programming specifications, and existence
checking of decoded variables in ‘Controlled Terms or Formats’ Column, are not defined in CDISC ADaM Validation
Checks V1.1, but uniquely defined and applied in our approach instead. The tool will be further developed to check
ADaM datasets for compliance with CDISC models, in addition to ADaM metadata. More checking rules will be
incorporated into the tool as the tool is being fully developed regarding compliance checking of metadata against
CDISC standards.

OUTPUT OF SAS DATASETS CONTAINING ADAM SPECIFICATION INFORMATION

Not until all issues about the above-mentioned compliance checking are resolved, will the SAS datasets containing
ADaM specs information be output. Compared with OpenCDISC Validation which occurs at the very end of ADaM
programming activities, the method in this paper will ensure the resolution of non-compliance with CDISC and FDA
submission requirements, finalize the ADaM specification at the very early stage in the programming cycle even
before actual ADaM datasets are generated, and avoid the repetitive work to revise the ADaM data structure after
ADaM Derivation.

Display 9 shows a dataset named ADXX_DOMAIN containing the domain information for the individual ADaM
dataset after all compliance checking are passed, and Display 10 shows a dataset named ADXX_VARS containing
the attributes of the variables. They define individual ADaM metadata and will be used in the subsequent ADaM
programming activities.

Display 9. Dataset Containing the Domain Information of an Individual ADaM Domain

 6

An Innovative ADaM Programming Tool for FDA Submission, continued

Display 10. Dataset Containing Variables Information of an Individual ADaM Domain

Display 11 shows a SAS dataset containing the domain information for all existing ADaM domains named
ALL_DOMAINS, and Display 12 shows a SAS dataset containing the attributes of the variables for all existing ADaM
domains named ALL_VARS. They are generated cumulatively each time when individual ADaM specification
programs are run, and output for preparing define.xml and batch file. If a particular ADaM specification program is run
several times, the information retrieved from the most recent call will replace the one in the previous run.

Display 11. Dataset Containing the Domain Information of All ADaM Domains

Display 12. Dataset Containing Variable Information of All ADaM Domains

AUTOMATION 2: VERSION CONTROL

Version control of ADaM programming specifications can be achieved by the tool. In addition to outputting SAS
datasets containing ADaM specs information to a study folder &OUTDIR, the macro %get_adam_specs can also
store both word version and SAS dataset of the programming specification with time stamp in a study subfolder,
named as \history. This function is performed after passing the compliance checking.

The word files of the specifications with different time stamps are stored for version control purpose. The SAS dataset
of specification with a time stamp can serve as an input to automatically capture the changes of the programming
specifications. The traceability can be achieved with the storage of the previous version of specifications.

An example of version control is shown in Display 13. If needed, time can be added into the time stamp of word
documents in addition to date.

 7

An Innovative ADaM Programming Tool for FDA Submission, continued

 8

Display 13. An Example of Version Control for ADSL Specification Document

AUTOMATION 3: TRACK CHANGES

Since derivation rules may be complex and subject to constant change during the whole ADaM programming
activities, it is desirable to automatically keep track of different versions of ADaM programming specifications in order
to help statisticians and programmers to review the new specifications and facilitate the decision making for the
revision. It is more beneficiary for sponsors to keep track of different versions when ADaM programming is
outsourced to external vendors.

A MACRO FOR TRACKING CHANGES

Tracking changes function will be activated when macro variable &track_specs is set to Y at the invoking of macro
%get_adam_specs. The macro users can assign any SAS dataset in \history folder as an old version of
specifications, to be compared with the current version of specifications. The reports on specifications revisions will
be automatically output in RTF formats.

Tracking changes function makes it possible to capture any changes in current specifications with respect to any
previous version of specifications as per user request, including variable added, variable deleted, variable attributes
revised, variable comments revised, variable origin and/or controlled terminology revised, and variable number of
order revised in the new specifications, and thereby facilitates reviewing the new ADaM specification. The Display 14
- 19 show the typical reports of specification changes when tracking change function is triggered.

Display 14. An Example Report for Tracking Changes: Adding Variable(s)

Display 15. An Example Report for Tracking Changes: Deleting Variable(s)

An Innovative ADaM Programming Tool for FDA Submission, continued

Display 16. An Example Report for Tracking Changes: Change of Variable Attributes

Display 17. An Example Report for Tracking Changes: Change of Comments

Display 18. An Example Report for Tracking Changes: Change of Origin or Controlled Terminology

Display 19. An Example Report for Tracking Changes: Change of Variable Order in the ADaM Dataset

POST-DELIVERY CHANGES AND TRACKING CHANGES

Tracking changes function is indispensable for programming and/or documentation after a Clinical Study Report
(CSR) delivery. If there are any changes in the programming specifications post-delivery, the tracking change
function will be triggered when invoking macro %get_adam_specs, and reports will be generated to capture changes
from the last version of specifications. The reports will serve as documentation for audit. For example, if comments
column is updated after the delivery due to editorial change, only one report is generated: the report of change of
comments, as shown in Display 17.

 1

An Innovative ADaM Programming Tool for FDA Submission, continued

AUTOMATION 4: CREATE DEFINE.XML

Define.xml is used to be generated after the CSR stage for submission purpose only, which is provided for FDA
reviewers to familiarize the data and speed up the overall review process. It is desirable if the study statisticians can
review metadata earlier in the programming cycle as well. Our ADaM Tool automatically creates define.xml at the
same time as CSR stage and thereby makes it possible for the study statisticians to validate the ADaM metadata and
provide feedbacks at early stage of ADaM programming activities.

A MACRO FOR CREATING DEFINE.XML

Define.xml generation function will be activated when macro variable &generate_xml is set to Y at the invoking of
macro %get_adam_specs. The generated SAS datasets ALL_DOMAINS and ALL_VARS, which contain domain
information and variable information for all domains as shown in Display 11 and 12, respectively, will be output to the
domain information spreadsheet, variable information spreadsheet, value level spreadsheet, and controlled
terminology spreadsheet for define.xml generation. These spreadsheets will be combined with manually generated
study level spreadsheet to create define.xml.

