
1 

PharmaSUG 2012 - Paper DS16 

Common Misunderstandings about ADaM Implementation  
Nate Freimark, Theorem Clinical Research, King of Prussia, PA 

Susan Kenny, Amgen Inc, Thousand Oaks, CA 
Jack Shostak, Duke Clinical Research Institute, Durham, NC 
John Troxell, John Troxell Consulting LLC, Bridgewater, NJ 

ABSTRACT 
The December 2009 release of Version 1.0 of the Analysis Data Model Implementation Guide (ADaMIG), and its 
endorsement by the United States Food and Drug Administration (FDA), has lead to widespread industry 
implementation.  As sponsors attempt to implement the ADaM standard, there has been some variety in interpretation 
of aspects of the ADaMIG.  The authors describe some common difficulties with implementation of ADaM, and 
explain best practices.  Variables AVALC and DTYPE, the relationship between PARAM and AVAL, and other 
aspects of the ADaMIG are discussed.  In each case, the authors attempt to clarify the intent of the ADaMIG, in order 
to assist current implementers and to set the stage for improved clarity in the next version of the standard. 

Keywords:  ADaM, ADaMIG, CDISC, FDA  

INTRODUCTION 
This paper concerns implementation of the Analysis Data Model (ADaM) developed by the Clinical Data Interchange 
Standards Consortium (CDISC).  As such, it is assumed that readers are familiar with the ADaM standard and the 
CDISC Study Data Tabulation Model (SDTM).  In particular, it is assumed that the reader has studied the ADaM 
Implementation Guide and the Analysis Data Model.  CDISC standards are available at www.cdisc.org. 

The authors of this paper provide their opinions based on experience and involvement in the development of the 
ADaM standard. 

“HERE ARE MY ADAM DATASETS…” 
Prior to the CDISC ADaM model there were “analysis datasets” provided as part of a submission.  With the advent of 
the CDISC ADaM model we now have a specific type of analysis datasets called “ADaM” datasets.  ADaM datasets 
are a type of analysis dataset, but not all analysis datasets are necessarily ADaM datasets.  Some people are now 
referring to any and all analysis dataset submissions as “ADaM datasets” whether or not the ADaM model was 
followed and this is a problem.  If you provide analysis datasets to a reviewer and call them “ADaM datasets” but you 
did not follow the ADaM model this will lead to confusion and frustration on the part of the reviewing party.  In 
addition, using ‘ADaM” as an adjective to refer to any analysis dataset, regardless of design, reduces the meaning of 
the common goal of data standards.   

The Analysis Data Model v.2.1 defines two standard data structures, ADSL and the ADaM Basic Data Structure 
(BDS).  ADSL is the only member of the ADSL class of datasets.  All BDS datasets are members of the BDS class.  
In the near future the Analysis Data Model v.2.1 document and the ADaM Implementation Guide v1.0 will be 
augmented by final published versions of ADTTE and ADAE documents.   ADTTE is a special example of the BDS 
class of datasets.  ADAE will necessitate the creation of a new ADaM dataset class. 

ADaM recognizes that the currently published structures of BDS and ADSL do not yet encompass the universe of all 
statistical modeling needs and there may be scenarios where one would have to create other analysis datasets that 
do not fit any of the defined structures.  Are these datasets where the ADaM dataset metadata for “CLASS OF 
DATASET” is set to “OTHER” considered ADaM datasets?  These datasets do not fit the ADaM specified structures, 
but if these additional “OTHER” class datasets are submitted as part of an analysis dataset package including ADSL 
and BDS structured datasets, and the “OTHER” class datasets follow the fundamental principles described in the 
Analysis Data Model document, then referring to the whole package as an ADaM dataset submission seems 
reasonable.  As a reminder, the fundamental principles are: 

Analysis datasets and their associated metadata must:  

• facilitate clear and unambiguous communication  

• provide traceability between the analysis data and its source data (ultimately SDTM)  

• be readily useable by commonly available software tools  

 

http://www.cdisc.org/�


Common Misunderstandings about ADaM Implementation, continued 

 

2 

Analysis datasets must:  

• be accompanied by metadata 

• be analysis-ready 

The fact that a submission might contain some analysis datasets that do not comply with ADSL or BDS could make 
things somewhat confusing for the recipient. 

