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ABSTRACT 

In the case of no-random effects the estimation can be carried via nonlinear least squares (proc nlin) or nonlinear 
maximum likelihood (proc nlmixed). In either case the election of starting values is usually problematic. The 
derivatives methods will yield an approximate quadratic convergence, as long as the starting values are well chosen. 
Yet there are two potential problems: if the likelihood is highly irregular, the algorithm will get stuck at local maxima; 
and if the starting values are too far from the optimum then the algorithm may not converge. If any of these two 
problems arise, then there are two possible solutions: (1) linearizing the model and estimating it via ordinary least 
squares. (2) Using a big grid to compute good initial estimates. The first solution entails the problem of potential high 
correlation because of the improved dimensionality of the problem and an almost certain bias. The second one is 
probably better, but requires too much computing power. Yet, Genetic algorithms allow a better exploration of the 
likelihood and provide an improvement per generation. It will be shown how to obtain good initial estimates using a 
genetic algorithm, especially for the most used pharmacokinetic problems. For nonlinear fixed effects models these 
values will, usually, yield the maximum of the negative log-likelihood. If it is possible to use a multi-processor 
computer, it makes sense to parallelize the problem: finally, a macro that can parallelize a genetic maximum 
likelihood problem into N processors will be presented.  

INTRODUCTION  

The pharmacokinetic literature is dedicated to understand and predict how drug concentrations evolve in body fluids. 
This is usually achieved by the use of mathematical models, which state a relationship between certain variables 
using parameters. These parameters are estimated using actual data, and later this model can be used to compute 
predictions. The statistical techniques used to solve this problem vary depending on the actual specification of the 
model. Some of them could specify a linear relationship between the variables, others can specify a non-linear 
relationship, and some of them may be more focused in understanding how these relationships vary within 
demographic groups. This last case is studied in the population pharmacokinetics literature using extra random 
parameters to account for population induced correlation in the data. 

Linear models can be estimated via ordinary least squares (such as the REG procedure) or if they have random 
effects they can be estimated using some modified linear least squares algorithm that accounts for the random 
effects (such as the GLM procedure and the MIXED procedure). If the model is non-linear the problem can be much 
harder. The usual approach in SAS

®
 is using the NLIN procedure (nonlinear least squares) or the NLMIXED 

procedure (maximum likelihood). While the former can only account for fixed effects, the latter is much more powerful 
since it can handle random effects. Both of them have incorporated very fine-tuned versions of optimizing algorithms, 
in the case of PROC NLIN the optimization can be carried using Marquandt, Newton Gauss, Steepest Descent, 
Newton, and Secant method. On the other hand, PROC NLMIXED can use the Trust Region Method, Newton-
Raphson with line search, Newton Raphson method with ridging, different versions of quasi-newton methods, various 
double-dogleg methods, various conjugate gradient methods and the Nelder-Mead algorithm. Generally speaking 
they will provide a very fast convergence; in particular it will be quadratic for Newton methods, super-linear for quasi-
Newton and unknown for Nelder-Mead. The decision on which algorithm to choose is usually based on the 
dimensionality of the problem, the dataset size, the processor speed and the memory available. In general, Newton 
methods are to be preferred for small problems, quasi-newton for medium-sized problems (the Hessian is not to be 
computed, instead it is approximated by the gradient, but much more steps are needed), and conjugate gradient 
methods are to be preferred for big problems since they do not even need to compute an approximation to the 
Hessian, thus reducing drastically the amount of memory needed. 

All these algorithms need to be provided with initial values for the model parameters. These values are usually 
chosen either by doing an educated guess based on the structure of the model, or by using estimated parameters 
from previous studies. Nevertheless, the importance of choosing good initial values cannot be overstated. An 
incorrect choice of starting values can make the algorithm head towards a plateau, a place where many sets of 
parameters produce a (very) similar likelihood. In these cases, as the problem becomes very ill identified, numerical 
problems are deemed to appear. In particular, the inversion of the Hessian that is needed for example in all Newton 
methods is guaranteed to fail. Secondly, as it has been analyzed, all of the presented algorithms will converge quickly 



Computing Initial Values for Pharmacokinetic ML Nonlinear Regression via genetic algorithms and parallel genetic 
algorithms, continued 

2 

 

as long as the initial values are quite “close enough”. This concept is related to the fact that the Newton and Quasi 
Newton algorithms assume that the function can be well approximated in the vicinity of the optimum point (in the case 
of maximum likelihood this is the true parameter value) using first and second derivatives. But this leads to an even 
more severe problem, that those values can be “close enough” to a local but not global maximum. Despite PROC 
NLMIXED implements advanced tricks in order to push the algorithm towards convergence of a global optimum, such 
as the OPTCHECK= option that resets the algorithm if it finds a point inside a ball of radius r (default=0.01) with a 
higher function value than the termination point, convergence to local maxima is frequently to be expected. When any 
of these problems arise, there are a couple of possible solutions. Firstly, a linearized version using some high degree 
polynomial can be used, yet this model will not yield neither the same results nor the same interpretation as the non-
linear version, and will certainly suffer from a high correlation (for example if variable d has an uniform distribution 
between 0 and 1, then it has a correlation of 0.97 with d

