
1 

PharmaSUG 2012 - Paper HW01 

An Introduction to the Clinical Standards Toolkit and Clinical Data Compliance 
Checking  

Mike Molter, d-Wise Technologies, Raleigh, North Carolina 
 

ABSTRACT  
Since the dawn of CDISC, pharmaceutical and biotech companies as well as their vendors have tried to inject 
standards compliance checking into their clinical and statistical programming flows.  Such efforts are not without their 
challenges, both from technical as well as process standpoints.  With the production of data sets and tabular results 
taking place inside of SAS® programs, it’s tempting to add code to this flow that performs these checks.  While the 
required code can be relatively straightforward for SAS programmers with even modest programming and industry 
experience, all too often the management of such code and the processes around its use is where the difficulties 
occur.  Without proper management, seemingly simple tasks such as selecting which checks to run or changing 
process parameters become more complicated than necessary. 

The Clinical Standards Toolkit (CST) is an attempt by SAS to build a stable framework for the consistent use of BASE 
SAS around the process of standards compliance checking by striking the proper balance between the flexibility of 
BASE SAS and the needed discipline of process parameter management.  In this workshop we will take a tour of the 
CST components and execute compliance checks under multiple circumstances set by users in these components.  
In the end, users should know not only how to set up programs to achieve this task, but also how to manipulate files 
to make this process work for their own needs.This paragraph is used for the abstract. This is the paper body. This is 
the paper body. This is the paper body. This is the paper body. This is the paper body. 

INTRODUCTION 
The Clinical Standards Toolkit (CST) is a framework based in Base SAS and built by SAS Institute that is used for 
executing certain processes around clinical data.  Such processes include data validation as well as the production 
and consumption of XML standards.  In this paper, focus will be centered on the validation of clinical data based on 
CDISC’s Standard Data Tabulation Model (SDTM).  The description of the framework, however, applies to all 
processes, and the description of the validation process applies not only to SDTM data, but also to the validation of 
data based on CDISC’s Analysis Data Model (ADaM) and XML models (ODM and define.xml). 

The free and open nature of a Base SAS environment might easily lead the reader to wonder how such processes 
can be executed confidently and accurately without, for example, the discipline enforced through tight controls 
implemented through a friendly user interface.  Hence, the term, framework.  While SAS programmers at any moment 
are free to type anything they want into a SAS editor, this paper will show that the strategic placement of 
environmental and process parameters leads the programmer toward a common program structure for all processes.  
Reinforcing this structure is the provision by SAS of sample programs to serve as guidance. 

This paper will begin with a high-level overview of how a process is executed, including how it uses parameters.  
We’ll then take a tour of the CST, discussing location and purpose of directories and files that SAS provides upon 
installation. With this background in place we’ll then walk through the steps necessary to apply a validation process to 
a specific study.  This paper is intended to serve as a supplement, and not a replacement to the User’s Guide that 
SAS offers for the CST on the website.  We will not dive into the detail of every macro that is installed, every variable 
of every data set that is installed, or every macro variable available to the system.  The meanings of these can be 
found in the User’s Guide.  Instead, this paper will try and give the user an idea of how to get started, some of the key 
concepts and some of the pitfalls. 

THE CST FRAMEWORK 
  %sdtm_validate 

With the roughly 100 macros that accompany CST installation, it’s the one line above that when executed, kicks off 
the validation process of a set of SDTM data sets.  What may be most striking about this fact is that the execution of 
this macro makes use of no macro parameters.  The lack of macro parameters leaves the user asking questions such 
as “how does the macro know where the SDTM data is?”, or “what exactly is the macro ‘checking’?”.  One might 
conclude that the only explanation is that the macro makes assumptions about the answers to all such questions.  
Maybe the macro assumes source data is in a directory with a specific libref.  Maybe it executes one set of static 
checks in a particular sequence.  Maybe the programming for each of the checks is hard-coded into the macro.  
Maybe when a particular check is violated, the macro simply writes a hard-coded message to the log for you to find 



An Introduction to the Clinical Standards Toolkit and Clinical Data Compliance Checking, continued 

 

2 

and act upon.  In other words, maybe strict macro requirements such as the location of source data and what to 
check force the user to develop a contrived environment that meets all the demands of the macro, accept all of the 
checks hard-coded in the macro as necessary for each execution, thereby rendering the macro, or more generally, 
the CST system itself, “inflexible”. 

Contrary to this intuition, the system is a highly flexible, parameterized system that gives the user the freedom in 
designing study-specific environments to which they are accustomed.  In other words, users are still free to store not 
only source data, but macros, formats, and other study files wherever they choose.  As we’ll see in detail later, 
validation checks are managed in SAS data sets in which each row represents a unique check (with a small handful 
of exceptions).  Users have control over not only which of these checks to execute, but also which data sets and 
columns are within scope of the current execution, to some extent the code that is executed (without having to alter 
macro code), and other validation parameters.  Even the messages that CST uses to indicate violations of a check 
are accessible to users through SAS data sets.   

On the surface, the concept of a highly parameterized macro that offers no macro parameters seems paradoxical.  In 
a flexible system that offers no macro parameters, how does the system know the answers to the questions about 
location of source data, validation checks, or validation check messages?  The resolution to this mystery is that 
process parameters such as the location of process files are centrally located in what SAS refers to as a 
Sasreferences data set (referred to throughout this paper as SASREFERENCES, which is often used as the name of 
the data set).  This data set contains variables such as MEMNAME and PATH whose values respectively represent 
the name and location of these process files.  MEMNAME is null when the location is only a directory (e.g. source 
data).  Identifier variables such as TYPE and SUBTYPE represent the purpose of the files.  For most parameters, the 
value of these variables comes from a list of allowable values (found in the STANDARDLOOKUP data set).  Text 
variables such as SASREF contain values used as librefs or filerefs, and REFTYPE indicates whether the value of 
SASREF is a libref or a fileref.  Though not always necessary, the ORDER variable allows users to set precedence 
for multiple entries of certain TYPE values. 