Display 20 shows an example of Table of Contents for define.xml, which describes the domain information. The
detailed derivation rules and origin information in the programming specification, in addition to variable attributes, are
shown in Display 21. The links to the individual ADaM datasets will not work until ADaM datasets are finalized, QCed,
and converted to transport files.

Display 20. Table of Contents (TOC) of Sample define.xml - Domain Information

 2

An Innovative ADaM Programming Tool for FDA Submission, continued

Display 21. Data Definition Table of Sample define.xml - Variable Information

Since the ADaM programming specifications are the unique source for generating both ADaM metadata and
define.xml, the consistency between ADaM metadata and programming specification, and further between ADaM
metadata and the define files can be automatically guaranteed.

AUTOMATION 5: GENERATION OF GLOBAL MACRO VARIABLES OF METADATA FOR
ADAM DERIVATION PROGRAMMING

Every analysis dataset should be associated with a dataset label, and all variables in the analysis dataset are defined
by attributes label, type (Numeric or Character) and length. Dataset label and variable attributes of an ADaM dataset
are retrieved from ADXX_DOMAIN and ADXX_VARS datasets as shown in Display 9 and Display 10, respectively,
which are generated by macro %get_adam_specs from programming specification document. Macro %adam_attrib
is called in each ADaM derivation program to generate global macro variables &ADAMLABEL, &ADAMVARS, and
&VAR_ATTRIB which upon resolution provide ADaM dataset label, variables in the ADaM dataset and their
attributes, respectively.

The macro call of %adam_attrib is as follows:

%macro adam_attrib(libin=adamspec, dsin=, dmin=);

Where,

LIBIN: the libref associated with a SAS data library that has ADaM domain information dataset
 (ADXX_DOMAIN) and variable information dataset (ADXX_VARS)
DSIN: Name of the SAS dataset storing ADaM variable information, default value ADXX_VARS
DMIN: Name of the SAS dataset storing ADaM domain information, default value ADXX_DOMAIN

Global macro variables &ADAMLABEL, &ADAMVARS, and &VAR_ATTRIB will be used in the DATA step of ADaM
conversion program to populate dataset label and variable attributes in the final ADaM dataset. Sample SAS code
from ADLB (Laboratory Analysis Dataset) derivation program is shown below. This methodology avoids defining
variable attributes for all the variables in the dataset in the conversion program thereby significantly reducing
programming work load and occurrence of human errors. It guarantees the consistency between the ADaM datasets
and the specifications. Validation programmer can review specification document for variable metadata and use the
same mechanism in the QC program. This methodology is especially feasible in handling any changes of variables
and their attributes. Cost effectiveness is achieved since the only update needed is the programming specifications.

 3

An Innovative ADaM Programming Tool for FDA Submission, continued

*** Output ADaM dataset ***;
data ad.adlb(keep=&adamvars. label=&adamlabel.);
 attrib &var_attrib.;
 set adlb;
run;

The resolution of global macro variables &ADAMLABEL, &ADAMVARS, and &VAR_ATTRIB in log file of ADHC
conversion programs are as follows.

%put &adamlabel.;
Laboratory Analysis Dataset

%put &adamvars.;
STUDYID USUBJID LBSEQ LBREFID PARAMCD PARAM PARAMN PARCAT1 APHASE APHASEN DTYPE
AVISIT AVISITN TVRFL ONTRTFL LBORRES LBORRESU LBORNRLO LBORNRHI LBSTRESC LBSTRESN
LBSTRESU LBSTNRLO LBSTNRHI ANRLO ANRHI ANRIND LBSTAT LBREASND LBNAM LBSPEC LBMETHOD
LBFAST BASE BASEC CHG BNRIND ADTM ADT ATM ADY LOCALFL VISIT VISITNUM LBDTC LBRPTLBL
LBPREC ATOXGR ATOXGRN ATOX ATOXGRH ATOXGRHN ATOXH BTOXGR BTOXGRN BTOX BTOXGRH
BTOXGRHN BTOXH MXGR_T MXGR_A HMXGR_T HMXGR_A MXNR_T MXNR_A MNNR_T MNNR_A HGB10FL
HGB8FL UACIDFL HGB10_T HGB10_A HGB10N_T HGB10N_A HGB8_T HGB8_A HGB8N_T HGB8N_A
UACID_T UACID_A UACIDN_T UACIDN_A TABLEFL TABLESFL LISTNGFL ABLFL ANL01FL ANL02FL
AVAL AVALC PCHG MINFL MAXFL MINFL_TW