2
). And the matrix inversion problem will now appear also 

here, since X
T
*X will be almost non-invertible. The second solution entails computing a grid of initial values. This is by 

far, the most common option in most statistical software. This can be achieved in PROC NLMIXED by using the TO - 
BY option in the PARMS statement. Unluckily, memory and processor requirements will increase exponentially as the 
amount of grid points or the number of coefficients grows, rendering it useless for many practical problems. 

This paper shows how the nonlinear regression problem can be casted into a genetic algorithm optimization problem 
via PROC GA, and its output can be used as starting values for PROC NLMIXED. These starting values will yield on 
many occasions practically the maximum likelihood estimates so very few steps, if none, will be needed to converge. 
Also this approach can be a powerful tool in order to explore the likelihood, thus avoiding local maxima.  Additionally, 
as no derivatives are used, it will be irrelevant if the likelihood is almost flat or nearly discontinuous. This approach is 
used in 5 methods: the Michaelis-Menten equation, a modified version of the Pinheiro and Bates one-compartment 
model, a quantification of the reticuloendothelial cell system of the liver model, the four parameter sigmoid-emax 
problem and the bi-exponential model. Although it is not possible to run a true parallel version of this approach in 
SAS

®
, it is shown how this kind of problems can be expressed as a pseudo parallel problem, where the initial values 

search is split into several programs running concurrently. 
 

GENETIC ALGORITHMS 

Over the past years, the reduction of computing prices and the availability of good software implementations has led 
to an impressive increase in the usage of stochastic search algorithms. These methods share the particular property 
of using random numbers for finding the maximum/minimum. On most occasions, the solutions that are found using 
these algorithms cannot be exactly replicated unless the exact same seed (which is used in the random number 
generators) is used. Most of these algorithms need much less stringent assumptions than their non-stochastic 
counterparts, or in some occasions, they do not need any assumptions at all. Although these methods can be quite 
different, a particular subset of these algorithms is built on the idea of replicating how nature optimizes processes. In 
particular, genetic algorithms are based on the idea that each successive generation of a population can be thought 
as being the result of an outcome of an optimization process.  

The process of building better biological entities can be thought as selecting an initial population of individuals and 
then choosing usually the fittest of them iteratively. This means that in most occasions the chosen individuals set will 
consist mostly of individuals which are the best of their generation, but also of fewer individuals from the rest of their 
respective population. This is of prime importance, and it is probably one of the few ways nature tries to avoid local 
maxima. If all the chosen individuals were all to be part of the very best group, the population would probably fall 
quickly into some local maxima, as the selected members of the population would probably be almost identical. The 
selected population is thus chosen by weighting the genetic diversity versus choosing the best members. After this 
selection is done, pairs are formed in order to build offspring. Thus, the offspring carry a combination of genetic 
material of two individuals, with some additional mutations that will render them usually unique. In this fashion, again, 
the population is ensured to have some diversity. Practically, nature loops through this process ad-infinitum. 

Genetic algorithms mimic this selection process by assuming that the members of the population are sets of 
parameters, using the pseudo-random number generator for computing the transition probabilities, evaluating the fit 
of the solutions by some mathematical function that is to be optimized, and assuming there is a terminal criterion. It is 
to be noted, that practically no assumption is needed for applying this tool, except for the obvious assumption that 
this fitness function can be computed for each observation. The usual assumptions made by derivatives based 
methods: that the function is continuous up to its second derivative, that the hessian can be inverted, or that the initial 
values are close to the optimal solutions are not needed anymore. Also, it should be noted that it is impossible to 
state whether this algorithm will effectively attain an optimum and at which rate this convergence may take place.  

SAS/OR® GA PROCEDURE 

The experimental PROC GA included since SAS/OR
®
 9.1 allows the user to solve optimization problems using 



Computing Initial Values for Pharmacokinetic ML Nonlinear Regression via genetic algorithms and parallel genetic 
algorithms, continued 

3 

 

genetic algorithms. This procedure can include programming statements inside it, such as if/then statements or doing 
loops, apart from many options to control how the algorithm should behave. Respect to its inner workings, the main 
point that should be highlighted is that the parameters do not need to be necessarily encoded as bit-strings as in the 
regular implementations of this algorithm, but they can be encoded as real numbers. In general, the mutation, cross-
over and other genetic operators are applied bit-wise to the encoded bit-string, but in the case of PROC GA, they can 
be applied directly to the real representation of the number. A second important point, is that in the following 
examples, PROC GA will optimize the log-likelihood, instead of the likelihood (e.g. equation 3), in order to ensure 
proper comparability with the log-likelihood reported by PROC NLMIXED. 