Here are some suggestions when referring to ADaM datasets verbally and within submissions: 

• If analysis datasets do not follow the ADaM fundamental principles, then do not call them “ADaM datasets.” 

• If a submission contains ADSL, and possibly BDS structured data, but also includes datasets of other structures 
then consider the following for those other datasets:  

1. Make sure the ADaM dataset metadata has “CLASS OF DATASET” set to “OTHER.”  

2. Consider explaining in the reviewer’s guide which analysis datasets are not ADaM-compliant and why.  

3. Consider using an analysis dataset naming convention that would make the “OTHER” non ADaM compliant 
datasets stand out.  For example, since compliant ADaM dataset names must start with “AD,” consider 
prefacing the “OTHER” analysis dataset names with some other prefix, such as perhaps ‘AX’ instead.   

SAME NAME, SAME VALUE, SAME METADATA 
A basic principle of data warehouses is that all aspects of a given variable should be the same regardless of where it 
appears in a database.  Changing either the metadata or the values of a variable, yet retaining the same variable 
name, violates this basic principle and adds to confusion and lack of traceability.  Since ADaM datasets utilize 
variables from multiple sources, this principle is important and must not be violated.  For example, if an ADaM dataset 
brings in the variable DM.AGE and leaves the variable name as ‘AGE’, then the values of this variable must remain 
the same.  It is not allowed to convert the values of DM.AGE to a different unit or to change the label from ‘Age’ to 
‘Age at Baseline’, for example.  If it is desired to make any changes in the values and/or the metadata, then the user 
must change the name of the variable and reference the original variable name in the metadata definition of the new 
variable.   

THE PURPOSE OF SCRDOM, SRCSEQ, SRCVAR 
Traceability is of high importance in the ADaM model and often one BDS dataset will use multiple SDTM domains as 
the source for analysis variables.  The ADaM variables SCRDOM, SRCSEQ, and SRCVAR were defined for 
situations where multiple SDTM domains and/or ADaM datasets were used to create one ADaM dataset.  For 
example, if a BDS dataset utilized data from both the LB and the AE domain to define AVAL, then all 3 variables are 
needed for traceability, as demonstrated in the following table:  

USUBJID PARAM AVALC SRCDOM SRCSEQ SRCVAR 
ZZZ101-01 My Event of Interest Hypercholesteremia AE 34 AEDECOD 
ZZZ101-01 My Event of Interest Grade 4 Liver Toxicity LB 21 LBTOXGR 

 

However, if an ADaM dataset uses just one SDTM domain and the source of information is just one SDTM variable, 
then it is not parsimonious to include SRCDOM and SRCVAR when all records would have the same value.  For 
example, the following table illustrates an overuse of these traceability variables: 

USUBJID PARAM AVAL SRCDOM SRCSEQ SRCVAR 
ZZZ101-01 Total Cholesterol (mg/dL) 210 LB 19 LBSTRESN 
ZZZ101-02 Total Cholesterol (mg/dL) 178 LB 21 LBSTRESN 

 

Keeping SRCDOM and SRCVAR in ADaM when all values are the same throughout the dataset provides no 
measureable benefit and should be avoided.  In this case, LBSEQ would be sufficient to provide the needed 
traceability, such as: 

USUBJID PARAM AVAL LBSEQ 
ZZZ101-01 Total Cholesterol (mg/dL) 210 19 
ZZZ101-02 Total Cholesterol (mg/dL) 178 21 



Common Misunderstandings about ADaM Implementation, continued 

 

3 

SHAPE-SHIFTING SDTM VARIABLES 
ADaM analysis datasets often require the concatenation of records from various SDTM domains. In order to save 
space when maintaining SDTM variables for traceability purposes, some people rename a set of variables from one 
SDTM domain to match the variable names from another SDTM in order to “save” a set of columns. This way all rows 
for the columns will be populated instead of one set of variables populated for one section of observations and 
another set of variables populated for the second section of observations. While this is a creative method to save 
space and may not be in technical violation of “SAME NAME, SAME VALUE” since these values never existed in 
SDTM in this form, it still breaks the traceability back to the SDTM domains that the data was sourced from. 

