
PharmaSUG 2012 - Paper HO01
Multiple Techniques for Scoring Quality of Life Questionnaires

Brandon Welch, Rho®, Inc., Chapel Hill, NC
Seungshin Rhee, Rho, Inc., Chapel Hill, NC

ABSTRACT
In the clinical trials computing environment, data sets come in a variety of shapes and sizes. From laboratory data to
electrocardiogram (ECG) measurements, transforming raw data to analysis-ready SAS® data sets is often
complicated. New challenges arise when we receive data collected from quality of life (QOL) questionnaires. With
these data we often compute scores that measure underlying scales – such as mental or social well-being. There are
many different types of questionnaires, and it is advantageous to have an arsenal of programming tools when
calculating the appropriate scores. In this article, we present a mock questionnaire and common techniques to
achieve appropriate calculations. Depending on the input data structure, we illustrate how to calculate scores using
various techniques including ARRAY processing, PROC SQL, and simple SAS functions. The techniques we present
offer a good overview of basic data step programming and SAS procedures that will educate SAS users at all levels.

INTRODUCTION
Analyzing QOL questionnaire data is commonplace in clinical trials research. The results give investigators a
quantitative assessment of a patient’s well-being on multiple dimensions. We estimate these dimensions or scales by
performing calculations on the survey response items, and each questionnaire is designed with particular rules for
scoring. The variation across each questionnaire and the methods for arriving at the final scores offers a unique
challenge for SAS programmers.
In this article, we present common ways of computing scores from a mock questionnaire. These techniques
developed from our experience in computing scores on some of the more popular QOL questionnaires. In our
experience, it isn’t the actually scoring that provides the challenge, but the actual imputation methods outlined for
each questionnaire. Therefore we show how to perform a mean imputation for missing values, which is a standard
imputation method across questionnaires. Depending on the input data structure, we illustrate how to compute a
PHYSICAL, MENTAL, and TOTAL score using a variety of SAS programming techniques depending on the input
data structure. In the first scenario we demonstrate techniques for tackling a vertically structured data set. We use
PROC SQL to reverse score, find the number of missing values, and calculate the mean response on the non-
missing values. We complete the calculations in a data step in which we impute and calculate the PHYSICAL,
MENTAL, and TOTAL scores. In the second scenario we illustrate how to arrive at the same calculations when the
input data set is horizontal using ARRAY processing and SAS functions.

MOCK QUESTIONNAIRE
Below is the Welch-Rhee Headache Indicator (WRHIND), which is a mock questionnaire that captures data
measuring physical and mental well-being. The physical and mental scores are calculated by summing across items
1, 4, 6, 8, 10 and 2, 3, 5, 7, 9 respectively. A mean imputation is performed prior to summation if the number of non-
missing values is greater than two in each scale. Higher numbers indicate poor QOL, and items 3, 8, and 10 are
reverse scored to keep the ordinal direction the same as the remaining items.

Question 1 = Strongly
Disagree

2 = Disagree

3 = Neutral 4 = Agree 5 = Strongly
Agree

1. My headaches have gotten worse
with age.

2. My headaches interfere with my
abilities to socialize with others.

3. I tend to worry less because of my
reduced number of headaches.

4. My headaches are more severe in
the mornings.

5. I’m less willing to speak in groups
because of my headaches.

1

6. My allergies adversely affect my
headaches.

7. Life seems more difficult because of
my headaches.

8. The frequency of headaches decline
the more I exercise.

9. My headaches affect my self-
confidence.

10. Prescription pain medication
relieves my headaches.

Table 1. Mock headache questionnaire

COMPUTING THE SCORES

VERTICAL STRUCTURE

IMPUTE BY MEAN SUBSTITUTION
In this scenario we receive data in a vertical structure. Below is a snapshot (n = 10) of the SAS data set (WRHIND)
keyed from the WRHIND:

Questionnaire
Item

Subject
ID

Treatment
Group

(Numeric)
Questionnaire

Response

P1 001850 2 2

M2 001850 2 .

M3 001850 2 2

P4 001850 2 1

M5 001850 2 3

P6 001850 2 3

M7 001850 2 4

P8 001850 2 2

M9 001850 2 4

P10 001850 2 3

Output 1. Vertically structured data set

For each questionnaire item, P denotes those questions related to physical attributes; whereas, M denotes those for
mental.