Valid values for TYPE and SUBTYPE are set by the CST because in most cases, macro processing requires the 
retrieval and processing of certain kinds of observations from SASREFERENCES in order to accomplish certain 
kinds of tasks.  These two variables serve the purpose of identifying types of observations.  When an observation 
represents the location of source data, the value of TYPE must be “sourcedata”, while SUBTYPE is left null.  
TYPE=”messages” (SUBTYPE null) represents the location and name of the data set that contains messages.  All 
CST processes should have at least one “messages” observation that provides name and location of framework 
messages – messages about general framework tasks.  Framework messages are distinguished from other kinds of 
messages in the STANDARD variable, whose value is “CST-FRAMEWORK” for such messages.  Validation 
processes should contain a second “messages” observation that point to validation-specific messages, identified 
again with the STANDARD and STANDARDVERSION columns.  For example, messages about the results of 
individual checks against SDTM data will be identified by the name of your SDTM standard (e.g. SDTM 3.1.2).  
Because the data set that contains the checks to be executed might be described as a control file (a file whose data 
set contains process input), the value of TYPE for this data set is “control”.  Because other data sets might also be 
described as control data sets, SUBTYPE must be used to uniquely identify the control file.  The validation data set is 
identified by SUBTYPE=”validation”. 

Due to the nature of some of the validation checks, additional process parameters are required in 
SASREFERENCES for a validation process that aren’t so obvious.  Certain checks use data sets whose contents 
represent metadata about the source data.  Metadata is typically kept in two different data sets – one containing 
table-level metadata, the other containing column-level.  Information about these data sets is entered into two 
observations of SASREFERENCES with a value of “sourcemetadata” for TYPE, and either “column” or “table” for 
SUBTYPE.  Other checks compare study metadata to standard metadata – the metadata to which all studies are 
supposed to comply.  The location of data sets that contain these standards, which are structured exactly like the 
study metadata, is entered into SASREFERENCES with a value of “referencemetadata” for TYPE, and again, either 
“column” or “table” for SUBTYPE.  Macros that check compliance to controlled terminology expect this controlled 
terminology to be stored in SAS formats.  The location of these format catalogs is entered into SASREFERENCES 
with a value of “fmtsearch” for TYPE.  When multiple format catalogs are used, ORDER is used to specify searching 
precedence of format catalogs.   

Finally, in addition to process-specific parameters, all SASREFERENCES data sets should have a set of 
observations that represent what we might call environment parameters.  Validation processes (and other processes) 
should have an observation that represents a process-specific properties file (TYPE=”properties”).  A properties file is 
a plain text file with name-value pairs that, through the CST_SETPROPERTIES macro, become global macro 
variables and values.  As with messages, some properties are specific to a process, while others are considered 
framework properties.  For reasons we’ll soon see, process-specific property files should be entered into 
SASREFERENCES while framework properties should be processed outside of the Sasreferences context.  
Additionally, SASREFERENCES should have a TYPE=”autocall” observation, which contains the location of macro 



An Introduction to the Clinical Standards Toolkit and Clinical Data Compliance Checking, continued 

 

3 

libraries.  Of the approximately 100 macros that are installed with CST, about 70 are automatically part of the default 
SASAUTOS path.  These 70 are framework-specific macros.  Process- specific macros (such as SDTM_VALIDATE) 
are stored in different areas and are not immediately available to the user.  Finally, multiple observations can be 
added with TYPE=”results”.  Values of SUBTYPE such as “validationresults” and “validationmetrics” indicate different 
types of results.  PATH and MEMNAME indicate the directory and data set to which these types of results should be 
stored. 

Of course the mere existence of the Sasreferences data set and all the files it documents (e.g. properties files, 
validation control data set, etc) isn’t enough for the CST to know about these files.  For this reason, a SAS program 
that contains the call to the SDTM_VALIDATE macro must also contain code that processes (and depending on your 
preference for storage, even creates) the SASREFERENCES.  Processing the data set generally means making the 
information contained in it accessible to the user.  Through the CSTUTIL_ALLOCATESASREFERENCES macro, 
librefs and filerefs associated with files and directories such as those that contain source data and validation data 
sets are established.  Additionally, for observations where TYPE=”fmtsearch”, 
CSTUTIL_ALLOCATESASREFERENCES sets the priority of the format catalog search by executing an OPTIONS 
statement to set the FMTSEARCH option.  When TYPE=”properties”, CSTUTIL_ALLOCATESASREFERENCES 
executes the CST_SETPROPERTIES macro, thereby creating and initializing global macro variables used by other 
macros.  When TYPE=”autocall”, CSTUTIL_ALLOCATESASREFERENCES adds the location to the autocall path.  
Users that need access to any combination of study-specific, company-wide, or any other source of macros or 
formats, would simply add an observation to SASREFERENCES for each location.  In addition to this macro, users 
can also capture librefs, filerefs, and file names in macro variables through the CSTUTIL_GETSASREFERENCE 
macro.   

The program that accomplishes all of this is known as a driver program.  This is an important part of any CST process 
and worthy of additional emphasis. 

Every CST process is executed with a driver program that processes parameters and executes the 
appropriate process macro (e.g SDTM_VALIDATE). 

Though driver programs will vary slightly according to decisions made by users, every driver program should have at 
minimum, the following three components: 

1. The initialization of framework properties through a call to the CST_SETSTANDARDPROPERTIES macro.  
We stated above that this should not be done through the Sasreferences processing.  The reason is 
because among the framework properties are the name and location of the Sasreferences data set.  
Whereas CST_SETPROPERTIES requires users to supply the location of a property file through a macro 
parameter, this macro calls CST_SETPROPERTIES and automatically populates this parameter with the 
path it retrieves from information registered with the standard (we’ll discuss this later). 

2. The processing of the Sasreferences data set through a call to CSTUTIL_ALLOCATESASREFERENCES or 
CSTUTIL_PROCESSSETUP.  As noted above, this establishes references to libraries and files, sets 
properties through global macro variables, sets search priorities for format catalogs, and establishes autocall 
libraries. 

3. A call to the main process macro.  In the case of SDTM validation, this is the SDTM_VALIDATE macro. 

Other components of the driver program depend on some decisions made by the user.  Some driver programs begin 
with the initialization of certain global macro variables.  One such macro variable seen in examples throughout SAS 
documentation is StudyRootPath.  This is used to store the path of the highest level directory that contains 
subdirectories and files specific to a study.  This allows the Sasreferences data set to be that much more static by 
populating the PATH variable for study-specific observations with references to this macro variable.  If users elect to 
store the Sasreferences data set in the WORK directory, then the driver program is the place to create this data set.  
The same can be said of other data sets the user decides belong in WORK. 