For example: 

SDTM EX 

USUBJID EXCAT EXTRT EXDOSE EXDOSU EXSTDTC 
ZZZ101-01 Rescue Medication Acetaminophen 500 mg 2012-03-01 
ZZZ101-02 Rescue Medication Acetaminophen 1000 mg 2012-03-15 

 

SDTM CM 

USUBJID CMCAT CMTRT CMDOSE CMDOSU CMSTDTC 
ZZZ101-01 Prior Medication Acetaminophen 500 Mg 2012-02-01 
ZZZ101-02 Prior Medication Acetaminophen 1000 Mg 2012-02-15 

 

ADaM ADCM Combining SDTM EX and CM 

USUBJID CMCAT CMTRT CMDOSE CMDOSU CMSTDTC 

ZZZ101-01 Prior Medication Acetaminophen 500 Mg 2012-02-01 
ZZZ101-01 Rescue Medication Acetaminophen 500 Mg 2012-03-01 
ZZZ101-02 Prior Medication Acetaminophen 1000 Mg 2012-02-15 
ZZZ101-02 Rescue Medication Acetaminophen 1000 Mg 2012-03-15 

 

SDTM VS 

USUBJID VSTESTCD VSTEST VSORRES VSORRESU VSDTC 
ZZZ101-01 SYSBP Systolic Blood Pressure 140 mmHg 2012-03-01 
ZZZ101-02 SYSBP Systolic Blood Pressure 130 mmHg 2012-03-15 

 

SDTM QS 

USUBJID QSCAT QSTESTCD QSTEST QSSTRESN QSDTC 
ZZZ101-01 ECOG ECOGPS ECOG Performance Status 1 2012-02-01 
ZZZ101-02 ECOG ECOGPS ECOG Performance Status 0 2012-02-15 

 

ADaM ADEFF Combining SDTM VS and QS (only a few of the traceability variables are shown) 

USUBJID VSTESTCD VSTEST VSORRES VSORRESU VSDTC 
ZZZ101-01 SYSBP Systolic Blood Pressure 140 mmHg 2012-03-01 
ZZZ101-02 SYSBP Systolic Blood Pressure 130 mmHg 2012-03-15 
ZZZ101-01 ECOGPS ECOG Performance Status 1  2012-02-01 
ZZZ101-02 ECOGPS ECOG Performance Status 0  2012-02-15 

 

As a default all columns should be kept instead of forcing data into inappropriate columns.   



Common Misunderstandings about ADaM Implementation, continued 

 

4 

DON’T AUTOMATICALLY COPY --STRESN INTO AVAL AND --STRESC INTO AVALC 
A very common misunderstanding by beginning implementers is to think of the ADaM Basic Data Structure as an 
SDTM findings domain structure with ADaM variable names.  They will note that ADaM BDS has numeric and 
character analysis value variables AVAL and AVALC, respectively, and they will think that all they have to do to 
populate these is to copy the seemingly equivalent pair of SDTM standardized result variables ---STRESN and           
--STRESC.  But this is a recipe for problems. 

The BDS does bear some superficial similarities to the SDTM Findings class structure.  Both are vertical.  Both also 
contain numeric and character data columns.  Indeed, often, the BDS is in fact the best structure for ADaM datasets 
supporting statistical analysis of data derived from SDTM findings domains, e.g. Vital Signs (VS) or Laboratory Test 
Results (LB).  Despite these surface similarities, however, there are many crucial differences.  Key among them is 
that the ADaM numeric and character analysis value variables AVAL and AVALC, respectively, are not equivalent to 
the SDTM numeric and character standardized result variables --STRESN and --STRESC. 

As background, SDTM findings domains function primarily as tabulations of collected study data, whereas ADaM 
datasets function primarily as containers for observed and derived data organized and ready for statistical analysis 
and review.  ADaM BDS datasets are very general in scope.  They may contain observed and derived data for a 
parameter equivalent to a particular test in a findings domain, but they can also contain data for an entirely derived 
parameter whose input is from several SDTM domains and classes and/or ADaM datasets, and which has no logical 
equivalent in any SDTM domain. 

However, in this section, we consider the much simpler case where an ADaM parameter represents data from a 
SDTM findings domain for a given combination of SDTM test and its qualifiers such as specimen type, location, 
position etc.  We will demonstrate that even in this seemingly simple situation, it is quite wrong simply to copy 
LBSTRESN into AVAL and LBSTRESC into AVALC. 

Numeric tests 

First, let’s consider the case where results are normally numeric.  We will use an example of white blood cell count 
tabulated in the SDTM LB domain. 