The first step prior to summation is to reverse score items 3, 8, and 10 and calculate the mean on the non-missing
values per scale. Here we use PROC SQL to calculate the number of missing values, reverse score, and mean of
coded values per subject ID and type of scale:

 *IMPUTATION METHOD 1 - CALCULATE MEAN OF RECODED VARIABLE, IMPUTE, THEN SUM;
 PROC SQL noprint;
 create table getmean as
 select *,

2

 /*CREATE GROUPING FOR TWO CONSTRUCTS*/
 case
 when index(quesc,'P') then 'PHYS'
 when index(quesc,'M') then 'MENT'
 else ''
 end
 as type,

 /*GET NUMBER OF MISSINGS PER CONSTRUCT*/
 nmiss(respn) as missresp,

 /*REVERSE SCORE ITEMS*/
 case
 when quesc in ('P8' 'P10' 'M3') then 6 - respn
 else respn
 end
 as r_respn,

 /*GET MEAN OF RECODED VARIABLE*/
 mean(calculated r_respn) as meanresp

 from wrhind
 group by id, type
 order by id, type
 ;
 QUIT;

OUTPUT
Here is a snapshot of the resulting output data set (n = 5) from PROC SQL:

Questionnaire
Item

Subject
ID

Treatment
Group

(Numeric)
Questionnaire

Response Scale

Number
of

Missings

Reversed
Scored

Item
Mean

Response

M2 001850 2 MENT 1 3.75

M3 001850 2 2 MENT 1 4 3.75

M5 001850 2 3 MENT 1 3 3.75

M7 001850 2 4 MENT 1 4 3.75

M9 001850 2 4 MENT 1 4 3.75

Output 2. Output from PROC SQL

Now we have all the necessary pieces to calculate the PHYSICAL, MENTAL and TOTAL scores. We do this in a data
step by using RETAIN and summation.

 DATA vscore1;
 set getmean;
 by id type;

 retain phys ment;

3

 *IF NUMBER OF MISSINGS < 3 THEN IMPUTE;
 if missing(r_respn) and missresp < 3 then r_respn = meanresp;
 else if missing(r_respn) and missresp >= 3 then r_respn = .;

 if first.id then do;
 phys = .;
 ment = .;
 end;

 if index(quesc,'P') and not missing(r_respn) then phys = sum(phys, r_respn);
 if index(quesc,'M') and not missing(r_respn) then ment = sum(ment, r_respn);

 if last.id then do;
 if nmiss(phys, ment) = 0 then total = sum(of phys, ment);
 output;
 end;

 keep id phys ment total trtn;

 RUN;

OUTPUT

First five patients:

Subject
ID

Treatment
Group

(Numeric)
Physical

Score
Mental
Score

Total
Score

001651 1 13.75 10.00 23.75

001850 2 13.00 18.75 31.75

002240 1 15.00 14.00 29.00

002244 1 13.00 5.00 18.00

002746 1 15.00 15.00 30.00

Output 3. Output for vertical data set summary

PROC MEANS or PROC SUMMARY similarly calculates the means on the non-missing values prior to the data step.
Consequently we merge on to VSCORE1.

 PROC MEANS data = premeans noprint;
 var respn;
 class id type;
 types id*type;
 output out = getmean_ n = n
 mean = mean
 nmiss = nmiss;
 RUN;

We prefer PROC SQL because the PROC MEANS/SUMMARY method requires we create the TYPE variable and
perform the reverse scoring in a previous data step. PROC SQL allows us to calculate all in one step.

4

IMPUTE BY ADJUSTING COMPUTED SCORE
In the above example we compute the mean of the non-missing values and substitute its value for the missing values.
Alternatively we arrive at the same summation by modifying the resulting computed score. This allows us to
supersede using a SAS PROC to compute the mean.

Let m = number of missing values and n = number of non-missing values:

ܧܴܱܥܵ ൌ ሺݔଵ ൅ ଶݔ ൅ ڮ ൅ ௡ሻݔ ൅ ሺ݉ሻ ሺ௫భା௫మାڮା௫೙

௡
ሻ .

This (above) is the mean substitution method and equates to

ܧܴܱܥܵ ൌ ௡ሺ௫భା௫మାڮା௫೙ሻ
௡

൅ ሺ݉ሻ ሺ௫భା௫మାڮା௫೙

௡
ሻ.

Substituting ݔ we have

൅ ܧܴܱܥܵݔ݉ ൌ ݔ݊

ܧܴܱܥܵ ൌ ሺ௡ା௠ሻ
௡

Simple algebra yields
ሺݔଵ ൅ ଶݔ ൅ ڮ ൅ ௡ሻݔ

௡

.

