
1

PharmaSUG 2012 - Paper DG11

Gilding the Lily: Boutique Programming in TAGSETS.RTF
Rohini Rao, Omeros Corporation, Seattle, WA

Paul Hamilton, Omeros Corporation, Seattle, WA

ABSTRACT

PROC REPORT has long been a powerful and flexible tool in clinical programming for producing tables and listings.
The ODS TAGSETS.RTF destination was introduced in SAS version 9.2, enabling programmers to produce higher
quality output with less effort. This paper demonstrates a few tips and tricks to subtly enhance the æsthetics of the
reports.

Topics covered include: the use of decimal tabs to properly align numerical output; the usage of Unicode to insert
special characters; the deletion of excess blank lines at the top and bottom of a page; the insertion of page-specific
footnotes; varying the number of lines per page to improve the flow of output; and the repetition of a header row when
the body of the section spans multiple pages.

SAS version 9.2 on the Windows platform is used in this paper. It is catered towards an audience with an
intermediate level of SAS and ODS knowledge.

INTRODUCTION
“Gilding the Lily” is a phrase first used by Shakespeare, meaning to embellish something that really does not need
much improvement. In our paper, we look at techniques to embellish the appearance of our reports. We start with
tables and listings that are functional and deliver accurate content and then add ‘boutique’ touches to enhance their
appearance. These techniques allow us to have more control over our output and give us the luxury of crafting more
user friendly reports.

DECIMAL TABS
Reports in the pharmaceutical industry contain mostly numerical output. Using decimal tabs allows us to properly
align numerical output and improve readability. We first look at a sample table created without decimal tabs and
revisit it after adding the decimal tabs code.

Table 1.1 is a section of a sample vital signs table without decimal tabs:

Table 1.1: Vital Signs

Placebo
(N=200)

Active
(N=200)

Diastolic BP (mmHg)
Baseline

N 200 200
Mean(SD) 73.8 (10.3) 74.0 (10.7)
Median 73.0 74.0
Min,Max 43, 107 49, 103

5 Minutes from Start of Procedure

N 200 200
Mean(SD) 73.1 (10.3) 73.1 (10.3)
Median 72.0 75.0
Min,Max 43, 107 49, 103

Gilding the Lily: Boutique Programming in TAGSETS.RTF, continued

2

Table 1.2 is the same table with decimal tabs:

Table 1.2: Vital Signs

Placebo
(N=200)

Active
(N=200)

Diastolic BP (mmHg)

Baseline
N 200 200
Mean(SD) 73.8 (10.3) 74.0 (10.7)
Median 73.0 74.0
Min,Max 43, 107 49, 103

5 Minutes from Start of Procedure

N 200 200
Mean(SD) 73.1 (10.3) 73.1 (10.3)
Median 72.0 75.0
Min,Max 43, 107 49, 103

SAS styles provide the ability to specify decimal tabs, However they are not as flexible or attractive as what the native
RTF codes allow. The RTF code is embedded within PROC REPORT (displayed in red). Col0 is the vital signs
category, Col1 is the placebo drug and Col2 is the active drug.

The required syntax to specify a decimal tab is: pretext = "^R'\ql\tqdec\txNNN '". The ‘ql’ code turns on
left justification, the ‘tqdec’ code specifies a decimal tab and the ‘txNNN’ code determines where the tab is placed
within the cell. NNN is a number supplied by the SAS programmer and the unit for this number is a twip. A twip is
defined as 1/1440 of an inch and in our example, NNN=650 twips. This technique is equally useful in Listing reports,
especially Vital Signs or Laboratory data values.

Options nodate nonumber nobyline orientation = landscape missing = ' ';
ods escapechar='^';

ods listing close;
ods tagsets.omsrtf file = "&outpath.\&pgmout" pagePanels = none uniform;

proc report data = master missing nowindows split = '|' spanrows;
 columns pagenum panel col0 col1 col2;
 define pagenum / order noprint;
 define panel / order noprint;
 define col0/ display " "
 style(column) = [cellWidth = 3.5in
 just = left];
 define col1/ display "Placebo|(N=&col1)"
 style(column) = [cellWidth = 1.25in
 just = left
 pretext = "^R'\ql\tqdec\tx650 '"];
 define col2/ display "Active|(N=&col2)"
 style(column) = [cellWidth = 1.25in
 just = left
 pretext = "^R'\ql\tqdec\tx650 '"];
 compute after panel;
 line@1 '';
 endcomp;
run;

ods tagsets.omsrtf close;
ods listing;

Gilding the Lily: Boutique Programming in TAGSETS.RTF, continued

3

INSERTION OF SPECIAL CHARACTERS
The usage of special characters in a report is a perennial problem. The SAS community has been able to produce
these characters in the original RTF destination, but with more effort and difficult code. SAS version 9.2 provides
direct support of UNICODE characters.