The focus in SDTM is to report the collected result as a character string in LBORRES, convert if possible the result 
into standard units and report the standardized character string in LBSTRESC, and then, if LBSTRESC is a number, 
also place the numeric result into LBSTRESN.  To make the example simple, we will assume the result was collected 
in standard units, so that there is no need to convert units between LBORRES and LBORRESC. 

In ADaM, for a numeric lab test, PARAM describes what is in AVAL, and AVAL contains a numeric analysis value.  
There is no need to populate the character results column AVALC.  So one might naturally conclude that to populate 
numeric analysis value AVAL, one copies from SDTM the numeric result LBSTRESN, which seems to work fine for 
this result:  

AVISIT PARAMCD LBORRES LBSTRESC LBSTRESN AVAL AVALC DTYPE 

Week 8 WBC 5300 5300 5300 5300   

 

Now let’s consider what happens when a second result is reported as less than the lower detectable limit of the test.  
For this test, the lower detectable limit is 4000.  In this case, the result might be reported by the lab as <4000.  Note 
that only the LBORRES and LBSTRESC columns are populated.  The LBSTRESN column is null because to 
populate it would be to guess (technically speaking, “impute”) what the numeric result should be.  SDTMIG version 
3.1.2 states that in this case, the rules for imputation should be specified in the Statistical Analysis Plan, and the 
value should only be imputed in the analysis dataset.  One common rule, shown here, is to impute the value as one 
half of the lower detectable limit; however this is by no means the only possible imputation method.  For this second 
record then, one is copying from neither LBSTRESN, nor LBSTRESC.  One is deriving the numeric analysis value 
from LBSTRESC. 

 

AVISIT PARAMCD LBORRES LBSTRESC LBSTRESN AVAL AVALC DTYPE 

Week 8 WBC 5300 5300 5300 5300   

Week 8 WBC <4000 <4000  2000   

 



Common Misunderstandings about ADaM Implementation, continued 

 

5 

Finally, the average result over Week 8 might be needed for input to a particular actual analysis.  To meet this need, 
another record is added as follows: 

AVISIT PARAMCD LBORRES LBSTRESC LBSTRESN AVAL AVALC DTYPE 

Week 8 WBC 5300 5300 5300 5300   

Week 8 WBC <4000 <4000  2000   

Week 8 WBC    3650  AVERAGE 

For this third record then, one is deriving the analysis value from two other records, which were in turn themselves 
derived from two different columns in SDTM.  

We hope the reader can see that even in such a simple example as a single numeric lab test, AVAL has no single 
direct equivalent in SDTM.  AVAL might be copied from LBSTRESN; or derived from LBSTRESC; or derived from 
AVAL on other records. 

Of course, as always, the WBC parameter value-level metadata for AVAL in this example should describe completely 
the derivation algorithm for AVAL, which has at least the three branches described. 

Character tests 

Next let’s turn our attention to character tests.  We use a simple example of answers to one question on a standard 
questionnaire.  As described in SDTMIG 3.1.2, data from a standard questionnaire may be handled by populating the 
collected answer text in QSORRES, the standardized score in QSSTRESC, and the score copied from QSSTRESC 
into QSSTRESN.  In ADaM, depending on the need, it will be useful to have the score in AVAL, and the question 
answer text in AVALC.  In this example, AVAL can be used to sort AVALC, and AVALC is a decode of AVAL.  Both 
are helpful for different purposes.  They are a one-to-one map within the parameter, as is required by ADaMIG 1.0 
when both are populated for a parameter. 

Note that AVAL came from QSSTRESN.  However, AVALC did not come from QSSTRESC, but rather from 
QSORRES.  So this is another example why it is not correct merely to copy --STRESN into AVAL and –STRESC into 
AVALC. 

AVISIT PARAMCD QSORRES QSSTRESC QSSTRESN AVAL AVALC DTYPE 

Week 12 QS1 VERY BAD 1 1 1 VERY BAD  

Week 12 QS1 BAD 2 2 2 BAD  

Week 12 QS1 GOOD 4 4 4 GOOD  

 

Now what happens when for input to one analysis, the average over Week 12 is needed?  Of course, for this fourth 
record, which is derived as denoted by DTYPE, AVAL is an average of AVAL from other ADaM records, and is not a 
copy of QSSTRESN.   