Why this approach?  Why not use the program editor to simply type LIBNAME and FILENAME statements, as well as 
OPTIONS statements that establish format search preferences and macro autocalls?  Why not simply define macros 
like SDTM_VALIDATE with macro parameters, instead of taking the value of these macro parameters and moving 
them into a data set?  We might think of the answers to these questions as being among the defining features of the 
CST framework.  SAS’s program editor is an open, free text, structure-less environment.  Making changes to any 
process parameter usually means searching through a text file (a SAS program), making the change, and hoping that 
you caught all occurrences of text that needed changing.  The CST framework, on the other hand, is an attempt to 
remove as much of this error-prone variability as possible and store it into more structured environments such as 
SAS data sets.  It allows us to build our driver programs with more consistency, following a more predictable flow of 
macro execution, free of “clutter” that reflects user preferences.  This separation of process execution from the 
parameters that feed it allows us to properly manage changing circumstances without changing core code.  As 
mentioned earlier, the free-text Base SAS environment allows users to do anything they want, including using certain 



An Introduction to the Clinical Standards Toolkit and Clinical Data Compliance Checking, continued 

 

4 

aspects of the CST while ignoring others, but the more we ignore, the less advantage we gain from such a 
framework. 

In addition, one of the central themes of the CST is data standards.  We’ve been talking about its application to 
CDISC standards, but we can use it for any set of data standards.  The notion of compliance checking assumes that 
something exists against which we compare our current study data.  Suppose we decide, for example, that every 
study is going to make use of a variable X, whose length shall always have a length of 10, and whose label will 
always be “the letter X”.  On the one hand, we can write code that looks specifically for the variable X in the data set; 
that checks to make sure that the variable’s length is 10 and label is “the letter X”.  But standards such as variable 
attributes maintained in code as hard-coded values become needles in haystacks, nearly impossible to manage and 
sustain when you consider all of the variables of a database, and all of the attributes and other checks that need to be 
executed.  On the other hand, standards expressed as metadata and maintained in a database, thereby removed 
from the code haystack become easier to manage without having to touch core code.  Throughout this paper we’ll 
see how the CST manages data standards. 

At this point it’s clear that CST processes heavily rely on external files.  Upon installation, SAS gives us access to 
dozens of files, some of which are meant to be customized, some not.  At this point we’ll now take a tour of the CST 
system, noting different locations where these files are installed, and where necessary, analyzing in detail the 
structure of these files. 

SAS-INSTALLED FILES 
As mentioned earlier, CST comes installed with over 100 macros, but not all are installed in the same place.  
Approximately 70 of these are known as framework macros, and are stored in !sasroot/cstframework/sasmacro, 
where !sasroot is the core folder for your SAS installation.  Framework macros are intentionally buried in a remote 
location like this, which, depending on your network setup, may not be writeable, because they serve as the 
backbone of the CST and are not meant to be modified. 

Upon installation the framework macros are automatically added to SASAUTOS, your default autocall library, making 
them accessible immediately.  One quick way to test your access to these macros is to execute 
CSTUTIL_SETCSTGROOT.  Depending on the macro options you have set, you won’t see much in your log, but if it 
is accessible, you won’t see errors about not finding the macro. 

Of course any of the framework macros would have sufficed for this test, but CSTUTIL_SETCSTGROOT was chosen 
for its brevity and simplicity.  The only purpose of this macro is to initialize the global macro variable _cstGRoot.  
Executing %put &_cstGRoot ; after the call to this macro uncovers a directory path that was chosen by the user at 
installation.  This path represents the root of most other files installed with CST.  Several framework macros execute 
this macro in order to have this path available.  The path is also often referenced in control data sets such as 
SASREFERENCES, and is referenced frequently in documentation.  Throughout the rest of this paper, this path will 
be referenced the same way it’s referenced in code - &_cstgroot.  We’re now ready to see what files and directories 
SAS installs in this area. 

Four directories are installed within &_cstgroot – Metadata, Schema-repository, Standards, and Xsl-repository.  
Schema-repository and Xsl-repository are storage areas for XML schemas and XSL stylesheets respectively, and 
there usually isn’t much reason to change any of those files.  We’ll spend most of our time in the Metadata and 
Standards directories, where each of the files falls into one of two categories. 

FILES RELATED TO THE REGISTRATION OF STANDARDS 

The first of these categories represents files related to the registration of standards. For a validation process to work, 
a set of data standards must be registered with the CST.  Technically, all that means is that information about the 
standard must be present in the two data sets – STANDARDS and STANDARDSASREFERENCES – in 
&_cstgroot/metadata; and that the standards must be manifested through metadata in 
&_cstgroot/standards/standard-directory/metadata.  CST is installed with several data standards registered, including 
an SDTM 3.1.2 standard and an ADaM 2.1 standard.  The STANDARDS data set contains one record per registered 
standard.  The main information in this data set is the location of the root folder for this standard – normally in 
&_cstgroot/standards (e.g. &_cstgroot/standards/cdisc-sdtm-3.1.2-1.4).  The name of the other data set in 
&_cstgroot/metadata indicates its relationship to the Sasreferences data set discussed earlier.  Both data sets have 
the exact same variables.  STANDARDSASREFERENCES contains for each registered standard, one observation 
for each file or directory related to that standard.  SASREFERENCES, on the other hand, is specific to a process.  
For example, SASREFERENCES for an SDTM validation process will contain many of the observations from 
STANDARDSASREFERENCES related to the SDTM standard, but may also add records related to other standards, 
such as a TYPE=”messages” record where the STANDARD=”CST-FRAMEWORK”, or a TYPE=”fmtsearch” record 
associated with a terminology standard.  Also, unlike SASREFERENCES, STANDARDSASREFERENCES has no 
study-specific records for the standards registered at installation. 