Table 2.1 is a sample table from a clinical trial of a drug to prevent urinary incontinence. A standard way to display
the number of urinary incontinence episodes is as follows: (a)<2; (b)>=2 to <5 and so on. However, we can use
Unicode characters to display >=2 as ≥2. We also look at RTF code to display the superscript characters that appear
in the table.

Table 2.1: Supportive Analysis of Primary Endpoint

Placebo
(N=200)

Active
(N=200)

Subjects with incontinent episodes per day
<2 43 73
≥2 to <5 41 30
…
≥10 33 22
p-valuea 0.0316

 a Chi-square test

The categories are displayed by embedding Unicode in our SAS code:

Proc format;
 value pan1stat
 0 - 2 = "<2"
 2 - < 5 = "^{UNICODE 2265}2 to <5"
 …
 10 - 100 = "^{UNICODE 2265}10";

 value pan2stat
 1 = "p-value ^R'\super ' a";
run;

data pan1B;
 set pan1;
 uiCat=put(uiNum,pan1stat.);
run;

proc freq data=pan1B noprint;
 by trt01p;
 table uiCat/out=pan1F (drop=percent);
run;

proc sort data=pan1F; by uiCat; run;

proc transpose data=pan1F out=pan1T (drop=_NAME_ _LABEL_);
 by uiCat;
 var count;
 id trt01p;
run;

Here, the Unicode number to display the ‘≥’ symbol is 2265. Defining the Unicode symbol in our proc format will yield
the results we want.

As well, in our example, the RTF code to display the footnote character ‘a’ in superscript font is included in the
pan2stat format as follows: ^R'\super ' a.

Gilding the Lily: Boutique Programming in TAGSETS.RTF, continued

4

DELETION OF EXTRA BLANK LINES AND PAGE SPECIFIC FOOTNOTES
Our example here is the demographics table from the same clinical trial. Col0 is the demographic category, Col1 is
the placebo drug, Col2 is the clinical trial drug and Col3 is the total. The categories, or the ‘panels’ of data are
separated by one blank line. One method of inserting a blank line after a panel of data is displayed in red below:

options nodate nonumber nobyline orientation = landscape missing = ' ';
ods escapechar='^';

ods listing close;
ods tagsets.omsrtf file = "&outpath.\&pgmout" pagePanels = none uniform;

proc report data = master missing nowindows split = '|';
 columns pagenum panel col0 col1 col2 col3;
 define pagenum / order noprint;
 define panel / order noprint;
 define col0/ display " "
 style(column) = [cellWidth = 3in
 just = left];
 define col1/ display "Placebo|(N=&col1)|n(%) "
 style(column) = [cellWidth = 1.3in
 just = left
 pretext = "^R'\ql\tqdec\tx650 '"];
 define col2/ display "OMS302|(N=&col2)|n(%) "
 style(column) = [cellWidth = 1.3in
 just = left
 pretext = "^R'\ql\tqdec\tx650 '"];
 define col3/ display "Total|(N=&col3)|n(%) "
 style(column) = [cellWidth = 1.3in
 just = left
 pretext = "^R'\ql\tqdec\tx650 '"];
 compute after panel;
 line @ 1 ‘ ‘;
 endcomp;
run;
ods tagsets.omsrtf close;
ods listing;

The above method inserts a blank line after the last panel on the page as well, which is not wrong but may be
deemed unnecessary. In order to make the table more æsthetically pleasing, we can omit the blank line at the bottom
of each page by using the $varying format and the panel numbers.

compute after panel;
 msg=" ";
 if panel in (4,7) then len= 0;
 else len=10;
 line @1 msg $varying10. len;
endcomp;

In this particular report, panels four and seven are the last panels on the page. We suppress the output of the blank
line after these panels by defining a length of zero to len. The length of ten assigned to the visible blank lines is
arbitrary.

This logic can be applied to produce page specific footnotes as well.

compute after pagenum;
 msg2="This footnote will appear only on page 2";
 if pagenum=2 then len=150;
 else len= 0;
 line @1 msg2 $varying150. len;
endcomp;

Gilding the Lily: Boutique Programming in TAGSETS.RTF, continued

5

Table 3.1 has no extra blank line at the bottom of page one and a footnote appearing only on page two.