AVISIT PARAMCD QSORRES QSSTRESC QSSTRESN AVAL AVALC DTYPE 

Week 12 QS1 VERY BAD 1 1 1 VERY BAD  

Week 12 QS1 BAD 2 2 2 BAD  

Week 12 QS1 GOOD 4 4 4 GOOD  

Week 12 QS1    2.333  AVERAGE 

 

Also note that the one-to-one map between AVAL and AVALC now only holds on the records for the parameter on 
which both AVAL and AVALC are populated.  So technically speaking, this example now violates ADaMIG 1.0, 
because AVAL and AVALC are no longer a one-to-one map within the parameter (considering that for other subjects 
and timepoints, null AVALC will map to values of AVALC other than 2.333). 

Whether the restriction in the ADaMIG ought to be changed to accept this kind of situation is a subject for debate 
within the ADaM team, and potentially a matter for clarification in the next version of the ADaM IG.  The authors point 
out that the ADaM Validation Checks version 1.1 does correctly state that the one-to-one mapping requirement 
applies within each PARAMCD separately, rather than across the entire dataset.  However, the first version of the 
checks document omitted the within PARAMCD requirement.  There are several reasons why one might be receiving 



Common Misunderstandings about ADaM Implementation, continued 

 

6 

validation errors related to this check from a validation tool such as OpenCDISC. It could be a tool problem, it could 
be a validation checks version problem, and it could be that the knowledgeable implementer chooses to deviate as in 
the above QS example.  However, it also could be that the implementer is in the habit of using AVALC as a dumping 
ground for --STRESC even when not appropriate.  As we have seen here, this habit is potentially problematic and 
ought to be re-examined.  In summary, we hope that readers agree that it is quite wrong blindly just to copy                
--STRESN into AVAL, and --STRESC into AVALC.  How and when to populate AVAL and AVALC on a given record 
should be the subject of careful consideration.  The proper derivation algorithms should be based on statistical and 
clinical knowledge about each parameter and its analyses.  The full detail about these algorithms should be reflected 
in programming specifications and ADaM metadata.   

CONSISTENCY CONSIDERATIONS 
Throughout the ADaM Implementation Guide there are requirements for consistency between variables.  For 
example, if you create a numeric version of RACE in ADSL called RACEN you are supposed to ensure that the 
relationship of RACE to RACEN is a one-to-one mapping.  This one-to-one mapping requirement also exists for 
TRTP/TRTPN, SHIFTy/SHIFTyN, AVISIT/AVISITN, ATPT/ATPTN, PARCATy/PARCATyN, as well as for 
PARAM/PARAMCD/PARAMN and other variables.  For some of these variables such as AVISITN, ATPTN, and 
AVALC there is a stated requirement that the one-to-one relationship is within parameter.  However, for others the 
one-to-one relationship is defined with less precision. 

When implementing ADaM you need to take scope into consideration when defining your ADaM variables.  For 
example, when you define PARAM and PARAMCD those are supposed to be one-to-one.  How far removed do you 
take that relationship?  Is it one-to-one for a particular dataset only, or for an entire study, or for a development 
program, or for a company, or for the industry?  The further up the ladder that you can make that one-to-one 
relationship hold the better you will likely be.  

ALIGNMENT OF APERIOD AND TRTXXP VARIABLES 
ADSL allows for the definition of multiple treatment variables of the variable name format of ‘TRTxxP’ and date 
variables associated with this treatment, such as TRxxSDT or TRxxEDT.  In subsequent BDS datasets, ADaM 
provides the numeric variable APERIOD that is used to describe a period of time during which the values within a row 
or a group of rows pertain.  A constraint of the ADaM model is that for every xx value of APERIOD that is defined, 
there must be a corresponding TRTxxP variable and this constraint is also reflected in the ADaM compliance checks.  
For example, if a BDS dataset has APERIOD=5, then there must be a variable in ADSL defined as TRT05P.   

Note that the ADaM model does NOT require that TRT05P be used for the analysis of rows where APERIOD=5 since 
the particular ADaM treatment variable used to summarize records where APERIOD=5 is trial-specific and sponsor-
defined.  In most analysis situations, TRT05P would be the treatment variable to use for the analysis of APERIOD=5 
record but it is not an ADaM requirement.  Other treatment variables, such as TRTP or TRT04A may be used for 
specified analyses.  An example is a situation where TRT04A captures the last double blind treatment received and is 
used for the analysis of open label records with APERIOD=5.  