MICHAELIS-MENTEN EQUATION  

This well-studied model is used to describe how the reaction rate of enzymes (    relates to the concentration of a 

substrate (  . As S increases,    heads towards      but never reaches that level. Thus,    is of prime importance, 

as it is the substrate concentration where the reaction rate is half of      . Assuming            are iid, this two-

parameter nonlinear model can be described as: 

(1)    
       

     
      Equation (3)        ∏

 

√    

 
            

   
       
     

 

 
  

 with               

 

In general, there are ways of determining good initial parameters for this model based on the fact that   given by 

equation 1, is strictly increasing in S. In SAS
®
 (2008, pp. 4267) PROC NLIN documentation, there is a good 

discussion on how to achieve this; nevertheless a grid that contains those values inside is used there. In most cases, 
unless the two initial values for the parameters are abnormally chosen and/or the number of observations is really 
small, the model will generally converge. For reasonably big sample sizes (>30), almost all sets of initial values for 
the parameters work fine (the models converge quickly to their true values). The same does not hold true when the 
sample size is less than 30. For instance for n=30, using starting values for Vmax=40 km=40 s2=1.5, PROC 
NLMIXED returns a “WARNING reporting that the Hessian has at least one negative eigenvalue” and thus the second 
order optimality conditions are violated (the final estimates are Vmax=172590, km=-121743 and s2=32387). Just for 
comparison purposes, PROC GA solves that problem easily (final estimates are Vmax=157.922 km=0.0692 and 
s2=0.70025). When n=1000, both PROC NLMIXED, and PROC GA yield practically the same results; the former 
produces a negative log-likelihood= 1419.75267 while the latter gives 1419.752668. Estimated coefficients can be 
verified at Figure 1. 

  

Parameter true value PROC NLMIXED PROC GA 

Vmax 158 158.05 158.04909186 

Km 0.07 0.07371 0.0737115087 

  1 1.0016 1.0016296117 

       Figure 1 Simulated Michaelis-Menten equation n= 1000 

 

The SAS
®
 program for generating the simulated data is: 

 

1.    data SIMU_DATA_MM; 

2.    do day=1 to 1000; 

3.    Vmax=158; 

4.    Km=0.07; 

5.    S=1*day+ranuni(10); 

6.    predx =normal(13) + (Vmax*S)/(Km+S); 

7.    output; 

8.    end; 

9.    run; 

 

    The genetic algorithm is: 

10.    Proc GA seed = 11 maxiter = 300 data1= SIMU_DATA_MM lastgen=perm.lastgen; 

11.    function shubert(selected[*],predx[*],S[*]); 
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12.    array x[3]/nosym; 

13.    call ReadMember(selected,1,x); 

14.    Vmax=x[1];Km=x[2];sd=x[3]; 

15.     sum1 = 0; 

16.         do i=1 to 1000; 

17.         gabas = (Vmax*S[i])/(Km+S[i]); 

18.         TY=-0.5*(log(2*3.14159265)+log(sd)+((predx[i]-GABAS)**2)/sd); 

19.          sum1=sum1+TY; 

20.       end; 

21.       return(sum1); 

22.    endsub; 

23.   Call SetEncoding('R3'); 

24.   array lower[3] /nosym; 

25.   array upper[3] /nosym; 

26.   lower[1]=0.0;upper[1]=1000; 

27.   lower[2]=0.0;upper[2]=500; 

28.   lower[3]=0.10;upper[3]=3.1; 

29.   call SetBounds(lower,upper); 

30.   call SetObjFunc('shubert',1); 

31.   call SetCrossProb(0.65); 

32.   call SetCross('Heuristic'); 

33.   call SetMutProb(0.15); 

34.   array del[3] /nosym (0.2 0.2 0.2); 

35.   call SetMut('Delta','nchange', 1, 'delta',del); 

36.   call SetSel('tournament','size', 2); 

37.   call SetElite(2); 

38.   call Initialize('DEFAULT',400); 

39.    Run; 

40.     Quit; 

41.  proc nlmixed data= SIMU_DATA_MM (drop=Vmax km); 

42.  parms Vmax=40 km=40  s2=1.5; 

43.  pred=(Vmax*S)/(Km+S); 

44.  model predx~ normal(pred,s2); 

45.  run; 

 

On line 10, the input dataset is specified with the DATA1 statement. In fact more than one data set can be included 
using DATA2, DATA3, etc. The LASTGEN= option specifies the location of the final generation of parameters. Line 
11 defines the function that is to be optimized; in the parenthesis, the SELECTED() array is used for transferring the 
chosen population of parameters from the previous iteration to the current one; then all the variables of the model are 
listed. Statement in line 12, tells SAS