Therefore, calculating the mean value and imputing the missing values is equivalent to adding up the non-missing
values and multiplying by ሺ௡ା௠ሻ. For example, suppose one patient has values 1, ., 3, ., 5. Using the mean imputation
method we would calculate the mean of the non-missing values (ݔ ൌ 3) and SCORE = 1 + 3 + 3 + 3 + 5 = (1+3+5) +
2(3) = 15. Using the derivation above we use

ܧܴܱܥܵ ൌ
3 ൅ 2

3
ሺ1 ൅ 3 ൅ 5ሻ ൌ

5
3

ሺ9ሻ ൌ 15

e illustrate this approach in the following data step:

 *IMPUTATION METHOD 2 - ADJUST SUMMATION AT THE END;

 retain phys ment p_nonmis m_nonmis p_miss m_miss;

 if first.id then do;
 = .;

 if index(quesc,'P') then do;

 *REVERSE SCORE;
spn) and quesc in ('P8' 'P10') then r_respp = 6 - respn;

 if not missing(r_respp) then do;

, r_respp);

_miss + 1;

W

 PROC SORT data = wrhind; by id;
 DATA vscore2;
 set wrhind;
 by id;

 phys = .; ment
 p_nonmis = 0; m_nonmis = 0;
 p_miss = 0; m_miss = 0;
 end;

 if not missing(re
 else r_respp = respn;

 p_nonmis + 1;
 phys = sum(phys
 end;
 else p

5

 end;

 else if index(quesc,'M') then do;

 *REVERSE SCORE;
spn) and quesc in ('M3') then r_respm = 6 - respn;

 if not missing(r_respm) then do;

, r_respm);

_miss + 1;

 end;

 if last.id then do;

 *ADJUST IF NON-MISSINGS > 2;
p_nonmis + p_miss) / p_nonmis) * phys;

 if nmiss(phys, ment) = 0 then total = sum(of phys, ment);

 keep id phys ment total trtn;

 RUN;

UTPUT

rst five patients

 if not missing(re
 else r_respm = respn;

 m_nonmis + 1;
 ment = sum(ment
 end;
 else m

 if p_nonmis > 2 then phys = ((
 if m_nonmis > 2 then ment = ((m_nonmis + m_miss) / m_nonmis) * ment;

 output;
 end;

O

Fi

Treatment
Subject
ID

Group Physical Mental Total
(Numeric) Score Score Score

001651 1 13.75 10.00 23.75

001850 2 13.00 18.75 31.75

002240 1 15.00 14.00 29.00

002244 1 13.00 5.00 18.00

002746 1 15.00 15.00 30.00

Output 4. Output for vertical data se ummary (adjusted score method)

ORIZONTAL STRUCTURE

RRAY PROCESSING

ow suppose we receive our input data set in the following structure (first five patients)

t s

H

A

N

6

Treatment
Group

Subject ID (Numeric) P1 P4 P6 P8 P10 M2 M3 M5 M7 M9

001651 1 . 3 3 4 3 1 1 1 1 2

001850 2 2 1 3 2 3 . 2 3 4 4

002240 1 2 2 3 1 3 2 1 2 2 3

002244 1 3 2 1 1 4 . . 3 . 2

002746 1 4 . 1 2 . . 2 . 2 3

Output 5. Horizontally structured data set

pon transposing these data, we use the same methods described above. We arrive at the same calculations with

 *ARRAY APPROACH;

 array pvars (5) p1 p4 p6 p8 p10;

 *REVERSE SCORE;
vars{i})) in ('P8' 'P10') and not missing(pvars{i}) then

 phys = sum (of pvars(*));

 *REVERSE SCORE;
vars{i})) in ('M3') and not missing(mvars{i}) then mvars{i} =

 ment = sum (of mvars(*));

 end;

 *IF NUMBER OF MISSINGS < 3 THEN ADJUST;
miss) / p_nonmis) * phys;

 if nmiss(phys, ment) = 0 then total = sum(phys, ment);

 keep id phys ment total;

 RUN;

U
ARRAY processing without modifying the data structure:

 DATA hscore1;
 set t_wrhind;

 array mvars (5) m2 m3 m5 m7 m9;
 do i = 1 to 5;

 if upcase(vname(p
 pvars{i} = 6 - pvars{i};

 p_miss = nmiss(of pvars(*));
 p_nonmis = n(of pvars(*));

 if upcase(vname(m
 6 - mvars{i};

 m_miss = nmiss(of mvars(*));
 m_nonmis = n(of mvars(*));

 if p_miss < 3 then phys = ((p_nonmis + p_
 if m_miss < 3 then ment = ((m_nonmis + m_miss) / m_nonmis) * ment;

7

SAS FUNCTIONS – NO ARRAYS

 *SAS FUNCTION APPROACH;