INDICATOR VARIABLES 
Indicator variables can be added to ADSL or BDS structure datasets so long as the ADaM naming conventions are 
followed.  [See “General Flag Variable Conventions” in section 3 of the ADaM Implementation Guide.]  Unfortunately 
sometimes the ADaM naming conventions in section 3 of the ADaM Implementation Guide are forgotten. 

For example, let us say that you wanted to add a “Modified Intent-to-Treat” indicator to your ADSL dataset.  You 
might add a variable called MITT for that, but then you are not following ADaM naming conventions.  A more proper 
addition might result in the  following ADSL dataset metadata for MITTFL:   

 Variable Name Variable Label Type Codelist / Controlled Terms 
MITTFL Modified ITT Population Flag Char Y, N 

Remember also that null values are not allowed for any subject level population flag variable.   

 

 

  



Common Misunderstandings about ADaM Implementation, continued 

 

7 

Conversely, sometimes people get a bit overzealous in assigning new indicator flag variables to ADaM datasets and 
they put things in indicator variables that are not indicators.  For example, let us say that you want to flag a clinical 
response as significant or not.  So, you create a BDS flag variable called SIGFL to capture that clinical significance 
like this: 

 

USUBJID PARAM AVAL SIGFL 
ZZZ101-01 Clinical Measure 13.3 Y 

 

In this example, SIGFL=’Y’ indicates clinical significance.  This assessment of clinical significance is not so much an 
indicator variable as it is a categorization of AVAL.  Therefore you might want an AVALCAT1 variable here instead of 
an indicator variable.  Using an AVALCAT1 variable might look something like this in the BDS dataset: 

USUBJID PARAM AVAL AVALCAT1 
ZZZ101-01 Clinical Measure 13.3 Significant 

Here the ADaM variable metadata for AVALCAT1 would describe the categorization of AVAL.  

ADaM gives you the flexibility to add indicator flag variables to your ADSL and BDS data structures to define new 
analysis populations.  The key is to make sure that you adhere to the indicator naming conventions and try not to put 
things into indicator variables that belong somewhere else in ADaM such as AVALCAT, SHIFTy, or PARCATy for 
instance. 

CRITY* VARIABLES ARE NOT GENERAL PURPOSE FLAGS 
Version 1.0 of the ADaMIG does not clearly state the scope of criteria variables CRITy, CRITyFL and CRITyFN.  
These variables are used to indicate when criteria are satisfied about analysis values, e.g. AVAL, CHG, PCHG and 
other functions of AVAL and BASE (or AVALC and BASEC).  They should not be used for flagging other unrelated 
kinds of things, like analysis period.  In those other cases, other kinds of flags should be used. 

The table below shows an incorrect use of the CRITy* variables to indicate whether data is pretreatment or not.  This 
criterion is solely a function of ADY and has nothing to do with AVAL or AVALC.  Therefore it is an inappropriate use 
of the criterion variables. 

ADY CRIT1 CRIT1FL 
-28 Pre-Treatment Y 
-14 Pre-Treatment Y 
1 Pre-Treatment  
14 Pre-Treatment  
28 Pre-Treatment  

 

This table shows how this situation can be correctly handled using a flag variable and not the CRITy* variables.  One 
is not restricted to the flags specified in the ADaMIG.  Where necessary, other flags can be created. 

ADY PREFL 
-28 Y 
-14 Y 
1  
14  
28  

CAN I JUST ADD ANOTHER COLUMN TO MY BDS DATASET? 
There are many kinds of columns that can be added freely to BDS datasets, for example, timing variables, population 
and other flags, model covariates and treatment variables, and variables useful for traceability or supportive of 
review.  However, when it comes to analysis values, which are generally speaking the kinds of “dependent variable” 
data that appear on the left hand side of a MODEL statement, like AVAL, CHG, etc., there are rules.   Section 4.2 of 
the ADaM Implementation Guide describes these rules.   For analysis values, the sole rule that permits adding a new 



Common Misunderstandings about ADaM Implementation, continued 

 

8 

column is, “Rule 1. A parameter-invariant function of AVAL and BASE on the same row that does not involve a 
transform of BASE should be added as a new column.”  So in general, you will more likely than not be adding new 
rows or PARAMs to your BDS datasets instead of new variables.  The problem is that inherently people like to add 
new columns to their BDS datasets. 