An Introduction to the Clinical Standards Toolkit and Clinical Data Compliance Checking, continued 

 

5 

Moving out of &_cstgroot/metadata and into &_cstgroot/standards, we find one subdirectory for each standard 
installed by SAS, including cdisc-sdtm-3.1.2-1.4.  Within each of these is the Control subdirectory.  Control contains 
two data sets that correspond to the two in &_cstgroot/metadata.  The content is the standard-specific information 
that ends up in &_cstgroot/metadata upon registration of the standard (without the path, which is specified through a 
macro parameter).  Since these standards are registered upon installation, these data sets as installed serve no 
further purpose. 

REFERENCE METADATA 

Also installed in &_cstgroot/standards/cdisc-sdtm-3.1.2-1.4 is a subdirectory called Metadata that contains the data 
sets REFERENCE_TABLES and REFERENCE_COLUMNS.  We’ll sometimes refer to these kinds of files as 
reference metadata files.  They are identified in a SASREFERENCES data set with TYPE=”referencemetadata”.  As 
indicated earlier, the purpose of such data sets is to provide standards through metadata.  It’s important to note that 
these two specific data sets provided by SAS are meant only to serve as a starting point for your standard, but not 
necessarily to be used as your standard.  The content of these data sets is based on the model laid out in the SDTM 
3.1.2 Implementation Guideline.  In other words, REFERENCE_TABLES has every data set modeled in the IG, and 
REFERENCE_COLUMNS has every column.  For several reasons, users should consider building their own 
reference metadata based on their own standards.  One reason is that the IG contains nothing about efficacy data 
sets.  Assuming your studies require efficacy analyses, and therefore your SDTM database will require custom 
domains, your reference metadata must account for these domains.  A second reason is that your reference 
metadata should only have metadata for the domains and variables you plan to use, which most likely does not 
consist of every safety domain and every variable within those domains defined by the IG.  Along those lines, a third 
reason is that these data sets carry metadata for a data set called SUPPQUAL.  In 3.1.2 sponsors are submitting 
multiple domain-specific Suppqual data sets rather than combining them all into one data set. 

Although reference metadata is used as the basis for comparison for compliance checking, not all of its columns are 
used in this way.  We’ll discuss in detail later the study-specific counterpart to reference metadata that reflects an 
instance of a study – source metadata.  As with reference metadata, source metadata is split in two data sets - one 
for table-level and one for column-level metadata – that we will refer to in this paper as SOURCE_TABLES and 
SOURCE_COLUMNS.  These two data sets are structured exactly the same as their reference metadata 
counterparts.  Column-level columns like COLUMN, LABEL, TYPE, and LENGTH are used by certain checks to 
make sure that the source metadata reflects the standard.  Other columns, on the other hand, are not used for 
comparison, but rather as a guide in reference metadata for populating source metadata.  For example, both table- 
and column-level metadata contain columns that are meant to feed define.xml.  Examples include the variables 
XMLPATH at the table level and ROLE and ORIGIN at the column level.  Standards developers may choose to pre-
populate XMLPATH in REFERENCE_TABLES with a typical path to the transport file, relative the location of 
define.xml.  Note that the REFERENCE_TABLES installed by SAS pre-populates this variable with 
“../transport/domain-name.xpt”.  The REFERENCE_TABLES you build for your standard should pre-populate 
according to your directory structure.  ROLE in the REFERENCE_COLUMNS installed by SAS reflects the role 
assigned by CDISC in the IG and should not change.  ORIGIN comes unpopulated but you may choose to pre-
populate it in your standards.  Other variables such as KEYS (data set primary keys) at the table level and 
QUALIFIERS (indicate whether variable values should be uppercased) at the column level aren’t used for comparison 
but are used in certain checks.  Variables like these that are not used for comparison can be copied from the 
reference metadata to the source metadata to provide a starting point for that kind of study-specific metadata.  We’ll 
see later how the production of study-specific metadata can begin with a copy of these columns from reference 
metadata combined with PROC CONTENTS metadata that reflects the actual SDTM database (which will be 
compared to reference metadata). 

The second category of files might be described as “tools”.  We’ve now seen that files that contain information about 
standards are contained in &_cstgroot/metadata.  We’ve also seen that contained within &_cstgroot/standards is one 
directory for each registered standard.  Each of these standard directories contains a Metadata directory that contains 
reference metadata.  In addition, a standard directory will contain other subdirectories to contain these tools.  The 
term “tools” is being used here to describe any files that somehow aid in a process (e.g. SAS macros, driver 
programs, control data sets, etc.).  Let’s now look at some of these tools. 

Although this paper is focusing on the validation process, every process has to use certain framework tools.  We saw 
earlier that framework macros are stored in a separate location to protect them from modification, but SAS does 
install in &_cstgroot/Standards a directory for framework tools (cst-framework-1.4).  Because of this, some might 
even refer to the framework as a standard, but that’s a matter of semantics that we don’t need to get into in this 
paper. 

MESSAGES 

Both the framework directory and the standard directory contain a Messages directory, each containing a 
MESSAGES data set.  The structure for the two is the same.  Each contains message identifiers (RESULTID) and 



An Introduction to the Clinical Standards Toolkit and Clinical Data Compliance Checking, continued 

 

6 

message text.  Messages can be parameterized where parameter values are found in PARAMETER1 and 
PARAMETER2.  These parameter values can be overridden by macro parameters of macros that process these data 
sets.  Both have columns that contain information about the source of the message but this is only meaningful in 
validation messages where the source of the validation check is an external source (e.g. WebSDM). 

It’s important to note the difference between these two data sets.  The SDTM messages are messages about specific 
validations checks and how they were violated.  These violations are violations about the SDTM data itself.  The 
checks that SAS gives us with installation represent SAS interpretations of the SDTM IG.  A record in 
SASREFERENCES with TYPE=”messasges” and STANDARD set to the name of your SDTM standard must be 
included in order to understand the violations that the validation process finds.  Framework messages are meant to 
document the results of certain processes, including anything that went wrong, outside the context of a specific 
standard.  This includes any requirements for a process to run, such as a properly structured and populated 
Sasreferences data set.  SASREFERENCES must contain a second TYPE=”messages” record where 
STANDARD=”CST-FRAMEWORK” in order to understand certain process steps and errors. 