%put &var_attrib.;
STUDYID label='Study Identifier' length=$20 USUBJID label='Unique Subject
Identifier' length=$40 LBSEQ label='Sequence Number' length= 8 LBREFID
label='Specimen ID' length=$20 PARAMCD label='Parameter Code' length=$8 PARAM
label='Parameter' length=$80 PARAMN label='Parameter (N)' length= 8 PARCAT1
label='Parameter Category 1' length=$40 APHASE label='Phase' length=$40 APHASEN
label='Phase Number' length= 8 DTYPE label='Derivation Type' length=$40 AVISIT
label='Analysis Timepoint Description' length=$40 AVISITN label='Analysis Timepoint
Description Number' length= 8 TVRFL label='TVR/Pbo Treatment Phase Event (+1 day)'
length=$1 ONTRTFL label='On Treatment Record Flag' length=$1 LBORRES label='Result
or Finding in Original Units' length=$120 LBORRESU label='Original Units'
length=$40 LBORNRLO label='Reference Range Lower Limit in Orig Unit' length=$40
LBORNRHI label='Reference Range Upper Limit in Orig Unit' length=$40 LBSTRESC
label='Character Result/Finding in Std Format' length=$120 LBSTRESN label='Numeric
Result/Finding in Standard Units' length= 8 LBSTRESU label='Standard Units'
length=$40 LBSTNRLO label='Reference Range Lower Limit-Std Units' length= 8
LBSTNRHI label='Reference Range Upper Limit-Std Units' length= 8 ANRLO
label='Analysis Normal Range Lower Limit' length=$40 ANRHI label='Analysis Normal
Range Upper Limit' length=$40 ANRIND label='Reference Range Indicator' length=$8
LBSTAT label='Lab Status' length=$8 LBREASND label='Reason Test Not Done'
length=$200 LBNAM label='Vendor Name' length=$200 LBSPEC label='Specimen Type'
length=$40 LBMETHOD label='Method of Test or Examination' length=$100 LBFAST
label='Fasting Status' length=$2 BASE label='Baseline Value' length= 8 BASEC
label='Character Baseline Value' length=$40 CHG label='Change from Baseline'
length= 8 BNRIND label='Baseline Reference Range Indicator' length=$8 ADTM
label='Analysis Date/Time' length= 8 format=DATETIME20. ADT label='Analysis Date'
length= 8 format=YYMMDD10. ATM label='Analysis Time' length= 8 format=TIME5. ADY
label='Analysis Relative Day' length= 8 LOCALFL label='Local Lab Result Flag'
length=$2 VISIT label='Visit Name' length=$80 VISITNUM label='Visit Number' length=
8 LBDTC label='Date/Time of Specimen Collection' length=$20 LBRPTLBL
label='Laboratory Test label for reports' length=$80 LBPREC label='Decimal
precision for reports' length= 8 ATOXGR label='Analysis Toxicity Grade' length=$2
ATOXGRN label='Analysis Toxicity Grade (N)' length= 8 ATOX label='Toxicity'
length=$80 ATOXGRH label='Analysis Toxicity Grade for High Value' length=$2
ATOXGRHN label='Analysis Tox Grade for High Value (N)' length= 8 ATOXH
label='Toxicity, for High Value' length=$80 BTOXGR label='Baseline Toxicity Grade'
length=$2 BTOXGRN label='Baseline Toxicity Grade (N)' length= 8 BTOX
label='Baseline Toxicity' length=$80 BTOXGRH label='Baseline Toxicity Grade, for
High Values' length=$2 BTOXGRHN label='Baseline Tox Grade, for High Values (N)'
length= 8 BTOXH label='Baseline Toxicity, for High Values' length=$80 MXGR_T
label='Max toxicity tru TVR Treatment Phase' length= 8 MXGR_A label='Max toxicity

 4

An Innovative ADaM Programming Tool for FDA Submission, continued

tru Overall Treatment Phase' length= 8 HMXGR_T label='Max toxicity tru TVR Phase,
for High' length= 8 HMXGR_A label='Max toxicity tru Overall Phase, for High'
length= 8 MXNR_T label='Normal Range (Max) tru TVR Treat Phase' length=$8 MXNR_A
label='Normal Range (Max) tru Overall Phase' length=$8 MNNR_T label='Normal Range
(Min) tru TVR Treat Phase' length=$8 MNNR_A label='Normal Range (Min) tru Overall
Phase' length=$8 HGB10FL label='HGB flg (Male <105 g/L, Female <100 g/L)' length=$2
HGB8FL label='HGB flag (Male <85 g/L, Female <80 g/L)' length=$2 UACIDFL
label='Elevated Uric Acid flag (>=446 umol/L)' length=$2 HGB10_T label='Days to 1st
HGB10 Flg tru TVR Trt Phase' length= 8 HGB10_A label='Days to 1st HGB10 Flag tru
Overall Phase' length= 8 HGB10N_T label='Days, 1st HGB10 Flg - Norm tru TVR Phase'
length= 8 HGB10N_A label='Days, 1st HGB10 Flg - Norm tru Overall' length= 8 HGB8_T
label='Days to 1st HGB8 Flag tru TVR Trt Phase' length= 8 HGB8_A label='Days to 1st
HGB8 Flag tru Overall Phase' length= 8 HGB8N_T label='Days, 1st HGB8 Flag - Norm
tru TVR Phase' length= 8 HGB8N_A label='Days, 1st HGB8 Flag - Norm tru Overall'
length= 8 UACID_T label='Days to 1st Elevated UAcid tru TVR Phase' length= 8
UACID_A label='Days to 1st Elevated UAcid tru Overall' length= 8 UACIDN_T
label='Days, 1st Elevated UAcid - Norm tru TVR' length= 8 UACIDN_A label='Days,1st
Elevated UAcid-Norm tru Overall' length= 8 TABLEFL label='Selected Analysis Flag
for Summary Table' length=$2 TABLESFL label='Selected Analysis Flag for Shift
Tables' length=$2 LISTNGFL label='Selected Analysis Flag for Listings' length=$2
ABLFL label='Baseline Record Flag' length=$2 ANL01FL label='Analysis Record Flag
01' length=$2 ANL02FL label='Analysis Record Flag 02' length=$2 AVAL
label='Analysis Value' length= 8 AVALC label='Analysis Value (C)' length=$20 PCHG
label='Percent Change from Baseline' length= 8 MINFL label='Minimum on Treatment
Measurement Flag' length=$2 MAXFL label='Maximum on Treatment Measurement Flag'
length=$2 MINFL_TW label='Lowest Measures During Each Trt WD Flag' length=$2

AUTOMATION 6: ADD CORE VARIABLES TO DEFINE.XML AND ADAM DATASETS AT
FINAL RUN

FDA advises to populate a set of basic subject level variables to all analysis datasets. These variables are called core
variables. Core variables include study/protocol, site, country, treatment assignment, sex, age, race, ethnicity,
analysis population flags (e.g. full analysis set flag, per protocol flag etc.) and other important baseline demographic
variables. They will be identified from ADSL and populated in all analysis datasets, which avoids the additional step of
merging analysis datasets with ADSL to get basic subject level information while generating TFLs.

ADD CORE VARIABLES TO DEFINE.XML AT FINAL RUN

Adding core variable function will be activated when macro variable &final_run is set to Y at the invoking of macro
%get_adam_specs in final stage of ADaM programming activities. The core variables are stored in a global macro
variable &core_vars which is defined in the study set up file. The attributes of these core variables are retrieved from
the specification of subject level analysis dataset ADSL. The core variables will be added to ALL_VARS for all
analysis datasets, and further populated into define.xml.