For example, let us say that you wanted to add a cumulative pain score to your BDS analysis dataset and call that 
variable CSCORE like this: 

USUBJID AVISIT PARAM AVAL CSCORE 
ZZZ101-01 Week 1 Pain Score 7 7 
ZZZ101-01 Week 2 Pain Score 3 10 
ZZZ101-01 Week 3 Pain Score 2 12 

 

Adding that CSCORE variable seems intuitive enough and people are doing it, but it is in violation of Rule 4 of the 
Implementation Guide that states, “A function of multiple rows within a parameter should be added as a new 
parameter.”  So you would need to add the cumulative score like this in the BDS structure to be ADaM compliant: 

USUBJID AVISIT PARAM AVAL 
ZZZ101-01 Week 1 Pain Score 7 
ZZZ101-01 Week 2 Pain Score 3 
ZZZ101-01 Week 3 Pain Score 2 
ZZZ101-01 Week 1 Cumulative Pain Score 7 
ZZZ101-01 Week 2 Cumulative Pain Score 10 

ZZZ101-01 Week 3 Cumulative Pain Score 12 

 

When you are going to add information either with new rows or columns in your BDS analysis datasets it is important 
to review the six rules and the many examples provided in section 4.2 of the ADaM Implementation Guide.  You will 
find that more often than not that you need to add new rows instead of columns to your BDS structure datasets, so 
fight the urge to automatically add new columns.  Adherence to these rules maintains compliance; without the rules, 
we would have no standard. 

THE PURPOSE OF DTYPE 
It is not uncommon in statistical analysis to impute missing observations for a subject for a given parameter.  For 
example, suppose the primary efficacy measure is Forced Expiratory Volume (FEV) observed at the last clinical visit 
yet a subject discontinued the study prior to the last visit.  In this case, there are various ways to estimate what the 
subject’s FEV measure might have been at this visit and by estimating this value, this subject can then be included in 
analyses of data from this last visit.  Often the statistical analysis plan will specify the summary of the data both ‘as 
observed’, which uses only those values that are truly collected data and ‘observed and imputed’, which uses both 
observed and imputed values.  Therefore, a way to distinguish which observations were observed and which ones 
were imputed is important.  Indeed, in the first CDISC/FDA pilot project, the FDA indicated that it is very helpful for 
them to identify observations that were collected on the CRF versus those that were imputed.    

In the ADaM BDS model, the variable DTYPE was defined to be used in this situation.  It is to be used to identify 
records within a given parameter that have been derived and the value of DTYPE indicates the method used for 
derivation.  The metadata for DTYPE will give further information about the details of any algorithm or statistical 
method used to derive these imputed values.  Using the presence or absence of DTYPE will allow a user to 
summarize the data in different ways.  For example, to summarize ‘data as observed’ records, then the select 
statement “WHERE PARAMCD=’FEV’ and DTYPE=’ ‘“ will return just the records with observed values of FEV.  
Alternatively, using the select statement “WHERE PARAMCD=’FEV’” will return all records, both collected and 
imputed.   

It is important to use DTYPE appropriately for identifying derived records within a parameter that represents data that 
could have been collected. If a parameter is wholly derived, such as a Time to Event parameter, then it is a 
misapplication to populate DTYPE because, by definition, all records are derived, and not derived from other records 
within the same parameter.  Using PARAMTYP=’DERIVED’ in this case is an option if the user wants to identify 
parameters that are derived versus observed.   



Common Misunderstandings about ADaM Implementation, continued 

 

9 

TIME TO EVENT IN THE BASIC DATA STRUCTURE 
It is expected that by the time this paper is presented, “The ADaM Basic Data Structure for Time-to-Event Analyses” 
appendix to the ADaM Implementation Guide will have been published.  That document is a comprehensive guide 
that will help you to implement time to event analyses using the ADaM Basic Data Structure.  In the meantime we 
would like to show a case where the implementation of time to event analysis in the Basic Data Structure somewhat 
stretches the intent or design of the Basic Data Structure. 

Let us say that you want to do a time to event analysis where your event of interest is indication of liver damage 
which is indicated either by an adverse event of jaundice or an elevated ALT or AST lab result.  If the event did not 
occur, then you want to censor the subject at end of study or last follow-up.  Here is an example of how we saw this 
modeled in the basic data structure for one patient.  CNSR=0 when the event occurs and CNSR=1 when it does not. 

