
 1

PharmaSUG 2012 - Paper CC09

The application of variable-dependent macro on SDTM conversion

Mindy Wang, Independent Consultant, North Potomac, MD

ABSTRACT

In clinical trials and many other research fields, repetitive statements happen very often. This paper illustrates
how to deal with the same task with three different approaches. The first approach uses simple copy and paste
any SAS® beginner can do. The second approach uses a simple macro program to make the task more efficient,
and reduce the length of the program. To further improve the program and to make the program more adaptable
to other projects, the third approach uses variable-dependent macros which minimize tedious typing, eliminate
possible human errors, and ensure the accuracy of data.

INTRODUCTION

This program is based on a study to convert EG data to SDTM formats in a clinical trial. However, the SAS codes
can be rewritten easily to handle other fields of study as well. The parameter variables came in as a csv file.
What we need to accomplish is to do the repetitive tasks which apply to all the variables specified in the
parameter variables data set that are in csv formats. Following is the screen print of the parameter data (Display
1).

Display 1. The Original Parameter Data

 2

COPY AND PASTE METHOD

Copy and paste method is the easiest way we can do to accomplish repetitive tasks. No extensive knowledge of
SAS is needed. Following copy and paste method codes illustrate this easy method. However, the downside of
this method is that it takes busy work. If we need to repeat it three times, it won’t be too big a deal. However, if
we need to repeat it 50 times or 100 times, the task will be very tedious. In addition, as we use more manual
manipulation, it is more likely we might make mistakes along the way.

It is always a good idea to make the program work in plain text and then try to improve it by incorporating macros.
For example we start out with plain text, copy it a few times, and figure out which variables need to be changed,
and then incorporate Macro Definition to make it more efficient.

Following is the illustration of copy and paste method.

Data eg2;

 set sdtm.ert;

 length egtest egtestcd egcat egorres egstresc $ 200 egstresu egorresu $ 8;

egtestcd = " " ;

egorres = " " ;

egstresc = " " ;

egtest = " ";

egtestcd = "INTP" ;

egtest = upcase("OVERALL INTERPRETATION");

egorres = left(trim(upcase (ecgitp_))) ;

egstresc = upcase (egorres) ;

egcat="FINDING";

if (egorres ne " ") then output ;

drop ecgitp: ;

egtestcd = " " ;

egorres = " " ;

egstresc = " " ;

egtest = " ";

egtestcd = "HR1" ;

egtest = upcase("Heart Rate Measurement 1");

if (hr1 ne .) then do ;

egorres = trim (left (put (hr1 , best.))) ;

egstresn = hr1 ;

egorresu=hru_;

egstresu=hru_ ;

end ;

egstresc = upcase (egorres) ;

egcat="MEASUREMENT";

if (egorres ne " ") then output ;

drop hr1: hru_;

egtestcd = " " ;

egorres = " " ;

egstresc = " " ;

egtest = " ";

egtestcd = "HR2" ;

egtest = upcase("Heart Rate Measurement 2");

if (hr2 ne .) then do ;

egorres = trim (left (put (hr2 , best.))) ;

egstresn = hr2 ;

egorresu=hru_;

egstresu=hru_ ;

end ;

egstresc = upcase (egorres) ;

egcat="MEASUREMENT";

if (egorres ne " ") then output ;

 3

drop hr2: hru_;

egtestcd = " " ;

egorres = " " ;

egstresc = " " ;

egtest = " ";

egtestcd = "HR3" ;

egtest = upcase("Heart Rate Measurement 3");

if (hr3 ne .) then do ;

egorres = trim (left (put (hr3 , best.))) ;

egstresn = hr3 ;

egorresu=hru_;

egstresu=hru_ ;

end ;

egstresc = upcase (egorres) ;

egcat="MEASUREMENT";

if (egorres ne " ") then output ;

drop hr3: hru_;

egtestcd = " " ;

egorres = " " ;

egstresc = " " ;

egtest = " ";

egtestcd = "HRMEAN" ;

egtest = upcase("Summary (Mean) Heart Rate");

if (hrm ne .) then do ;

egorres = trim (left (put (hrm , best.))) ;

egstresn = hrm ;

egorresu=hru_;

egstresu=hru_ ;

end ;

egstresc = upcase (egorres) ;

egcat="MEASUREMENT";

if (egorres ne " ") then output ;

drop hrm: hru_;

.....

run;

SIMPLE MACRO METHOD

The following method takes a step further and substitutes the variables need to be changed in keyword
parameters. We only need to define the macro program once. By invoking the macro with different parameters,
we can achieve the same goal with a much shorter and efficient program. However, when the there are many
sets of keyword parameters, even writing up the commands to invoke the macro takes substantial time. There is
still room for improvement. In the section following this one, the program is further improved by incorporating
variable dependent macro.