The Display 22 shows the final SAS data named FINAL_ALL_VARS, which contains variable information including
added core variables for all ADaM datasets. The variables in each anlaysis dataset are re-ordered so that core
variables are added after the key variables. If adding core variable function is activated, FINAL_ALL_VARS will be
used to create define.xml, which includes core variables in all analysis datasets.

Display 22. Final Dataset Containing Variable Information of All ADaM Domains with Core Variables Added

 5

An Innovative ADaM Programming Tool for FDA Submission, continued

ADD CORE VARIABLES TO ADAM DATASETS AT FINAL RUN

Similar to adding core variables to define.xml, core variables are automatically retrieved from ADSL and added to all
ADaM datasets, which avoids the redundant and error-prone process to develop the same variables in different
ADaM derivation programs. In our ADaM tool core variables are not even included in the individual derivation
programs when developing Individual ADaM datasets. Instead, a separate SAS script named add_corevars.sas is
created to add core variables to all analysis datasets defined in ALL_DOMAINS in the final run. Add_corevars.sas
will later be used in the batch file _runADaM.bat for batch submitting ADaM derivation programs. This process
introduces the flexibility of developing individual ADaM datasets before ADSL is ready for use.

AUTOMATION 7: CONSISTENCY CHECKING OF CONTROLLED TERMINOLOGY AND
VALUE LEVEL METADATA BETWEEN ADAM DATASETS AND PROGRAMMING
SPECIFICATION

It is very critical for FDA submission to ensure consistency in controlled terminology and value level metadata
between programming specifications and ADaM datasets. ADaM programming tool uses SAS macro
%ctlist_checking to automate the process of checking consistency in controlled terminology and value level
metadata between ADaM datasets and programming specifications. This macro can be called at any stage of ADaM
programming cycle and helps in finalizing the programming specifications at an earlier stage. The controlled
terminology in ADaM datasets can be categorized as value level metadata originating from source SDTM datasets to
ADaM BDS Datasets, sponsor-defined terminology for the code-decode variable pair, controlled terminology inherited
from SDTM domains, and therapeutic-specific terminology defined by FDA. While writing ADaM programming
specifications these controlled terminology and value level metadata follow a particular style for proper function of
macro %ctlist_checking as shown in Display 23 – 26.

 Display 23. Illustration of PARAMCD Value Level Metadata in an ADaM Specification

Display 24. Illustration of Sponsor-Defined Controlled Terminology in an ADaM Specification

 6

An Innovative ADaM Programming Tool for FDA Submission, continued

Display 25. Illustration of Controlled Terminology Inherited from CDISC SDTM Domain

Display 26. Illustration of FDA Defined Therapeutic Specific Controlled Terminology

Macro %ctlist_checking compares the controlled terminology and value level metadata defined in the ADaM
programming specifications with that in the ADaM datasets, detects any mismatches, and generates inconsistency
report in RTF format if any exists.

The macro call of %ctlist_checking is as follows:

%ctlist_checking(specdir = &sty_ad_spec.,
 datadir = &sty_data_ad.,
 domain = _ALL_
);

Where,

SPECDIR: Full Path for ADaM Programming Specifications. Default value as study folder for ADaM
specifications.
DATADIR: Full Path for ADaM datasets. Default value as study folder for ADaM datasets.
DOMAIN: An ADaM domain to be checked with controlled terminology and value level metadata. If the macro
variable &DOMAIN is not assigned a value, all ADaM domains will be checked for consistency of the controlled
terminology and value level metadata.

Display 27 – 30 show typical reports of non-consistency between ADaM datasets and specifications. Decision will be
made by programmers to update either the programming specifications or the ADaM derivation program to handle
these mismatches. The general decision-making rules for mismatches are listed in Appendix 2.

Display 27. Non-Consistency Report of Value List Metadata for PARAMCAT Between ADaM Datasets and
Specifications

 7

An Innovative ADaM Programming Tool for FDA Submission, continued

Display 28. Non-Consistency Report of Value List Metadata for PARAMCD between ADaM Dataset and
Specification

Display 29. Non-Consistency Report of Sponsor Defined Controlled Terminology between ADaM Datasets
and Specifications

Display 30. Non-Consistency Report of CDISC or FDA defined Controlled Terminology Between ADaM
Datasets and Specifications

AUTOMATION 8: DETECTING EMPTY VARIABLES
When submitting clinical study data in electronic format to the FDA, it is preferable to submit as few as possible
unnecessary variables which have all missing values. These variables are called empty variables. CDISC introduced
a concept of core variable in an ADaM dataset and categorized a variable as Required, Conditionally Required,
and Permissible in an ADaM dataset. Applying the information of core variable categories to these empty variables
provides a better decision to handle these empty variables in an FDA submission. ADaM programming tool uses
macro %empty_var_checking to automatically detect and identify empty variables in ADaM datasets and thereby
ensures technical accuracy and submission quality. It can be performed at any stage of the programming cycle.

Macro %empty_var_checking calculates the number of observations with missing value for each variable. If the
count is equal to the number of the observations in the dataset, then the variable will be flagged as an empty variable.
A report will be generated for all empty variables which include error messages for specially-defined ADaM required
variables such as USUBJID, STUDYID, SEX, COUNTRY, and etc., warning messages for other ADaM required or

 8

An Innovative ADaM Programming Tool for FDA Submission, continued

conditionally required variables, and warning messages for ADaM permissible variables. The general decision-
making rules for handle empty variables for FDA submission are listed in Appendix 3.

The macro call of %empty_var_checking is as follows.

%macro empty_var_checking(cdisc=, specdir=,datadir=, domain=_ALL_);
Where,

CDISC: Specifies the data model as ADaM.
SPECDIR: Full Path of ADaM Programming Specifications.
DATADIR: Full Path of ADaM datasets.
DOMAIN: An ADaM domain. If assigned _ALL_ or blank all ADaM domains will be checked.

Display 31 shows a typical report of empty variables in ADaM datasets. Decision will be made by programmer
whether to drop, retain or update ADaM conversion programs for these variables.