®
 to build a three dimensional array that will be used to store the parameters 

values. In Line 13 CALL READMEMBER instructs SAS
®
 to write the parameters from the previous iteration (stored in 

SELECTED()) to  array x(); these parameters are then used in lines 14-22 to evaluate the log-likelihood in the 
dataset. Note that every time, PROC GA calls function Shubert, it returns sum1 variable. Line 23 defines the 
encoding of the problem, which is how SAS

®
 should store the parameters to be optimized and consequently how 

genetic operators are supposed to be applied to them. In this case, since the problem is three-dimensional, the 
encoding is R3 (R stands for real). From line 24 to 28, two arrays are created for storing the lower and upper bounds 
for the parameters. Note that in this case the bounds are quite separated, giving the algorithm a good space 
exploration. Line 29 specifies that the previous array bounds are to be used for determining the bounds of the 
problem. Line 30 is straightforward, except for its second argument that specifies whether a maximization or 
minimization is desired. Line 31 and 32 specify the crossover properties: some of the solutions are passed 
unchanged to the following generation and some are applied a crossover operation (solution is paired with another 
solution and offspring is built); then SETCROSSPROB sets how likely this happens; the ‘HEURISTIC’ option is the 
only valid option for real valued problems. In line 33, SETMUTPROB indicates how likely it is for a solution to suffer a 
mutation. Line 35 specifies that the Delta mutation should be used. Essentially it perturbs some components of the 
solution adding the values in the ‘del’ array. These values can be fine-tuned according to the problem. Lines 36 and 
37 specify that a TOURNAMENT is to be done between pairs of solutions meaning that a competition is done 
between 2 candidate solutions and the best of them is retained for the next generation. This tries to ensure that 
certain genetic diversity is present across generations, as the pairs are built at random from the candidate solution 
set. Tournaments of size=2 place a very weak selective pressure, compared to size=4 or bigger; bigger tournaments 
imply that the probability that a ‘good’ solution is present is higher, and thus poor solutions will rapidly disappear after 
competing with it (but quite a lot of genetic diversity will be lost). Line 37 specifies that always at least 2 of the very 
best solutions of the generation are passed to the next one (exactly as they are). CALL INITIALIZE at line 38 
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specifies that a 400 population is to be used across all the optimizations. DEFAULT initialization states that random 
numbers are to be generated between the bounds and used as initial values. 

 

ONE COMPARTMENT MODELS 

These models are extensively used in the literature. Essentially, the body is treated as one single container after 
some drug is introduced into it, and the drug is assumed to equilibrate rapidly. On more complicated situations these 
models are used in the study of population pharmacokinetics. In this situation, the idea is to understand “the sources 
and correlates of variability in drug concentrations among individuals who are the target patient population receiving 
clinically relevant doses of a drug of interest” (FDA 1999, pp. 2). In practical terms, this implies that random effects 
are to be included in the regression. In this case, obtaining initial values for the numerical optimization will be 
complicated on most situations. One possible approach here is to try to estimate the model assuming no random 
effects are present and then use these values for the true model including random effects. One example is the 
Pinheiro and Bates model for theophylline oral administration used in SAS

®
 (2008, pp. 4403). In this model 

 

(2)       
         

             
                          +                                            

                                                                   

 

The   are fixed effects and the b parameters are random effects. The three variables are D (dose), C (concentration 

of theophylline) and t (time). Doing an educated guess is much harder for this model than for the previous one. One 
potential solution is to estimate via genetic algorithms this model assuming there are no random effects, and then use 
these as initial values for the PROC NLMIXED estimation with the random effects. The syntax is: 

 

1.    data SIMU_DATA_MM; 

2.    do day=1 to 1000; 

3.    beta1=-3.22; 

4.    beta2=0.47; 

5.    beta3=-2.45; 

6.    time= 0.03*day+ranuni(13); 

7.    dose= 8+3*ranuni(12); 

8.    cl   = exp(beta1); 

9.    ka   = exp(beta2); 

10.   ke   = exp(beta3); 

11.   predx =normal(1) + ( dose*ke*ka*(exp(-ke*time)-exp(-ka*time))/cl/(ka-ke)); 

12.   output; 

13.   end; 

14.   run; 

 

Using PROC GA the following modifications are needed in the previous program used for Michaelis-Menten example. 