%macro setx (varout=, varin=, test=, type=, egcat=, unit=);

 %if (&varin eq) %then

 %do ;

 %let varin = &varout;

 %end ;

 egtestcd = " " ;

 egorres = " " ;

 egstresc = " " ;

 egtest = " ";

 egtestcd = %upcase ("&varout") ;

 egtest = upcase("&test");

 %if (&type eq c) %then

 %do ;

 4

 egorres = left(trim(upcase (&varin._))) ;

 %end ;

 %else %if (&type eq n) %then

 %do ;

 if (&varin ne .) then

 do ;

 egorres = trim (left (put (&varin , best.))) ;

 egstresn = &varin ;

 egorresu=&unit ;

 egstresu=&unit ;

 end ;

 %end ;

 egstresc = upcase (egorres) ;

 egcat="&egcat";

 if (egorres ne " ") then

 output ;

 drop &varin: &unit;

 %mend setx ;

data eg2;

 set sdtm.ert;

 length egtest egtestcd egcat egorres egstresc $ 200 egstresu egorresu $ 8;

%setx (varout=intp, varin=ecgitp, test=OVERALL INTERPRETATION, type=c,

egcat=FINDING);

 %setx (varout=hr1, varin=hr1, test=Heart Rate Measurement 1, type=n,

egcat=MEASUREMENT, unit=hru_);

.........

Run;

VARIABLE DEPENDENT MACRO METHOD

With variable dependent macro, the utmost advantage is that there is no need to type in the parameters for macro
manually, since it is already in a csv file. Without the manual manipulation, chances for typing errors are largely
reduced. The parameters only need to be imported. In the data step call symputx is used to save the parameters
into macro variables with corresponding record number. In this case, since we don’t have any do loop in the data
step. The number of record would be consistent with the number of iteration. We can keep _n_ as our record ID.
Then for each record ID, we use call symputx to save each parameter to macro variable with corresponding
record ID.

For example, we save the value of the first parameter named “varout” in the first record, and call the macro
variable “varout1”. We do the same for the other variables. Therefore for record ID 1, we have saved macro
variables “varin1”, “test1”, “type1”, “egcat1”, “unit1” as well. After we saved the macro variables for the first record
id, the data step saved the macro variables for record ID 2, as “varout2”, “varin2”, “test2”, “type2”, “egcat2”, and
“unit2”. Then we saved the macro variables for other record ID until we reach the end of the parameter data set.
We can then use %put n, %put varout1, etc. to see if the program is doing what we expected and print out the
data set one to verify.

The variable dependent program can be adapted to difference projects very easily. As long as the parameter is in
a csv or excel file, we can just import the parameter data in and very little modification is needed to make it work.
Also, if we need to make any change, we only need to make change in the csv file once. We don’t need to go
through all 33 different places in the program to make the change. Unlike in the first two methods which a lot of
manual manipulation is needed, this method is very easy for new parameters.

proc import datafile = "C:\Documents and

Settings\mindy.wang\Desktop\SAS\NESUG_2010\eg_categories.csv"

 out = work.zero dbms = dlm replace;

 guessingrows=200;

delimiter = ',';

run;

 5

data one;

 set zero end=eof;

 n=put(_n_,2.);

 call symputx('varout'||left(n), varout);

 call symputx('varin'||left(n), varin);

 call symputx('test'||left(n), test);

 call symputx('type'||left(n), type);

 call symputx('egcat'||left(n), egcat);

 call symputx('unit'||left(n), unit);

 if eof then call symputx('n',n);

run;

/*CHECK THE NUMBER OF CASES*/

%put n=&n;

proc print data=one;

run;

%macro vdm (varout=, varin=, test=, type=, egcat=, unit=);

%do i=1 %to &n;

 %if (&&varin&i eq) %then

 %do ;

 %let varin = &&varout&i;

 %end ;

 egtestcd = " " ;

 egorres = " " ;

 egstresc = " " ;

 egtest = " ";

 egtestcd = %upcase ("&&varout&i") ;

 egtest = upcase("&&test&i");