Table 3.1: Demographics and Subject Characteristics

Placebo
(N=200)

Active
(N=200)

Total
(N=400)

Age (year)
N 200 200 400
Mean(Std) 66.7 67.0 (9.6) 69.4 (9.7)
Median 69 69 69
Min,Max 32.0, 89.0 31.0, 88.0 31.0, 89.0

Gender

Male 22 27 49
Female 178 173 351

Ethnicity

Hispanic Or Latino 33 17 50
Not Hispanic Or Latino 167 183 350

Race

American Indian or Alaska Native 2 3 5
Asian 17 14 31
Black or African American 21 22 43
Native Hawaiian or Other Pacific Islander 0 0 0
White 159 161 320
Other 1 0 1

Page 2…

Placebo
(N=200)

Active
(N=200)

Total
(N=400)

Baseline number of incontinent episodes per day
>2
≥2 to <5
…
≥10

36

105

7

36

100

7

72

205

14

This footnote will appear only on page 2

Gilding the Lily: Boutique Programming in TAGSETS.RTF, continued

6

CONTROLLING THE NUMBER OF LINES OF OUTPUT PER PAGE
A typical Listing report has several lines of data per subject. Often, we run into issues such as a subject having just
one line of data at the bottom of a page and the remaining data on the following page. We can cluster the data more
meaningfully by controlling the number of output lines per page.

proc format;
 value lpp
 1 = '14'
 2 = '16'
 3 = '14'
 …
 Other = ‘21’;

data master;
 format pagenum row 5.;
 set final;
 by trt site;
 if (_N_ eq 1) then do;
 pagenum = 1;
 row = 0;
 end;
 lpp = input(put(pagenum, lpp.), best.);
 row + 1;
 if ((row gt lpp) then do;
 row = 1;
 pagenum + 1;
 end;
run;

In Listing 4.1, we are formatting the number of lines to be fourteen on the first page in order to fit subjects 001 and
002 on the first page and force subject 003 to start on the next page.

Listing 4.1: Post-Void Residual (Page 1)
 PVR Exam Was the PVR Obtainable?

Site Subject Date Performed? # If no, why?
100 001 2011-12-09 Yes 1 Yes

 2011-12-10 Yes 1 Yes
 2011-12-16 Yes 1 Yes
 2012-01-03 Yes 1 Yes
 2012-01-07 Yes 2 Yes
 2012-01-09 Yes 1 Yes
 2012-02-18 Yes 2 Yes
 002 2011-12-02 Yes 1 Yes
 2011-12-05 Yes 1 Yes
 2011-12-09 Yes 1 Yes
 2012-01-18 Yes 1 Yes
 2012-01-20 Yes 2 Yes
 2012-01-21 Yes 1 Yes
 2012-01-23 Yes 2 Yes

Gilding the Lily: Boutique Programming in TAGSETS.RTF, continued

7

Listing 4.1 Continued (Page 2)

 PVR Exam

Was the PVR Obtainable?
Site Subject Date Performed? # If no, why?

100 003 2011-12-02 Yes 1 Yes
 2011-12-03 Yes 1 Yes
 2011-12-08 Yes 1 Yes
 2011-11-29 Yes 1 Yes
 2011-11-29 Yes 2 Yes
 2011-12-15 Yes 1 Yes
 2011-12-15 Yes 2 Yes

REPETITION OF A HEADER ROW WHEN DATA SPAN MULTIPLE PAGES
An adverse event table often has data displayed for each Preferred Term under a particular System Organ
Classification. Some SOC groups have several Preferred Terms, all of which do not fit on one page. In such cases,
where the Preferred Terms span multiple pages, it is useful to have the SOC name repeat on the first row of each
page. In our example, we look at subject incidence of treatment emergent adverse events.

Here, the ‘Renal and Urinary Disorders’ SOC has several Preferred Terms on both pages one and two. We want
‘Renal and Urinary Disorders (continued)’ to appear on the top of page two. In the master data set, we know that the
last line of data on page one is on row twenty. In the master2 data set, we output every record of the master data set
first and then output ‘Renal and Urinary Disorders (continued)’ on row twenty and a half, which is the first line on page
two.

data master2;
 set master;
 output;
 *Row = 0 when the SOC name is first written. The SOC name is repeated on row 20.5;
 if panel = 1 and row = 0 then do;
 row = 20.5;
 col0 = strip(tranwrd(col0, '\b', '\b\i')) || ' (continued)';
 call missing(col1, col2, col3, col4);
 output;
 end;
run;

proc sort data=master2;
 by panel row;
run;

options nodate nonumber nobyline orientation = landscape missing = ' ';
ods escapechar='^';
ods listing close;
ods tagsets.omsrtf file = "&outpath.\&pgmout" pagePanels = none uniform;

proc report data = master2 missing nowindows split = '|';
 columns panel row col0 col1 col2;
 define panel / order noprint;
 define row / order noprint;
 define col0/ display " "
 style(column) = [cellWidth = 3.5in
 just = left];
 define col1/ display "Vehicle|(N=&col1)"
 style(column) = [cellWidth = 1.25in
 just = left
 pretext = "^R'\ql\tqdec\tx650 '"];