Line 11 should be replaced for      function shubert(selected[*],predx[*],time[*],dose[*]); 

Line 12 should be replaced for      array x[4]/nosym; 

Line 14 should be replaced for      beta1=x[1];beta2=x[2];beta3=x[3];sd=x[4]; 

Line 17 should be replaced for      cl   = exp(beta1); ka   = exp(beta2);   ke   = exp(beta3); 

Line 17 should be replaced for       gabas =(dose[i]*ke*ka*(exp(-ke*time[i])-exp(-
ka*time[i]))/cl/(ka-ke)); 

Line 23 should be replaced for       Call SetEncoding('R4'); 

Line 24 should be replaced for       array lower[4] /nosym; 

Line 25 should be replaced for       array upper[4] /nosym; 

Line 26 should be replaced for       lower[1]=-20.0;upper[1]=-0.1; 

Line 27 should be replaced for       lower[2]=0.0;upper[2]=20; 

Line 28 should be replaced for       lower[3]=-20.0;upper[3]=-0.1; 

Line 28 should be replaced for       lower[4]=0.10;upper[4]=2; 

Line 34 should be replaced for       array del[4] /nosym (0.2 0.2 0.2 0.2); 

Line 38 should be replaced for      call Initialize('DEFAULT',200); 
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15.   proc nlmixed data= SIMU_DATA_MM (drop=beta1 beta2 beta3); 

16.   parms beta1=-3.50 beta2=0 beta3=-3.22 s2=1; 

17.   cl   = exp(beta1);   ka   = exp(beta2);   ke   = exp(beta3); 

18.   pred= dose*ke*ka*(exp(-ke*time)-exp(-ka*time))/cl/(ka-ke); 

19.   model predx~ normal(pred,s2); 

20.   run; 

 

For this dataset, both the genetic algorithm and PROC NLMIXED without random effects, converge easily to the 
correct values (Figure 2). Yet, this does not hold when the initial values are not so accurately chosen. In this example, 
if the initial values are: beta1=-8.5; beta2=8; beta3=-8.22 and s2=1, PROC NLMIXED would not converge correctly. 

 

Parameter true value PROC NLMIXED PROC GA 

   -3.22 -3.2295 -3.2295313 

   0.47 0.4727 0.4726530 

   -2.45 -2.4652 -2.4651538 

  1 1.02251 1.0225135 

       Figure 2 Simulated one compartment model n=1000 

 

 

QUANTIFICATION OF THE RETICULOENDOTHELIAL CELL SYSTEM OF THE LIVER 
 
This model can be found in Dalgaard (2008). Variable y represents concentration amounts over the liver after a bolus 
injection of radioactive tracer. Variable t represents time.  
 
 

(3)                 )                         

 
Data can be simulated using 

 
1.  data SIMU_DATA_MM; 

2.  do i=1 to 1000; 

3.  beta=600; 

4.  phi=0.07; 

5.  t=i + 5*ranuni(10); 

6.  predx =normal(13) + beta*(1-exp(-phi*t)) ; 

7.  output; 

8.  end; 

9.  run; 

 

The genetic algorithm needs the following modifications to the base program: 
 

Line 10 should be replaced for:  Proc GA seed = 11 maxiter = 500 data1= SIMU_DATA_MM 
lastgen=perm.lastgen; 

Line 11 should be replaced for:     function shubert(selected[*],predx[*],t[*]); 

Line 12 should be replaced for:             array x[3]/nosym; 

Line 14 should be replaced for:             beta=x[1];phi=x[2];sd=x[3]; 

Line 17 should be replaced for:             gabas =beta*(1-exp(-phi*t[i])); 

Line 26 should be replaced for:         lower[1]=0.0;upper[1]=3200; 

Line 27 should be replaced for:         lower[2]=0.0;upper[2]=3000; 

Line 28 should be replaced for:          lower[3]=0.70;upper[3]=5; 

Line 38 should be replaced for:    call Initialize('DEFAULT',200); 

 

1.    proc nlmixed data= SIMU_DATA_MM(drop=beta phi); 
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2.    parms beta=30 phi=20  s2=1; 

3.    pred=beta*(1-exp(-phi*t)); 

4.    model predx~ normal(pred,s2); 

5.    run; 

 

In this case PROC NLMIXED fails to converge correctly. PROC GA does not have any trouble in selecting the correct 
parameters. Nevertheless, if the initial values for PROC NLMIXED were beta=600, s2=1.5 and phi=0.05, then it would 
correctly estimate the parameters (Figure 3). 