Display 31. A Report of Empty Variables with Different CORE Attribute Categories in ADaM Datasets

If the final ADaM Datasets still contains empty variables, the rationale to keep these empty
variables in the ADaM datasets will be given in the reviewer guide for FDA reviewers. An
example of rationale to keep empty variables in ADAE dataset is shown in Display 32.

Display 32. The Rationale to Keep Empty Variables in ADaM Datasets – in Reviewer Guide

AUTOMATION 9: PREPARATION OF SAS SCRIPTS FOR FINAL RUN OF ALL ADAM
SPECIFICATIONS AND CREATION OF ADAM SPECIFICATIONS FOR ALL DOMAINS
FROM INDIVIDUAL ONES

At the final stage of ADaM programming we need two SAS programs for most updated specifications and metadata,
one for rerun of all ADaM specifications to update the metadata, and another for combining all individual ADaM
specifications into one Word file as ADaM programming specifications. Manually preparing the SAS programs for this
function is labor intensive and error prone. ADaM Programming Tool calls macro %get_adam_specs_final_calls to
automatically generate these SAS scripts. Successful execution of macro %get_adam_specs_final_calls generates
SAS code adam_specs_final_calls.sas which contains macro calls %get_adam_specs to convert individual
domain programming specification files to SAS datasets, and SAS code get_all_adam_specs.sas which combines
all individual ADaM specifications into one Word file. SAS code adam_specs_final_calls.sas and
get_all_adam_specs.sas will later be written into the batch file _runADaM.bat for batch submitting ADaM derivation
programs.

 9

An Innovative ADaM Programming Tool for FDA Submission, continued

The macro call of %get_adam_specs_final_calls is as follows:

%macro get_adam_specs_final_calls(indir=, dom_del=, xmldir=);
Where,

INDIR: Full Path of SAS dataset ALL_DOMAINS which contains all the ADaM domain information.
DOM_DEL: Name of ADaM domains to be excluded in the final run.
XMLDIR: Full Path of define.xml.

The SAS code adam_specs_final_calls.sas generated by macro %get_adam_specs_final_calls is shown below:

%include " E:\final\standard.sas";
**** Initiation: Set all_domains and all_vars datasets empty;
libname __in "E:\final\convert\analysis\specification\";
Data __in.all_domains; if 0; run;
Data __in.all_vars; if 0; run;

**** macro call for ADaM specs for ADSL;
%get_adam_specs(indir = %str(E:\final\convert\analysis\specification\),
 specsnm = ADSL.csv,
 outdir = %str(E:\final\convert\analysis\specification\),
 runorder = 1);

**** macro call for ADaM specs for ADAE;
%get_adam_specs(indir = %str(E:\final\convert\analysis\specification\),
 specsnm = ADAE.csv,
 outdir = %str(E:\final\convert\analysis\specification\),
 runorder = 2);
...

**** macro call for ADaM specs for ADVS;
%get_adam_specs(indir = %str(E:\final\convert\analysis\specification\),
 specsnm = ADVS.csv,
 outdir = %str(E:\final\convert\analysis\specification\),
 runorder = 9,

 generate_xml = Y,
 xmldir = %str(E:\final\define_xml\analysis\),
 final_run = Y);

The order of each individual ADaM specification macro call in the final run is decided by the variable RUNORDER in
ALL_DOMAINS dataset.

SAS code get_all_adam_specs.sas generated by macro %get_adam_specs_final_calls is shown below:

%include "E:\final\standard.sas";
**** macro call of WORDNTO1 to combine all ADaM specs into ONE;
%wordnto1(inputfn = %str(E:\final\convert\analysis\specification\ADSL.doc,
 E:\final\convert\analysis\specification\ADAE.doc,
 E:\final\convert\analysis\specification\ADCD.doc,
 E:\final\convert\analysis\specification\ADCM.doc,
 E:\final\convert\analysis\specification\ADEG.doc,
 E:\final\convert\analysis\specification\ADHC.doc,
 E:\final\convert\analysis\specification\ADHI.doc,
 E:\final\convert\analysis\specification\ADLB.doc,
 E:\final\convert\analysis\specification\ADVS.doc),
 Outputfn = E:\final\convert\analysis\specification\all_ADaM_specs.doc,
 deletein = No);

in which macro %wordnto1 is a macro developed in-house to combine multiple input word files into one Word file.

The order of each individual ADaM specification in the final ADaM specifications is decided by the variable
RUNORDER in ALL_DOMAINS dataset.

The combined ADaM specifications will be sent to statisticians for review. Once approved, it is considered to be the
final version and will serve as part of the reviewer guide to facilitate FDA reviewers to familiarize the submitted data.

 10

An Innovative ADaM Programming Tool for FDA Submission, continued

AUTOMATION 10: CREATION OF BATCH FILE FOR FINAL RUN

A batch file for batch submitting both ADaM specification programs and ADaM derivation programs is needed for the
final run. Creation of the batch file manually is time consuming and error prone. The Tool calls macro %get_batch_file
to automatically generate the batch file with a specified order defined by the variable RUNORDER in ALL_DOMAINS
dataset.

Successful execution of macro %get_batch_file generates batch file _runADaM.bat containing batch commands to
run SAS codes adam_specs_final_calls.sas to update the variable attributes and define.xml,
get_all_adam_specs.sas to combine all the individual specifications into one word document for reviewer guide,
ADaM derivation programs to update ADaM datasets, add_corevars.sas to add core variables to all ADaM
datasets, mk_xpt.sas to generate SAS transport files for define.xml, ctlist_checking_call.sas for final consistency
checking of controlled terminology and value level metadata, and empty_var_checking.sas for identifying and
detecting variables with all values missing in final ADaM datasets. The execution order of each ADaM derivation
programs is decided by the variable RUNORDER in ALL_DOMAINS dataset.

The macro call of %get_batch_file is as follows:

%macro get_batch_file(indir=, saslocat=);
Where,

INDIR: Full Path of SAS dataset ALL_DOMAINS and ADaM specification programs.
SASLOCAT: Full Path of ADaM conversion programs and output BAT file.