Unlike the reference metadata that SAS gives us to use as a basis for building our own standards, the MESSAGES 
data sets installed with CST require little, if any modification.  Users might choose to change the wording of a 
particular message if they feel the default wording is misleading or difficult to understand, or they may choose to 
change parameter values.  They may also choose to elevate certain violations, for example, from warning to error, if 
violation of such issues is of a particular significance in the organization.  Users that want to add validation checks will 
want to add corresponding messages to the SDTM messages data set with a RESULTID that matches the identifier 
variable value of the check (which we’ll see when we discuss the validation control data set). 

PROPERTIES 

Both the framework and the standard directories also come with a subdirectory called “programs”.  These include 
property files, which are simple text files with a single column of name-value pairs.  The meaning of each of these 
properties is documented in the CST User’s Guide.  As with messages, SDTM properties are specific to the validation 
process.  Access to these properties through global macro variables is gained through the execution of 
CST_SETPROPERTIES where the path and filename of the property file is required through macro parameters, or 
CST_SETSTANDARDPROPERTIES, where the macro gets path and file name information from 
STANDARDSASREFERENCES, using the name of the standard provided through a macro parameter.  Optionally, 
users can add a record to SASREFERENCES, where TYPE=”properties”.  For this process, because CST contains 
two different property files, SUBTYPE must be set to “initialize” or “validation”, or have one record for each.  
Execution of CSTUTIL_ALLOCATESASREFERENCES will call on CST_SETPROPERTIES with the path and file 
name information it contains. Among the properties in the framework property file installed by SAS are those that 
represent the name and location of the Sasreferences file.  For that reason, these macro variables must be set before 
the Sasreferences data set is processed, since CSTUTIL_ALLOCATESASREFERENCES otherwise won’t know 
where the Sasreferences data set is.  For this reason, this file is often processed at the beginning of a driver program 
using CST_SETSTANDARDPROPERTIES. 

Property files provided by SAS also can usually be left alone, although a user may want to do some research on their 
meanings and change some values.  For example, if users want temporary data sets to be kept after process 
execution, they may choose to set the _CSTDEBUG property to 1.  Users may also decide to store 
SASREFERENCES somewhere other than the default WORK location. 

MACROS 

Also installed in the standard directory are the Macros subdirectories.  Macros contains SAS macros relevant to the 
standard, including SDTM_VALIDATE.  These get added to the autocall path only by their inclusion in 
SASREFERENCES with TYPE=”autocall” and the execution of CSTUTIL_ALLOCATESASREFERENCES.  For the 
most part, these should require no modification, but users should get to know these before using them.  We’ll see 
later that SDTMUTIL_CREATESRCMETAFROMSASLIB is a macro that was actually written as a shell as is meant to 
be modified. 

VALIDATION CONTROL 

Directories that represent standards that support validation such as the SAS-installed SDTM standard contain a 
Validation directory, which in turn contains a Control directory.  Contained in here is the VALIDATION_MASTER data 
set, or what we will describe as a master validation control data set.  Each observation represents one validation 
check, and each observation from a run-time control data set (a subset of the master control data set, discussed 
later) is processed by SDTM_VALIDATE one at a time.  The variables represent a mix of data that combines 
information for the user and data that is used by the validation process.  Informational variables include 
CHECKSOURCE and SOURCEID which give users an idea of from where the check originated.  CHECKTYPE is a 
useful guide for how to group checks together for execution.  Values such as “Metadata”, “Date”, and “MultiRecord” 
give an idea of what is being checked.  CHECKSTATUS is used to indicate whether or not the check is ready for 



An Introduction to the Clinical Standards Toolkit and Clinical Data Compliance Checking, continued 

 

7 

execution.  Upon installation, positive values mean that the check is active.  A value of 0 means inactive, but users 
can change them to active when appropriate.  For example, check SDTM0450 is initially set to 0, but when the user 
has a data set that contains dictionary terms against which a variable’s values can be compared, then the user can 
set this to Active. Variables used by SDTM_VALIDATE include CODESOURCE, TABLESCOPE, COLUMNSCOPE, 
CODELOGIC, LOOKUPTYPE, and LOOKUPSOURCE.  CODESOURCE names a macro to be called as part of the 
process.  TABLESCOPE and COLUMNSCOPE use a convention to tell the macro which data sets and columns to 
check.  The value of CODESOURCE is valid SAS code used only by certain macros.  LOOKUPTYPE and 
LOOKUPSOURCE provide information about where to find controlled terminology lists against which to check data.  
What this data set does not contain is a variable that gives the user an idea of what is being checked.  Messages 
about the meaning of checks are found in the Messages data set for the same standard.  A useful exercise is to 
merge these two data sets by the check identifier. 

For those getting started with validation checks through the CST, this data set should need no modification.  Users 
might discover after a while that changing values of certain informational variables, such as CHECKSTATUS as 
discussed above, or elevating the severity of a check from “Warning” to “Error” through the CHECKSEVERITY 
variable is more useful to their needs.  Only the advanced user that has become intimately familiar with how the 
validation process and each of its components works should make attempts at changing values of variables that the 
process uses.  For example, making changes to the SAS code that serves as the value of the CODELOGIC variable 
requires an in-depth knowledge of exactly where in the process this code is executed, as well as the names of 
temporary data sets available to it and what is expected to come out of it.  Adding custom validation checks means 
adding new observations to the master data set.  Populating each of these variables for the new check also requires 
a detailed knowledge of where each fits into the process. 

This wraps up our discussion of the files that SAS gives to us, some that are necessary for any data standards we 
wish to implement, some to get us started down the road of building our own standards.  In summary, most of these 
files can be used as installed with little to no modification.  Properties can be adjusted to suit user preferences.  Once 
users feel comfortable with the way the system works with the files, customization of checks to meet an 
organization’s needs can be implemented through changes to the validation checks and Messages data sets.  The 
two files that will almost certainly need modification to implement custom data standards are the two reference 
metadata files. 

Before we move on to the next section, let’s be clear about what is meant by “modification” of files.  In effect, what 
SAS has installed for us is a set of sample data standards (e.g. SDTM, ADaM).  We can say this because while many 
of the tools that come with a standard can be used across standards, the reference metadata, which is the defining 
feature of the standard, cannot.  The reference metadata that SAS has installed serves as a starting point, a guide for 
our own reference metadata, based on everything defined in CDISC implementation guides.  Modification could mean 
the direct modification of the files SAS has given us.  However, in order to preserve the original files and use them as 
a starting point for all future custom standards, a better practice would be to make modifications to copies of these 
files, to serve as a new standard. 