 

Parameter true value PROC NLMIXED PROC GA 

beta 600 600.05 600.05216385 

phi 0.07 0.06995 0.0699466168 

  1 1.0010 1.0009851597 

     Figure 3 RES Model n=1000 

 

PARALLEL GENETIC ALGORITHMS FOR THE 4 PARAMETER SIGMOID E-MAX MODEL 

 
Although PROC GA does not currently support parallelization of genetic algorithm problems, it is possible to build 
programs that can simulate this behavior. It has been extensively tested how genetic algorithms can be leveraged by 
multi-processor CPUs. Intuitively, since the algorithm resides essentially on a direct attack on the function to be 
optimized, many threads may run concurrently and then the best solutions could be gathered together.  The 
possibilities are quite unlimited, for example some threads may search for solutions on different intervals; also some 
of them could use different cross-over probabilities or simply they could all use different random seeds. In the 
following example, EMAX_PARAL macro will be discussed. This macro splits an E-max problem into N processors, 
and submits everything to run concurrently taking full advantage of super-computers or powerful servers. In this 
example, for simplicity, the macro will split the search into 4 programs each of them having different random seeds 
and different mutation delta operators ( the real numbers that are randomly added to each perturbed solution). 

This E-MAX model is probably one of the most important and hardest models in the literature. This model is used for 

modeling dose-response relationships for a drug. E0 can be thought as the placebo response,       is the dose 

response that produces a 50% of the      response. C is the concentration or dose of some drug and   is an 

additional parameter (known as the Hill parameter). The model and its likelihood can be represented as: 

 

(4)       
       

 

    
 

   
                         With          ∏

 

√    

 
            

      
       

 

    
 

   
  

 
  

 

 
 
1.    %macro rep_data_for_parall(img=); 

2.    data perm.data_&img.; 

3.    do D=1 to 1000; 

4.    Emax=37; 

5.    E0=183; 

6.    beta=6.22; 

7.    ED50=5.06; 

8.    dose=80*ranuni(13); 

9.    predx =normal(13) + E0 + ((Emax*(Dose**beta))/((ED50**beta) + (Dose**beta))); 

10.   output; 

11.   end; 

12.   run; 

13.   %mend; 

14.   %macro Emax_paral(threads=); 

15.   %do r=1 %to &threads.; 

16.   %rep_data_for_parall(img=&r.); 

17.   %cast_to_parallel(dataP=data_&r.,seedi=&r.); 
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18.   x "runsas parallel&r..sas&"; 

19.   %end; 

20.   %mend; 

21.  %macro cast_to_parallel(dataP=,seedi=); 

22.  data _null_; 

23.        file "./parallel&seedi..sas" dsd dlm="," lrecl=3000; 

24. put "Proc GA seed=&seedi. maxiter=1000 data1=perm.&dataP. 

lastgen=perm.lastgen_P&seedi.;"; 

25.   put "function shubert(selected[*],predx[*],Dose[*]);"; 

26.   put "array x[5]/nosym;"; 

27.   put "       call ReadMember(selected,1,x);"; 

28.   put "        E0=x[1];Emax=x[2];ED50=x[3];beta=x[4];sd=x[5];"; 

29.   put "        sum1 = 0;"; 

30.   put "        do i=1 to 1000;"; 

31.   put "   gabas =E0 + ((Emax*(Dose[i]**beta))/((ED50**beta) + (Dose[i]**beta)));"; 

32.   put "        TY=-0.5*(log(2*3.14159265)+log(sd)+((predx[i]-GABAS)**2)/sd);"; 

33.   put "        sum1=sum1+TY;"; 

34.   put "end;"; 

35.   put " return(sum1);"; 

36.   put "  endsub;"; 

37.   put " Call SetEncoding('R5');"; 

38.   put " array lower[5] /nosym;"; 

39.   put " array upper[5] /nosym;"; 

40.   put " lower[1]=0.0;upper[1]=1000;"; 

41.   put " lower[2]=0.0;upper[2]=100;"; 

42.   put " lower[3]=0.0;upper[3]=100;"; 

43.   put " lower[4]=0.10;upper[4]=100;"; 

44.   put " lower[5]=0.70;upper[5]=2;"; 

45.   put " call SetBounds(lower,upper);"; 

46.   put " call SetObjFunc('shubert',1);"; 

47.   put " call SetCrossProb(0.65);"; 

48.   put " call SetCross('Heuristic');"; 

49.   put "call SetMutProb(0.15);"; 

50.   put " array del[5] /nosym (%sysevalf(&seedi./10) %sysevalf(&seedi./10) 

%sysevalf(&seedi./10) 51.%sysevalf(&seedi./10) %sysevalf(&seedi./10));";put "call 

SetMut('Delta','nchange', 1, 'delta',del);"; 

52.  put " call SetSel('tournament','size', 2);"; 

53.  put " call SetElite(2);"; 

54.  put " call Initialize('DEFAULT',200);"; 

55.  put " Run;"; 

56.  put " Quit;"; 

57.  run; 

58.  %mend; 

 

59.  %Emax_paral(threads=4); 

 

 

 

On line 18, the x command executes an operating system instruction. In this case, the function “runsas” calls 
SAS.exe to run the corresponding SAS program. 
 