The batch file _runADaM.bat generated by macro %get_batch_file is shown as follows:

"C:\program files\sas\sas.exe" -sysin
"E:\final\convert\analysis\specification\adam_specs_final_calls.sas"
"C:\program files\sas\sas.exe" -sysin
"E:\final\convert\analysis\specification\get_all_adam_specs.sas"
"C:\program files\sas\sas.exe" -sysin
"E:\final\convert\analysis\conversion\ADSL.sas"
"C:\program files\sas\sas.exe" -sysin
"E:\final\convert\analysis\conversion\ADAE.sas"
"C:\program files\sas\sas.exe" -sysin
"E:\final\convert\analysis\conversion\ADCD.sas"
"C:\program files\sas\sas.exe" -sysin
"E:\final\convert\analysis\conversion\ADCM.sas"
"C:\program files\sas\sas.exe" -sysin
"E:\final\convert\analysis\conversion\ADEG.sas"
"C:\program files\sas\sas.exe" -sysin
"E:\final\convert\analysis\conversion\ADHC.sas"
"C:\program files\sas\sas.exe" -sysin
"E:\final\convert\analysis\conversion\ADHI.sas"
"C:\program files\sas\sas.exe" -sysin
"E:\final\convert\analysis\conversion\ADLB.sas"
"C:\program files\sas\sas.exe" -sysin
"E:\final\convert\analysis\conversion\ADVS.sas"
"C:\program files\sas\sas.exe" -sysin
"E:\final\convert\analysis\conversion\add_corevars.sas"
"C:\program files\sas\sas.exe" -sysin
"E:\final\convert\analysis\conversion\mk_xpt.sas"
"C:\program files\sas\sas.exe" -sysin
"E:\final\convert\analysis\conversion\ctlist_checking_call.sas"
"C:\program files\sas\sas.exe" -sysin
"E:\final\convert\analysis\conversion\empty_var_checking.sas"

 11

An Innovative ADaM Programming Tool for FDA Submission, continued

SUMMARY

Comparison of conventional methodology for ADaM programming and the innovative one introduced in this paper is
shown in Table 1.

Comparison Conventional Methodology New Methodology
1. Automation of
Compliance Checking
CDSIC ADaM
Programing
Specifications

No (1) DETECT ANY NONCOMPLIANCE with FDA submission
requirements, CDISC ADaM GUIDELINE, and Vertex Guideline for
writing specifications
(2) REPORT any findings
(3) ENSURE the resolution
(4) FINALIZE specifications earlier in programming cycle

2. Version Control of
Programming
Specifications

No Keep both word version and SAS dataset of programming specifications
in a study subfolder ‘\History’

3. Track Changes of
Programming
Specification

No (1) Report changes from any previous version of specifications
(2) Help developer and reviewers to trace back changes
(3) Serve as a tool for audit from post delivery changes

4. define.xml Generation (1) Timing: 2 stages (First CSR,
second define.xml)
(2) Trainings needed
(3) Additional resources/times to
prepare spreadsheets

(1) Same time as CSR
(2) A tool for statisticians to review metadata earlier
(3) Minimal training needed
(4) No extra resources/times
(5) Automatic generation per the macro user request

5. Generation of
Variable Attributes or
Any Changes of
Variable & Attributes
and Adding/Deleting
Variables

(1) Write an additional SAS
program to generate a template
insert it into data step in SAS
(2) Update both SAS template
program and specifications
(3) More time needed
(4) Error-prone, inconsistent

(1) Call a SAS macro to automatically generate a dataset by extracting
from the programming specifications.
(2) Call a SAS macro to automatically generate SAS macro variables to
be used in final data step of SAS program
(3) Update programming specifications ONLY
(4) Less time needed, cost-effective
(5) Ensure quality and consistency between data and specifications

6. Adding Core
Variables into ADaM
Data and define.xml for
Final Run

(1) Develop additional SAS
programs to populate core variables
into ADaM data and define.xml
(2) Error-prone and labor-intensive!

(1) Automatically generate define.xml with core variables. Automatically
generate a SAS program for populating core variables into ADaM
datasets
(2) Automation saves time and energy!

7. Automatic
Consistency Checking of
Controlled Terms
between ADaM Data
and Specifications

No (1) DETECT ANY MISMATCHES between ADaM datasets and
specifications for Controlled Terminology and Value Level Metadata at
any stage of programming cycle
(2) REPORT any findings
(3) FINALIZE specifications earlier in programming cycle

8. Automatic Detection
of Empty Variables in
ADaM Datasets

No (1) DETECT ANY EMPTY VARIABLES
(2) REPORT any findings with the information of core attributes
(3) DECISION MAKING AND FINALIZE specifications at early stage

9. Combination of All
ADaM Specifications
into One

Manually copy and paste Automatically combine all individual ADaM specifications into ONE
Word document

10. Batch File
Preparation for Final
Run of ADaM Datasets

Error-prone type-in or copy/paste Automatic generation with high quality

Table 1. Comparison of Conventional Methodology for ADaM Programming and the Innovative One

CONCLUSION

In summary, all by automation the new methodology streamlines the process of ADaM programming activity: from
compliance checking with CDISC and FDA submission requirements, version control, tracking the changes of the
specification, define.xml generation at any time point, combination of all ADaM specifications into one Word
document for reviewer guide, generation/update dataset label and variable attributes, adding or deleting variables in
ADaM programming, adding core variables into both all ADaM datasets and define.xml, consistency checking of
controlled terminology and value level metadata between ADaM specification and datasets, detection and
identification of empty variables in ADaM datasets, to batch file preparation for final run of ADaM datasets.

Since the ADaM dataset structure, define.xml, reviewer guide, and the batch files for final run are all generated from
the Word® specification documents, the methodology ensures the consistency in the entire study from ADaM

 12

An Innovative ADaM Programming Tool for FDA Submission, continued

Derivation to FDA Electronic Submission, and achieves the high quality of submission, the cost-effectiveness and the
efficiency. Moreover, consistency checking of controlled terminology and value level metadata, and empty variables
detection and handling further ensure the submission quality.