 %if (&&type&i eq c) %then

 %do ;

 egorres = left(trim(upcase (&&varin&i.._))) ;

 %end ;

 %else %if (&&type&i eq n) %then

 %do ;

 if (&&varin&i ne .) then

 do ;

 egorres = trim (left (put (&&varin&i , best.))) ;

 egstresn = &&varin&i ;

 egorresu=&&unit&i;

 egstresu=&&unit&i ;

 end ;

 %end ;

 egstresc = upcase (egorres) ;

 egcat="&&egcat&i";

 if (egorres ne " ") then

 output ;

 drop &&varin&i: &&unit&i;

 %end;

 %mend vdm;

data eg1;

 set sdtm.ert;

 length egtest egtestcd egcat egorres egstresc $ 200 egstresu egorresu $ 8;

 %vdm

run;

OTHER WAYS TO REDUCE TYPING

Sometimes, it is equally important for our co-workers to understand our SAS programs, as to make our SAS
programs robust and easier to adapt to other projects. Suppose your co-workers don’t use macros at all, there are

 6

still ways that you can use the variable dependent macros to eliminate manually coping and pasting. You can
always set “options mprint". That way, there will be a translation of what the macro does in the log, then copy the
log to the program editor and replace “MPRINT(VDM): “with blank space.

Following is the screen print of the codes that mprint generated in the log (Display2).

Display2: The Log After Using Mprint

An even better alternative is using mprint and mfile options together. Following codes (before invoking the macro)
would save the plain text generated by mprint to a SAS file without doing the copy and paste. SAS automatically
generates the plain text in the file called macode.sas for you.

filename mprint 'desktop\macode.sas';

options mprint mfile;

Following is a screen print of the codes that are generated and saved by mprint and mfile (Display 3).

 7

Display 3. Codes That Are Generated and Saved by Mprint and Mfile

Suppose your co-workers just started to use macro, they understand the simple macro, but the variable
dependent macro is way too abstract for them. You can still use part of the variable dependent macro to make
your life easier. The following codes will generate the command codes in a text file. Then you can copy and
paste the command lines to the simple macro method program to invoke the macro (Display 4).

data one;

 set zero end=eof;

 n=put(_n_,2.);

 call symputx('varout'||left(n), varout);

 call symputx('varin'||left(n), varin);

 call symputx('test'||left(n), test);

 call symputx('type'||left(n), type);

 call symputx('egcat'||left(n), egcat);

 call symputx('unit'||left(n), unit);

 if eof then call symputx('n',n);

run;

%macro string;

 %do i=1 %to &n;

 stri='%setx (varout='||"&&varout&i"||', varin='||"&&varin&i"||', test='||

 "&&test&i"||', type='||"&&type&i"||', egcat='||"&&egcat&i"||

 ', unit='||"&&unit&i"||')';

 put stri;

 %end;

%mend string;

data _null_;

 length stri $250;

 8

file 'desktop\eg_string.txt';

%string

run;

The following are the command codes generated by the above SAS codes.

Display 4. The Command Codes Generated by The Above SAS Codes

CONCLUSIONS

The variable dependent macro method is certainly the best method to use among all three methods discussed
above. Not only it has minimized typing, but it is also most adaptable to other projects. Oftentimes, we have time
constraint to get thing done at certainly time, copy and paste method is a sure thing we can get it done. However,
we should strive to rewrite the programs so it is easier to adapt to new situation. Even though at first it takes time
to develop; In the long run, the variable dependent macro really saves time. Even if we need to increase the
readability of Macro, the knowledge of variable dependent macro still makes our life easier by generating the
codes that can be easily understood without a lot of manual manipulation as illustrated in the above two
examples.

REFERENCES:

 SAS Macro Language 1: Essentials Course Notes

 Carpenter, Art (2004) Carpenter’s Guide to SAS Macro Language Second Edition

 Burlew, Michele M. (2006) SAS Macro Programming Made Easy

ACKNOWLEDGMENTS
Many thanks to Kevin Chung in providing the valuable suggestions for the variable-dependent macro.

 9

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Please contact the author at:
Name: Mindy Wang
Enterprise: Independent Consultant
Address: 14412 Stonebridge View Dr.
City, State ZIP: North Potomac, MD 20878
Phone: (240) 855-3479
Email: ymindywang@yahoo.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:ymindywang@yahoo.com