USING CST 
For the rest of this paper, in order to demonstrate the steps required to use CST for the purpose of validating SDTM 
data, let’s imagine that we work for a pharmaceutical company called XYZ.  XYZ runs both phase 2 and phase 3 
trials, and maintains data in SDTM and ADaM formats.  They also maintain controlled terminology and produce 
define.xml.  For SDTM, each of the phases consistently produces a subset of the safety domains documented in the 
SDTM 3.1.2 IG, a certain set of custom efficacy domains, and a handful of SUPPQUAL data sets.  While the set of 
data sets and variables is consistent within a phase, they are not the same between the two phases.  XYZ would like 
to be able to execute compliance checks on phase 2 or phase 3 SDTM data according to the appropriate standards. 
These differing standards will be manifested through custom reference metadata. 

Note:  In reality, an organization, depending on its size and the kinds of trials it manages, may require multiple sets of 
standards, such as one for each therapeutic area. 

Before we can ever begin to use the CST, we have to make sure that all of the setup files that we discussed above 
are in place and customized to our organization’s needs.  For this exercise, we’ll make the reasonable assumption 
that all of the framework tools (properties and messages), as well as all of the SDTM properties, messages, macros, 
and the master validation data set installed by SAS can be used for both standards.  Only the reference metadata 
needs customizing, as well as the information needed to register the standards. 

REGISTERING A STANDARD 
Regardless of how much customization is required, the standards files that SAS gives to us at installation are always 
a good place to start to build our standard.  For that reason, a good first step is to create a directory somewhere 
within the installed Standards directory for each standard you’re creating.  Within each new standard directory, we’ll 
copy and paste all of the SAS-installed directories and included files from within cdisc-sdtm-3.1.2-1.4. 



An Introduction to the Clinical Standards Toolkit and Clinical Data Compliance Checking, continued 

 

8 

 
Display 1:  Directory Structure for Installed and Custom Standards 

In Display 1, we see that alongside each of the standards folders that SAS has installed for us, we have created one 
folder dedicated to all of XYZ’s standards, and then inside divided them between phase 2 and phase 3.  Because we 
want not only SDTM, but also ADaM and other standards, we have an additional layer of subdirectories.  Underneath 
XYZ3-sdtm-3.1.2 are copies of the directories and files that SAS installed in cdisc-sdtm-3.1.2-1.4 that we have 
described above.  The user is now ready to make changes to the reference metadata data sets stored in XYZ3-sdtm-
3.1.2/metadata (as well as the corresponding phase 2 data sets). 

In addition to changing the standard metadata, in preparation for registering the new standard, changes will have to 
be made to the two data sets in XYZ3-sdtm-3.1.2/control.  The registration process adds the contents of these two 
data sets to their counterparts in &_cstgroot/metadata.  Having copied these from the SAS-installed cdisc-sdtm-3.1.2-
1.4 directory, the value of STANDARD and STANDARDVERSION still reflects that of the SAS-installed SDTM 
standard.  At minimum, prior to registration, the user must change these values to reflect the name and version of the 
standard they are creating.  In STANDARDS, this should be all that’s needed to change.  Remember that 
STANDARDSASREFERENCES contains paths and filenames within the standard directory.  Since we are keeping 
those same directory structures, no changes are needed in this copy either. 

With all of the files within XYZ3-sdtm-3.1.2 customized, we’re now ready to register our new standard.  Any program 
that registers a standard must have two main components: a call to CST_SETSTANDARDPROPERTIES to initialize 
framework properties, and a call to CST_REGISTERSTANDARD to register the standard. 

   %cst_setstandardproperties( 

   _cststandard=CST-FRAMEWORK, 

   _cstsubtype=initialize) 

This macro reaches into the STANDARDSASREFERENCES data set in &_cstgroot/metadata and finds the 
observation uniquely identified by the macro parameter values through the values of STANDARD and SUBTYPE.  
From this record it knows from the PATH and MEMNAME variables which properties file to process. 

   %cst_registerstandard( 

   _cstrootpath=%nrstr(&_cstgroot/standards/Company XYZ standard/Phase 3 standards/ 

      XYZ3-sdtm-3.1.2, 

   _cstcontrolsubpath=control, 

   _cststddsname=standards, 



An Introduction to the Clinical Standards Toolkit and Clinical Data Compliance Checking, continued 

 

9 

   _cstStdSASRefsDSName=standardsasreferences) 

This macro takes the one observation from the data set whose name matches that of the third parameter, found in 
the directory formed by the combination of the first two parameters, populates the ROOTPATH variable with the value 
of the first parameter, and adds the observation to STANDARDS in &_cstgroot/metadata.  Similarly, it takes all of the 
observations from the data set whose name matches that of the fourth parameter (also found in the directory named 
for the combination of the first two), adds the value of PATH to the value of the first parameter to form the new value 
of PATH, and again, adds the result to STANDARDSASREFERENCES in &_cstgroot/metadata. 

SAS provides us with a sample program called Registerstandards.sas, located in cdisc-sdtm-3.1.2-1.4/programs that 
accomplishes this task.  This program goes to some effort to first find out if the standard is already registered, and 
only registers it if a previous version of the standard does not exist. 

PREPARING A STUDY 
Now that the standard is in place, we’re ready to begin working with specific studies.  Although CST comes with 
samples of study validation processes as we’ll soon see, unlike with the standards files, it doesn’t recommend any 
one directory structure.  This is to say that the CST is flexible enough to work with whatever directory structure you 
have in place, as long as you record these in the SASREFERENCES data set.  Of course, whatever that structure is, 
certain checks require certain files to be in place, so before we start looking at the checks themselves, let’s take a 
look at what these files are. 

SDTM DATA 

Maybe the most obvious requirement is the need for data, or at least data sets.  Certain checks that look for violations 
in metadata (i.e. attributes) only require data sets with the appropriate variables, even if they have no observations.  
Most checks though are checking for compliance in the content, and best practices might say that it’s best to run all 
the checks after zero-observation data sets have been populated. 