The ADaM Programming tool is easy to use and only needs minimal trainings. We hope the methodology can assist
you in saving your time and resources for clinical study reporting, especially for FDA submission.

REFERENCES

CDISC Analysis Data Model (ADaM) Team. “CDISC ADaM Validation Checks”, January 2011.
http://www.cdisc.org/adam

CDISC Analysis Data Model Team. “Analysis Data Model (ADaM) Implementation Guide”. December 2009.
http://www.cdisc.org/adam

Xiangchen (BoB) Cui, Min Chen. “Automatic Version Control and Track Changes of CDISC ADaM Specifications for
FDA Submission”, PharmaSUG, May 2012.

Xiangchen (BoB) Cui, Min Chen. “Automatic Consistency Checking of Controlled Terminology and Value Level
Metadata between ADaM Datasets and Define.xml”, SAS Global Forum, April 2012.

Xiangchen (BoB) Cui, Min Chen. “Automatic Detection and Identification of Variables with All Missing Values in
SDTM/ADaM Datasets for FDA Submission”, PharmaSUG, May 2012.

ACKNOWLEDGEMENTS

Appreciation goes to Kelly Blackburn, Stacy Surensky, Abdul Sankoh, Hang Pang, Hongyu Liu, and Tuanyu Wang for
their review and comments.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Xiangchen (Bob) Cui, Ph.D.
Enterprise: Vertex Pharmaceuticals, Inc.
Address: 88 Sidney Street
City, State ZIP: Cambridge MA, 02139
Work Phone: 617-444-6069
Fax: 617-460-8060
E-mail: xiangchen_cui@vrtx.com

Name: Min Chen, Ph.D.
Enterprise: Vertex Pharmaceuticals, Inc.
Address: 88 Sidney Street
City, State ZIP: Cambridge MA, 02139
Work Phone: 617-444-7134
Fax: 617-460-8060
E-mail: min_chen@vrtx.com

Name: Tathabbai Pakalapati
Enterprise: Vertex Pharmaceuticals, Inc.
Address: 88 Sidney Street
City, State ZIP: Cambridge MA, 02139
Work Phone: 617-444-7404
Fax: 617-460-8060
E-mail: Tathabbai_Pakalapati@vrtx.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

 13

http://www.cdisc.org/adam
http://www.cdisc.org/adam
mailto:xiangchen_cui@vrtx.com
mailto:min_chen@vrtx.com
mailto:Tathabbai_Pakalapati@vrtx.com

An Innovative ADaM Programming Tool for FDA Submission, continued

Appendix 1

Guideline for ADaM Programming Specifications and Compliance Checking Rules

1. The compliance rules for domain information are described in Table 2. They are not defined in CDISC ADaM
Validation Checks V1.1.

Checking
Number

Checking Requirement Key Words

1 Description 1. Non-Missing
2. length <= 40

2 Unique Identifier Variables Non-Missing
3 Structure Non-Missing
4 General Class Non-Missing Special Purpose,

Interventions, Events, and
Findings

Table 2. Domain Information Compliance Checking

2. Table 3 defines variable compliance rules. Some of these rules are also defined in OPENCDISC or CDISC
ADaM Validation Checks V1.1 in which case the Rule ID/Checking Number are mentioned in last two columns of
the tables.

Checking
Number

Checking Requirement Key Words Source Corresponding
Rule ID in
OpenCDISC

Checking
Number
in ADaM
Validation
Checks

5 Variable
Name

1. Length <= 8,
2. Start with a letter,
comprised of letters (A-Z),
underscore (_), and
numerals (0-9).

 CDISC
Request

AD1006 13
14
15

6 Variable
Label

Length <= 40 CDISC
Request

AD0016 16

7 Type Non-Missing Char
Num

CDISC
Request

8 Length Non-Missing for character
variables
Length <=200 for character
variables

 CDISC
Request

 17

9

Controlled
Terms or
Formats

If the Controlled Terms are
given:
1. Provide Controlled Term
Name with Colon (:),
followed by code lists
preceeded by ‘(#)’. e.g.,
YESNOF:
(1)Y
(2)N
Or AVISITN (AVISIT):
(1) 950 = Baseline
(2) 1001 = Day 1
(3) 1029 = Week 4
for a pair of code-decode
variables
2. If no Controlled Term
Name is provided, then
assume it the same as the
Variable Name.
3. If the Formats are given,
the following condition must

 1.Vertex
Request
2.Vertex
Request
3.CDISC
Request

For Datetime
Variables:
AD0041
AD0042
AD0043

For
Datetime
Variables:
41
42
43

 14

An Innovative ADaM Programming Tool for FDA Submission, continued

be satisfied:
a. if the Variable Name ends
with DT, then Variable Label
must contain ‘Date’, Type =
‘Num’, Role = ‘Timing’, and
format = SAS date format or
ISO8601 Format (Date9. in
Vertex Guideline)
b. if the Variable Name ends
with TM, then Variable Label
must contain ‘Time’, Type =
‘Num’, Role = ‘Timing’, and
format = SAS date format or
ISO8601 Format (IS8601dt.
in Vertex Guideline)
c. if the Variable Name ends
with DTM, then Variable
Label must contain
‘Date/Time’, Type = ‘Num’,
Role = ‘Timing’, and format
= SAS date format or
ISO8601 Format (time5. in
Vertex Guideline)

10 Origin Non-Missing CDISC
Request

11 Role Non Missing Identifier
Topic
Timing
Grouping
Qualifier
Result
Qualifier
Synonym
Qualifier
Record
Qualifier
Variable
Qualifier
Selection
Analysis

Vertex
Request

12 Comments Non-Missing for Origin =
Derived (at the FINAL run)

 Vertex
Request

13 Core Non-Missing Req
Cond
Perm

CDISC
Request

Table 3. Variable Information Compliance Checking

3. Table 4 defines general compliance rules. Among them, CDISC requested rules are also defined in OPENCDISC
or CDISC ADaM Validation Checks V1.1 in which case the Rule ID/Checking Number are mentioned in last two
columns of the tables.