Gilding the Lily: Boutique Programming in TAGSETS.RTF, continued

8

 define col2/ display "Active|(N=&col2)"
 style(column) = [cellWidth = 1.25in
 just = left
 pretext = "^R'\ql\tqdec\tx650 '"];
run;

ods tagsets.omsrtf close;
ods listing;

In table 5.1, the Preferred Terms for Renal and Urinary Disorders are on pages one and two. The SOC name repeats
on the top of page two.

Table 5.1: Subject Incidence of Treatment-Emergent Adverse Events
by System Organ Class and Preferred Term (Page 1)

Vehicle
(N=50)

Active
(N=50)

Any Event 47 36

Renal and Urinary Disorders 3 1

Allergic Cystitis
Anuria
Bacterial pyelonephritis
Bladder candidiasis

2
2
7
9

1
1
5
5

Bladder Spasm 3 1
Calculus urinary 1 1
Dysuria
Fluid retention

3
12

0
9

Fungal cystitis 3 1
Haematuria 4 2
Haemorrhage, urinary tract 1 0
Nephrolithiasis
Pyrexia

7
7

2
6

Table 5.1 (Page 2)

Vehicle
(N=50)

Active
(N=50)

Renal and Urinary Disorders (continued)
Renal haematoma
Renal impairment
Renal syphilis
Renal tuberculosis
Strangury
Trigonitis

1
5
3
2
1
1

0
2
1
1
0
0

Urethral pain 2 4
Urinary retention
Urine flow decreased

15
7

11
3

CONCLUSION
We have compiled a list of boutique programming techniques that may be used to enhance the appearance of clinical
data reports. We have introduced decimal tabbing with in-line styling to vertically align numerical output. As a result,
the user is able to easily recognize the varying magnitude of numbers within a cell. We have demonstrated the ease
of UNICODE usage in inserting special characters in a report. The $varying format can be applied in the line
statement to not only remove excess blank lines, but also to insert page specific footnotes. In our opinion, the latter

Gilding the Lily: Boutique Programming in TAGSETS.RTF, continued

9

method is a simple yet elegant usage of the $varying format. We have also discussed the technique of varying the
number of lines per page. The user can hopefully employ this trick to more meaningfully cluster data on a page. Last
but not least, we have shown a way of repeating a header row at the top of relevant pages, when a block of data
spans multiple pages. The intended goal here is to avoid requiring the user to flip pages back and forth while reading
the report. This list is by no means intended to be comprehensive. It is merely a discussion of a few methods of
‘gilding our lilies’.

APPENDIX
The code that creates tagsets.omsrtf is below:

proc template;
 define tagset Tagsets.Omsrtf;
 notes "This is the RTF_SAMPLE tagset which is inherited from rtf.tpl";
 define event realraw;
 start:
 put value /if value;
 end;
 default_style = "styles.rtf";
 parent = tagsets.rtf;
 uniform;
 end;
run;

REFERENCES
Hamilton, Paul. “ODS to RTF: Tips and Tricks”. Available at: http://www2.sas.com/proceedings/sugi28/024-28.pdf
Rashleigh-Berry, Roland. ““Roland’s SAS Macros”. Available at: http://www.datasavantconsulting.com/roland/condline.html.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Name: Rohini Rao and Paul Hamilton
Enterprise: Omeros Corporation
Address: 1420 Fifth Avenue, Suite 2600
City, State ZIP: Seattle, WA 98101
Work Phone: (206) 676-5000
E-mail: rrao@omeros.com; phamilton@omeros.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

The content of this paper does not include actual clinical trial data. The opinions expressed herein are those of the
authors and not necessarily those of Omeros Corporation.

http://www2.sas.com/proceedings/sugi28/024-28.pdf�
http://www.datasavantconsulting.com/roland/condline.html�
mailto:rrao@omeros.com�
mailto:phamilton@omeros.com�

	Abstract
	Introduction
	DECIMAL TABS
	insertion of special characters
	DELETION OF EXTRA BLANK LINES AND PAGE SPECIFIC FOOTNOTES
	CONTROLLING THE NUMBER OF LINES OF OUTPUT PER PAGE
	Conclusion
	Appendix
	References
	Contact Information