SAS doesn’t provide any guidance on how to use CST to create the data sets themselves.  Certainly because of the 
different ways data is collected and the different interpretations of the SDTM guidelines, it would be difficult to provide 
a driver program that could accomplish this in all or even most cases.  However, even if CST can’t help us populate 
data sets with data, we can use the reference metadata to build zero-observation domains that are compliant at least 
in structure.  Remember that structural compliance of a database in the CST is defined by the matching of its 
attributes to the reference metadata.  By populating such domains with data, we should have structural compliance 
simply because of the defining source.  The following assumes that “refmeta” has been established as a libref for 
location of reference metadata and that “srcdata” has been established as a libref for the location of the SDTM data.  
The SQL step joins the data set label with the column-level metadata.  The DATA step then reads the result and 
through CALL EXECUTE, generates code that builds each zero-observation data set using the ATTRIB statement to 
set labels, lengths, and types. 

   proc sql ; 
 create table meta as  
 select a.table as dsname, a.label as dslabel,b.column,b.label,   
b.order,b.type,b.length    
 from refmeta.reference_tables a,refmeta.reference_columns b 
 where a.table=b.table 
 order by a.table,b.order ; 
 quit; 
 
   data _null_ ; 
 set meta ; 
 by dsname ; 
 if first.dsname then call execute ('data 
srcdata.'||compress(dsname)||'(label="'||trim(left(dslabel))||'");') ; 
 call execute('attrib '||compress(column)||' label="'||trim(left(label))||'" 
length='); 
 if type eq 'C' then call execute('$'); 
 call execute(compress(put(length,best.))||';') ; 
 if last.dsname then call execute(' stop; run; ') ; 
 run; 

FORMATS 

Most checks that evaluate the compliance of data values to controlled terminology standards, do so by default by 
looking for certain formats that are developed in just the right way.  Knowing which format against which to compare 
depends on the check.  Check SDTM0221 scans the SOURCE_COLUMNS data set (study-specific column level 



An Introduction to the Clinical Standards Toolkit and Clinical Data Compliance Checking, continued 

 

10 

metadata) for all variables (rows) where XMLCODELIST is populated.  It assumes that this variable is populated with 
the name of a format.  The validation master control data set also contains several checks, each of which checks one 
variable against one format, the name of which is found in the LOOKUPSOURCE variable when 
LOOKUPTYPE=”FORMAT”.  In both cases, the macro, once it finds the format, turns it into a data set (using the 
CNTLOUT option on a PROC FORMAT statement).  The comparison is then made between data values and the 
values of the LABEL variable of the CNTLOUT data set.  Recall that it’s the values on the right side of the equal signs 
in the VALUE statement of a PROC FORMAT that define this variable.  In other words, make sure that for every 
variable subject to controlled terminology according either to XMLCODELIST or LOOKUPSOURCE, a format is 
created that is named for the value of one of those variables, and that no matter what is on the left side of the equal 
signs in the VALUE statement, the controlled term list to which the variable is subject is on the right. 

From a study perspective, the development of this controlled terminology will require some concentrated effort.  SAS 
gives us in the controlled terminology standard data sets that represent all of the controlled terminology published by 
CDISC.  They also turn these into formats according to the method described in the last paragraph.  For most 
studies, if not all, this exhaustive list of terms will not be relevant. Some lists won’t be needed.  Others will be needed 
with some modification, either by extending extensible lists, or removing irrelevant terms.  For this reason, it’s a good 
idea in each study to develop a study-specific controlled terminology library (format catalog), stored somewhere in the 
study area.  This catalog would contain modifications of CDISC lists, using the same name, as well as new lists.  The 
SASREFERENCES data set would then contain TYPE=”fmtsearch” records pointing to each catalog, but assigning a 
value of 1 to the ORDER variable on the record pointing to the study catalog and 2 for the record pointing to the SAS-
installed catalog. 

EXTERNAL DICTIONARIES 

Some variables are subject to controlled term lists defined by external organizations such as Meddra.  Such lists by 
default are maintained not in format catalogs, but in data sets.  Check SDTM0451, by default, is looking for a data set 
named “meddra” and comparing the values of AEDECOD to the values of a variable in this data set called 
PT_NAME.  Obviously this data set with this variable must exist for this check to work.  Check SDTM0450 is a more 
general version.  For this check to work, a user must enter the name of the data set that contains the dictionary (e.g. 
WHODRUG) into the value of the LOOKUPSOURCE variable, and also enter the name of the variable %let 
statement in the CODELOGIC variable. 

METADATA 

Checks that evaluate the compliance of metadata do so by using data sets that contain this metadata – source 
metadata.  The structure of the source metadata must match the structure of its reference metadata counterparts.  
Keep in mind though that some of the variables of these data sets are only used for define.xml purposes and not for 
compliance checking.  Although all variables must be present, in this paper we’ll only concern ourselves with 
variables used for compliance checking.  Unlike the case with study data or study-specific format catalogs, SAS does 
provide us with some guidance on using the CST to build this metadata through the use of a driver program and a 
macro stored in the SDTM standard macros directory.  However, users should use this guidance with caution for 
several reasons.  The driver program is written to accomplish the task of creating source metadata using either of two 
very different sources – the SDTM itself (the source we are using here), or from the define.xml.  The user must make 
this selection through one of several global macro variables initialized at the beginning of the program.  The program 
then goes through some typical driver program tasks such as executing CST_SETSTANDARDPROPERTIES and 
creating a SASREFERENCES data set.  At the end, the program executes CSTUTIL_GETSASREFERENCE several 
times.  Recall that this macro creates macro variables out of chosen values of SASREF and MEMNAME from 
SASREFERENCES.  After this is a single reference to a macro variable which resolves to a macro call, based on the 
method chosen for creating the metadata.  The purpose of the macro variables created by 
CSTUTIL_GETSASREFERENCES isn’t clear at this point until one starts to dive into either of the macros called. 