Checking
Number

Rule Source Corresponding
Rule ID in
OpenCDISC

Checking
Number
in ADaM
Validation
Checks

14 All ADaM datasets must contain SDTM STUDYID and
USUBJID variables.

CDISC Request

88, 89

15 ADSL dataset must have the variable SUBJID, SITEID,
AGE, AGEU, SEX, RACE, ARM

CDISC Request

47, 49, 50,
51, 52, 55,
71

 15

An Innovative ADaM Programming Tool for FDA Submission, continued

16 ADSL must have at least one variable that ends in FL
as a population flag.

CDISC Request AD0048

48

17 All *DT, *TM, *DTM, and PARAMN variables must be
numeric

CDISC Request AD0058
AD0059
AD0060
AD0148

58
59
60

18 All variable name are defined in uppercase Vertex Request

19 All Unique Identifier Variables should be defined in
Variable Information Table

Vertex Request

20 If the numeric flag (*FN) is used, the character version
(*FL) is required

CDISC Request AD0007

7

21 The decoded variables defined in the ‘Controlled Terms
and Formats’ Column must exist in the specification.

Vertex Request

Table 4. General Rules for Compliance Checking

Appendix 2

Decision Making for Mismatches of Controlled Terminology and Value Level Metadata
between ADaM Specifications and Datasets

Scenario Condition Action Taken

1 Controlled Terms or Value Lists are not in the
Datasets but in the Specifications

Code lists are correctly defined in
specifications

No Action Needed

2 Controlled Terms or Value Lists are in the
Datasets but not in the Specifications

Specification does not list all the possible
values for the controlled terms or value lists

Add Missing
Controlled Terms or
Value Lists to
Specifications

Code Value or Value in datasets is not
consistent with Standard Controlled Terms

Revise ADaM
Datasets

3 Code Value for Sponsor-Defined Controlled
Terminology or Value for Value Level
Metadata PARAMCD are Differently Defined in
the Datasets from that in the Specifications

Code Value or Value in specifications is not
consistent with Standard Controlled Terms

Revise ADaM
Specifications

Decode Value or Value Label in datasets is not
consistent with Standard Controlled Terms

Revise ADaM
Datasets

4 Decoded Value for Sponsor-Defined
Controlled Terminology or Value Label for
Value Level Metadata PARAMCD are
Differently Defined in the Datasets from that in
the Specifications

Decode Value or Value Label in specifications
is not consistent with Standard Controlled
Terms

Revise ADaM
Specifications

5 Typo Occurs Either in ADaM Specifications or
in ADaM Derivation Programs

 Correct the typo

Table 5. Summary of 5 Scenarios of Mismatches between ADaM Datasets and Specifications

 16

An Innovative ADaM Programming Tool for FDA Submission, continued

 17

Appendix 3

Decision Making on the Empty Variables

Scenario Condition Action Taken

Any Program Errors Correct ADaM SAS Programs 1 Empty Specially-defined ADaM
Required Variables

No Program Errors Describe Rationale for Data
Oddities in Reviewer Guide

Any Program Errors Correct ADaM SAS Programs 2 Empty ADaM Required Variables
Other Than USUBJID, SITEID,
SEX, COUNTRY, and etc.

No Program Errors Keep the Variable for Submission,
and Document in Reviewer Guide

Any Program Errors Correct ADaM SAS Programs

No Program Errors,
Needed in Analysis

Keep the Variable for Submission,
and Document in Reviewer Guide

3 Empty ADaM Conditionally
Required Variables

No Program Errors,
Not Needed in Analysis

Drop the Variable

A Variable Derived or Not Specified in CRF Drop the Variable 4 Empty ADaM Permissible Variables

A Variable Collected or Needed in Analysis Keep the Variable for Submission,
and Document in Reviewer Guide

Table 6. Summary of 4 Scenarios of Empty ADaM Variables

	ABSTRACT
	INTRODUCTION
	AN INTRODUCTION OF MODULARIZED WORD® SPECIFICATION FOR ADAM
	AUTOMATION 1: COMPLIANCE CHECKING WITH FDA SUBMISSION REQUIREMENTS AND CDSIC ADAM PROGRAMMING REQUIREMENTS FOR MODULARIZED ADAM SPECIFICATIONS
	GUIDELINE FOR WRITING ADAM SPECIFICATION AND COMPLIANCE CHECKING RULES
	A MACRO TO RETRIEVE INFORMATION FROM SPECIFICATION AND COMPLIANCE CHECKING
	COMPARISON WITH OPENCDISC VALIDATION
	OUTPUT OF SAS DATASETS CONTAINING ADAM SPECIFICATION INFORMATION

	AUTOMATION 2: VERSION CONTROL
	AUTOMATION 3: TRACK CHANGES
	A MACRO FOR TRACKING CHANGES
	POST-DELIVERY CHANGES AND TRACKING CHANGES

	AUTOMATION 4: CREATE DEFINE.XML
	A MACRO FOR CREATING DEFINE.XML

	AUTOMATION 5: GENERATION OF GLOBAL MACRO VARIABLES OF METADATA FOR ADAM DERIVATION PROGRAMMING
	AUTOMATION 6: ADD CORE VARIABLES TO DEFINE.XML AND ADAM DATASETS AT FINAL RUN
	ADD CORE VARIABLES TO DEFINE.XML AT FINAL RUN
	ADD CORE VARIABLES TO ADAM DATASETS AT FINAL RUN

	AUTOMATION 7: CONSISTENCY CHECKING OF CONTROLLED TERMINOLOGY AND VALUE LEVEL METADATA BETWEEN ADAM DATASETS AND PROGRAMMING SPECIFICATION
	AUTOMATION 8: DETECTING EMPTY VARIABLES
	AUTOMATION 9: PREPARATION OF SAS SCRIPTS FOR FINAL RUN OF ALL ADAM SPECIFICATIONS AND CREATION OF ADAM SPECIFICATIONS FOR ALL DOMAINS FROM INDIVIDUAL ONES
	AUTOMATION 10: CREATION OF BATCH FILE FOR FINAL RUN
	SUMMARY
	CONCLUSION
	REFERENCES
	ACKNOWLEDGEMENTS
	CONTACT INFORMATION