 

Parameter True values Thread1 Thread2 Thread3 Thread4 

Emax 37 37.157741482 37.157741366 37.157741369 37.157741282 

E0 183 182.85872113 182.85872124 182.85872126 182.85872129 

Beta 6.22 6.0602945314 6.0602945823 6.0602945921 6.0602945341 

Ed50 5.06 5.033393557 5.0333935572 5.033393568 5.0333935543 

  1 0.9169083996 0.9169083981 0.9169083702 0.9169084159 

          Figure 4 Emax_paral macro threads =4 
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In general, PROC NLMIXED would have found it difficult to estimate this model. For example: if the starting values 
are e0=500, Beta=0.1, ED50=2.06 and sigma=1, then the model will not converge correctly to the global maximum. 
Note that in real situations, the difference between different threads can be much greater than in Figure 4. 

 
BI-EXPONENTIAL REGRESSION 
 
Incorporating restrictions into estimation algorithms will, in most practical cases, be difficult. These restrictions are 
usually included for two reasons: either for incorporating a priori knowledge about some parameter, for example 
some variable should have a negative/positive impact; or they could be included in order to ensure correct 
identification of the model. One example of this last situation is when a researcher formulates a bi-exponential model. 
This model represents the typical open two-compartment model.  It has been very used in the literature, for example 
Rotschafer et al. (1982) fit this model to serum vancomycin concentration data. This model is described by (where 
variable t stands for time, and y stands for concentration of some drug) 
 

(5)                                                           
 
It is readily evident that this model has a problem, since the pairs (  , A) and (      are exchangeable.  There is no 

way for the model to know where to place each pair.  Almost every possible algorithm is expected to oscillate 
between the two solutions. Bonate (2011, pp. 114) shows how initial values can be obtained by using some algebra 
arguments and then using an auxiliary regression. For example if data is simulated by: 
 
 
1.   data data_biexp(keep=predx dose); 

2.   do D=1 to 1000; 

3.   dose=0.1*D+2*ranuni(13); 

4.   A=70; 

5.   B=50; 

6.   alpha1=0.5; 

7.   alpha2=0.05; 

8.   predx =normal(13) + A*exp(-alpha1*Dose) + B*exp(-alpha2*Dose); 

9.   output; 

10.  end; 

11.  run; 

 
In this context the resulting parameters obtained via PROC NLMIXED are expected to be exchanged. For example 
starting values A=10.818124084, B=5.165860321, alpha1=0.5292495554, alpha2=0.0808308783 s2=1, yield the 
inverted coefficients although the initial values are reasonably close to the true values. This problem also happens 
using PROC GA. Thus, the following restriction is added        . In this case the model is completely identified.  

This restriction can be easily accommodated through the very powerful programming statements inside PROC GA. 
The core of the program should be modified as follows  
 

Line 10 should be replaced  for: Proc GA seed = 11 maxiter = 1000 data1=data_biexp 
lastgen=lastgen; 

 
1.  function shubert(selected[*],predx[*],Dose[*]); 

2.        array x[5]/nosym; 

3.        call ReadMember(selected,1,x); 

4.        A=x[1];alpha1=x[2];B=x[3];alpha2=x[4];sd=x[5]; 

5.        sum1 = 0; 

Run 

Rep_data_for_parall 

(Builds the datasets) 

cast_to_parallel 

(Builds the programs) 

Emax_paral 

(Main Program) 

 Thread 1 

 Thread N 

Figure 5 E-MAX_PARAL MACRO 
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6.        if alpha1>=alpha2 then do; 

7.         do i=1 to 1000; 

8.         gabas =A*exp(-alpha1*Dose[i]) + B*exp(-alpha2*Dose[i]); 

9.        TY=-0.5*(log(2*3.14159265)+log(sd)+((predx[i]-GABAS)**2)/sd); 

10.         sum1=sum1+TY; 

11.        End; 

12.        end; 

13.        else do; 

14.       sum1=-50000000; 

15.       end; 

16.      return(sum1); 

17.     endsub; 

 

Line 23 should be replaced for:         Call SetEncoding('R5'); 
Line 24 should be replaced for:         array lower[5] /nosym; 
Line 25 should be replaced for:         array upper[5] /nosym; 
Line 25 should be replaced for:         lower[1]=0.0;upper[1]=500; 
Line 26 should be replaced for:         lower[2]=0.0;upper[2]=500; 
Line 26 should be replaced for:         lower[3]=0.0;upper[3]=500; 
Line 26 should be replaced for:       lower[4]=0.0;upper[4]=500; 
Line 26 should be replaced for:         lower[5]=0.70;upper[5]=2; 
Line 34 should be replaced for:            array del[5] /nosym (0.2 0.2 0.2 0.2 0.2); 
 