PARAMCD ADT AVAL CNSR EVNTDESC DTYPE SRCDOM SRCVAR SRCSEQ 

AEDT 06JUN2009 65 0 Jaundice  AE AESEQ 235 

LBDT 19JUL2010 128 0 Elevated AST  LB LBSEQ 1001 

LIVERDAM 06JUN2009 65 0 Jaundice or 
Elevated AST 

TTE    

 

There are a few problems with this implementation of the Basic Data Structure. 

• PARAM is supposed to describe the contents of AVAL.  Admittedly, PARAMCD has only 8 characters; however, 
AEDT or LBDT above makes it sound like AVAL is a date, whereas actually it appears to be a relative day.  If 
these rows are included for traceability or analysis, perhaps consideration could be given to choosing apt 
PARAM and PARAMCD names that describe AVAL well.  Likely candidates for PARAM/PARAMCD could be 
‘Time to Jaundice (days)’/TTJAUND and “Time to Elevated AST (days)’/TTEAST.  

• The DTYPE variable is intended to indicate rows where an AVAL is derived within a given PARAM.  Since 
LIVERDAM is an entirely derived parameter setting DTYPE=TTE is not informative and is a misuse of DTYPE.  
The purpose of DTYPE is to both distinguish which records were observed versus those that were derived from 
other records within the parameter and to indicate the method of derivation. 

• EVNTDESC should be “Jaundice” and not “Jaundice or Elevated AST” for the LIVERDAM parameter since that 
is the event that caused the record to be generated. 

• It appears that for PARAMCD values of “AEDT” and “LBDT” that these records were included as traceability 
records to help the reviewer see where the event dates come from for PARAMCD of “LIVERDAM”.  However, 
unless those records are themselves being used as survival analysis endpoints, they shouldn’t have CNSR and 
EVNTDESC values populated for them.  Also, if you were going to try and include the event dates in the Basic 
Data Structure you also would want the censor date as well for completeness and not just the records where a 
triggering event happens.  In the above case that would mean including the end of study date or date of last 
follow-up. 

The following table shows how we would represent the above data in the Basic Data Structure: 

PARAMCD ADT AVAL CNSR EVNTDESC DTYPE SRCDOM SRCVAR SRCSEQ 

LIVERDAM 06JUN2009 65 0 Jaundice   AE AESEQ 235 

 

Here you can see that the traceability is maintained by referencing the jaundice adverse event back to the AE domain 
via the use of SRCDOM, SRCVAR, and SRCSEQ variables.  Also note that DTYPE is null here as LIVERDAM is an 
entirely derived parameter.  In general, time to event datasets do not need the DTYPE column because it rarely 
occurs that time to event records are derived from other records within the same parameter.   

CONCLUSIONS 
The authors hope that this paper proves useful to other fellow implementers of the ADaM Implementation Guide, and 
look forward to further experience sharing, knowledge exchange, and discussions about practical issues among the 
community of users, implementers, and developers. Such discussion can only help in efforts to improve 
implementation practice, the clarity of the Implementation Guide, and the standard itself. 



Common Misunderstandings about ADaM Implementation, continued 

 

10 

CONTACT INFORMATION  
Your comments and questions are valued and encouraged. Contact the authors at: 
 
Nate Freimark 
nate.freimark@TheoremClinical.com 
 
Susan Kenny 
susan.kenny@amgen.com 
 
Jack Shostak 
jack.shostak@duke.edu 
 
John Troxell 
jktroxell@gmail.com 
 
 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration.  

Other brand and product names are trademarks of their respective companies.  

mailto:nate.freimark@TheoremClinical.com�
mailto:susan.kenny@amgen.com�
mailto:jack.shostak@duke.edu�
mailto:jktroxell@gmail.com�

	Abstract
	Introduction
	“Here are my adam datasets…”
	same name, same value, same metadata
	The purpose of scrdom, srcseq, srcvar
	SHAPE-SHIFTING SDTM VARIABLES
	DON’T Automatically COPY --STRESN into AVAL and --STRESC into AVALC
	Numeric tests
	Character tests

	Consistency considerations
	alignment of aperiod and trtXXP variables
	indicator variables
	CRITy* VARIABLES ARE NOT GENERAL PURPOSE FLAGS
	Can I just add another column to my bds dataset?
	the purpose of dtype
	time to event in the basic data structure
	conclusions
	Contact Information