 *REVERSE SCORE;
) then p8 = 6 - p8;

 phys = sum(of p1, p4, p6, p8, p10);

 *GET NUMBER OF MISSINGS;
 p8, p10);

 *GET NUMBER OF NON-MISSINGS;
10);

 if p_miss < 3 then phys = ((p_nonmis + p_miss) / p_nonmis) * phys;

 if nmiss(phys, ment) = 0 then total = sum(phys, ment);

 keep id phys ment total trtn;

 RUN;

ENERALIZED METHOD

 practice, QOL questionnaires may have more than two scales of interest. It is often necessary to generalize the

 %macro Score(Items =,

 %*GET NUMBER OF ITEMS;

can(&Items,%eval(&INum + 1));

 + 1);
m + 1);

 %put;
MBER OF ITEMS: &INum;

 DATA hscore2;
 set t_wrhind;

 if not missing(p8
 if not missing(p10) then p10 = 6 - p10;
 if not missing(m3) then m3 = 6 - m3;

 ment = sum(of m2, m3, m5, m7, m9);

 p_miss = nmiss(p1, p4, p6,
 m_miss = nmiss(m2, m3, m5, m7, m9);

 p_nonmis = n(p1, p4, p6, p8, p
 m_nonmis = n(m2, m3, m5, m7, m9);

 if m_miss < 3 then ment = ((m_nonmis + m_miss) / m_nonmis) * ment;

G

In
code to expect more than two scales. The SAS macro language provides ways of making programs more flexible. In
the following example, we account for more scales, and also add a parameter for an imputation cutoff. For all
examples above, we use a 50% cutoff. For brevity we build a macro around the ‘SAS Function’ example. Note we
transpose the data since the original structure is vertical:

 Scale =,
 Cutoff =);

 %let INum = 0;
 %let Scroll = %s
 %do %while(&Scroll ne);
 %let INum = %eval(&INum
 %let Scroll = %scan(&Items,&INu
 %end;

 %put NU
 %put;

8

 &Scale.num = &INum;

 %*MAKE COMMA DELIMITED FOR NMISS FUNCTION;

INum;
r(,)%scan(&Items,&i);

 %let List = %substr(&List,2); %*STRIP OFF LEADING COMMA;

 &Scale = sum(of &Items);

 *GET NUMBER OF MISSINGS;

 *GET NUMBER OF NON-MISSINGS;

 %*ADJUST SCORE IF IMPUTATION NECESSARY;
) then &Scale = ((&Scale.nms +

 %mend;

 *SAS FUNCTION APPROACH - MACROTIZED;

 *REVERSE SCORE;
) then p8 = 6 - p8;

 %Score(Items = p1 p4 p6 p8 p10,

 %Score(Items = m2 m3 m5 m7 m9,

 %Score(Items = p6 p8 m2 m3 m5 m7 m9,

 if nmiss(phys, ment) = 0 then total = sum(phys, ment);

 RUN;

tice we apply reverse scoring and compute the totals outside of the macro. In addition, we derive a new scale

 %let List = ;
 %do i = 1 %to &
 %let List = &List%st
 %end;

 &Scale.ms = nmiss(&List);

 &Scale.nms = n(&List);

 if &Scale.ms <= %sysevalf(&Cutoff * &INum
 &Scale.ms) / &Scale.nms) * &Scale;

 DATA hscore3;
 set t_wrhind;

 if not missing(p8
 if not missing(p10) then p10 = 6 - p10;
 if not missing(m3) then m3 = 6 - m3;

 Scale = phys,
 Cutoff = 0.5);

 Scale = ment,
 Cutoff = 0.5);

 Scale = mix,
 Cutoff = 0.2);

No
called MIX in which we combine both physical and mental attributes.

9

10

CONCLUSIONS

As this article illustrates, the SAS system provides many ways to derive summed scores for QOL questionnaires.
How to attack the problem is a question of preference. PROC SQL or RETAIN in a data step are useful when the
data set is vertically structured. Conversely, if one favors a horizontal structure (or receives a horizontal data set),
ARRAYs or SAS functions are available. For generalizing methods, macro processing provides flexibility in
automating iterative steps. In conclusion, a variety of approaches are available with the many SAS tools at our
disposal.

ACKNOWLEDGMENTS
Steve Noga
Eva J. Welch

CONTACT INFORMATION
Brandon Welch
Rho®, Inc.
6330 Quadrangle Dr., Ste. 500
Chapel Hill, NC 27517
Phone: 919-595-6339
Fax: 919-408-0999
Email: Brandon_Welch@rhoworld.com
Web: www.rhoworld.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://www.rhoworld.com/