In this case, if the program detects that alpha1<alpha2 a very large negative likelihood is assigned to the sum1 
variable. If, on the contrary, alpha1>=alpha2 then the calculation goes as usual. In this way, hopefully, PROC GA will 
evade situations where alpha1<alpha2. The output for this program is A=70.032521422, alpha1=0.4957619702, 
B=49.817540593, beta2=0.0498241655 and sigma=0.9199913639. If these restrictions were not to be included, then 
the resulting estimates would have been inverted. Still, it seems evident that the smartest way of taking full advantage 
of PROC NLMIXED and PROC GA is by putting them together to solve an estimation problem. PROC GA can evade 
most of the local maxima problems, while PROC NLMIXED is equipped with sophisticated derivatives algorithms. 
This example shows how to fetch the selected values from PROC GA and using them as initial values in PROC 
NLMIXED automatically. In this case, the model converges in one single step with a gradient slope= -0.00002. 
(PROC GA outputs a table with rows as generations, being the first row the best one). 
 
1.   Data _Null_; 

2.       set lastgen; 

3.        if _n_=1 then do; 

4.                call symputx('A',A1);call symputx('alpha1',A2); 

5.                call symputx('B',A3);call symputx('alpha2',A4); 

6.                call symputx('sigma',A5); 

7.        end; 

8.    run; 

9.    proc nlmixed data=data_biexp; 

10.       parms 

11.       A=&A. 

12.       B=&B. 

13.       alpha1=&alpha1. 

14.       alpha2=&alpha2. s2=&sigma.; 

15.       pred =A*exp(-alpha1*Dose) + B*exp(-alpha2*Dose); 

16.       model predx~ normal(pred,s2); 

17.    run; 

 
 

 

 

 

 

                        Iteration History 

Iter     Calls    NegLogLike        Diff       MaxGrad       Slope 

1        26       1377.24303        3.18E-12   0.000386      -0.00002 

NOTE: FCONV convergence criterion satisfied. 

Figure 6 PROC GA+PROC NLMIXED immediate convergence 
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CONCLUSION 

Experimental SAS/OR® PROC GA can prove very useful in the determination of initial values for nonlinear regression 

in general and pharmacokinetic modeling in particular. As it has been seen, it can work very well in situations where 
the traditional determination of the initial values is difficult or infeasible.  Also it can accommodate very well hard 
restrictions such as when the value of certain parameters is expected to be lower/greater than other parameters. 
Although this method only takes into account the fixed effects, in mixed effects models, this method can be used with 
the fixed effects part to fetch initial values. Additionally, if a multi-processor computer is available, then this method 
can become leveraged by splitting the search into multiple processors. In all cases the best approach is to run PROC 
GA and then read the resulting values from the last generation, as initial values, into PROC NLMIXED. 
 

REFERENCES 

 

 Bonate, Peter (2011). Pharmacokinetic-Pharmacodynamic Modeling and Simulation. New York, NY. 
Springer. pp. 110,114. 

 

 Dalgaard, Peter. Nonlinear Regression Analysis lecture notes. Department of Biostatistics, University of 
Copenhagen. May 2008. Available at http://staff.pubhealth.ku.dk/~pd/V+R/handouts/nonlin-2x2.pdf 

 

 Rotschafer, J., Crossley, K., Zaske, D., Mead, K., Sawchuk, R., and Solem, L. (1982), “Pharmacokinetics of 
Vancomycin: Observations in 28 Patients and Dosage Recommendations”, Antimicrobial Agents and 
Chemotherapy, 22, pp. 392. 

 

 SAS Institute Inc. (2008). SAS/STAT® 9.2 User’s Guide. Cary, NC: SAS Institute Inc. 
 

 SAS Institute Inc. (2004). SAS/OR® 9.1 User’s Guide: Local Search Optimization, Cary, NC: SAS Institute 
Inc. 

 

 U.S. Department of Health and Human Services, Food and Drug Administration (1999). Guidance for 
Industry. Population Pharmacokinetics.pp 2. Available at 
http://www.fda.gov/downloads/ScienceResearch/SpecialTopics/WomensHealthResearch/UCM133184.pdf 

 
 

CONTACT INFORMATION 

Your comments and questions are valued and encouraged. Contact the author at: 

Name:  Francisco Juretig 
Enterprise:  Nielsen 
Address: Tucumán 348 
City, State ZIP: Buenos Aires - Argentina 
Work Phone: +54 11 4891 1100 
Fax: +54 11 4891 1120 
E-mail: Francisco.Juretig@nielsen.com or fjuretig@yahoo.com 
Twitter: FJuretig 
 
 
 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are 
registered trademarks or trademarks of their respective companies 
 

http://staff.pubhealth.ku.dk/~pd/V+R/handouts/nonlin-2x2.pdf
http://www.fda.gov/downloads/ScienceResearch/SpecialTopics/WomensHealthResearch/UCM133184.pdf
mailto:Francisco.Juretig@nielsen.com