Inside the macro definition (SDTMUTIL_CREATESRCMETAFROMSASLIB) are several comments that warn you of 
hard-coding, and the fact that the source metadata being created is based on assumptions, and that the user should 
take some time to analyze the results and decide if any post-execution modification is necessary.  For the most part, 
the macro wants to merge metadata that comes from PROC CONTENTS (e.g. data set name and label, variable 
name, label, length, type, order) with the metadata reported in the reference metadata that you can’t get from PROC 
CONTENTS, including define.xml metadata.  Most of the assumptions built into the macro are based on how to guess 
at some of this metadata when the metadata is for some reason not found in the reference metadata.  For example, 
data set keys, in this situation, are extracted from the sort order when the data set is sorted according to PROC 
CONTENTS.  When it isn’t, the keys are assigned based on the domain class. 

While STANDARD and STANDARDVERSION must be populated at both the table and column level for processing 
purposes, the only metadata at the table level that doesn’t come from PROC CONTENTS that’s used in compliance 
checking is KEYS.  The only such metadata at the column level is XMLCODELIST (discussed above), CORE, and 
QUALIFIERS.  Because these pieces of metadata don’t come from PROC CONTENTS, the best we can do at the 



An Introduction to the Clinical Standards Toolkit and Clinical Data Compliance Checking, continued 

 

11 

study level is to pre-populate them with their standard-level values (from reference metadata), and then go back and 
manually review them to see if they apply for the current study.  This is inevitable no matter which method you use to 
create your source metadata.  Users need to make the decision whether they want to use the guidance provided by 
SAS or develop something on their own.  Another option is to do something in between.  We’ve stated our case for 
the benefits of using the CST framework as much as possible.  Users might choose to stay with the driver program 
approach.  The macro contains hard-coding that is provided only as a placeholder so it’s expected to be modified 
anyway.  The user might take this opportunity to customize the macro.  For example, the hard-coded values might 
instead be solicited through macro parameters.  Users might also decide that upon discovery that a data set was not 
found in the reference data, a message should be delivered to the user rather and perhaps processing should be 
stopped, rather than trying to guess at what the metadata should be. 

THE DRIVER PROGRAM AND THE RUN-TIME VALIDATION CONTROL DATA SET 

The final piece of the study pie is the driver program.  We discussed the basic structure of this file earlier so we won’t 
repeat the details, but let’s at least fill in some gaps.  We know that the minimum components of this structure are the 
call to CST_SETSTANDARDPROPERTIES, to CSTUTIL_ALLOCATESASREFERENCES, and to SDTM_VALIDATE.  
We also mentioned that any data sets that we decided would be stored in the WORK directory would need to be 
created in this driver program.  Though not required, in our example and the SAS examples, we have decided that 
SASREFERENCES was one such data set.  We now know that some of the records in SASREFERENCES must 
point to study areas (e.g. study data, study formats, study metadata). We can insert these study paths directly into the 
SASREFERENCES data set, or, as SAS examples illustrate, we can instead insert a macro variable reference in their 
places and initialize the macro variable at the beginning of the program.  SAS demonstrates the use of two such 
macro variables:  STUDYROOTPATH and STUDYOUTPUTPATH, representing the top level of the study area and 
the directory within the study area would output such as results data sets would be saved, respectively.  Either way, it 
is this requirement of SASREFERENCES that makes the driver program a study-specific data set.  Programmers 
who like to separate the study-specific code from everything else might choose to store only the initialization of the 
two study-specific macro variables in the driver program, followed by a %INCLUDE to a more centrally located 
program that takes care of the rest of the validation tasks. 

The record in SASREFERENCES that points to the run-time validation control data set must have TYPE set to 
“control” and SUBTYPE set to “validation”.  For several reasons that include execution time, computing resources, 
and availability of log space, SAS highly recommends not executing all the checks available at one time.  Thus, the 
“run-time” description refers to a subset of the master validation data set, optimized for these purposes.  Although not 
required and contrary to the examples SAS gives us, one option for storing this data set is in WORK.  Because we 
can’t execute them all at once, we will most likely be executing them in groups, one after the other.  If we decide that 
we will always run them in the same groups, then we might decide to store each of the groups in their own permanent 
data sets.  However, storing them in WORK gives the user the freedom to execute them in groups that are 
convenient at the time.  For example, suppose that a user executes 10 checks at once, and one of them fails.  After 
fixing the problem, the user may just want to run that one check by itself, rather than with the nine others that have 
already succeeded. 

EXECUTING VALIDATION CHECKS 

Since we are putting the run-time control data set into WORK, the code used to create it belongs in the driver 
program.  At minimum, this should include a DATA step (or PROC SQL) that reads the master validation data set and 
subsets.  Keep in mind that SASREFERENCES has information on the name and location (in  this case, WORK) of 
where SDTM_VALIDATE should expect to find the run-time data set, so the data set created in our DATA step must 
comply.  One can easily look at their SASREFERENCES data set, see what the libref and data set name are, and 
type the DATA step accordingly.  However, the following code is more in the CST spirit. 

   %cstutil_getsasreference( 
   _cststandard=XYZ3 SDTM, 
   _cststandardversion=3.1.2, 
   _cstsasreftype=control, 
   _cstsasrefsubtype=validation, 
   _cstsasrefsasref=vcref,  
   _cstsasrefmember=vcmember) ; 
 
   data &vcref..&vcmember ; 
   … 
     

The call to CSTUTIL_GETSASREFERENCES creates a macro variable called VCREF (fifth parameter) and assigns 
it the value of the SASREF variable in SASREFERENCES for the observation on which STANDARD=”XYZ3 SDTM” 
(first parameter), STANDARDVERSION=”3.1.2” (second parameter), TYPE=”control” (third parameter) and 



An Introduction to the Clinical Standards Toolkit and Clinical Data Compliance Checking, continued 

 

12 

SUBTYPE=”validation” (fourth parameter).  It also creates a macro variable called VCMEMBER (sixth parameter) 
whose value is set to the value of MEMNAME from the same observation.  These values are then used in the DATA 
statement.   

The SET statement will need to read the master validation data set, but of course in doing so, it will need a libref and 
data set name too.  Although it’s not used in the process, this information can be entered into SASREFERENCES 
with TYPE=”referencecontrol” and SUBTYPE=”validation”.  CSTUTIL_GETSASREFERENCES can again be called to 
pass the libref and data set name into macro variables, to be referenced in the SET statement. 

In addition to subsetting, another useful way to limit the scope of a run-time control data set is by changing 
TABLESCOPE and COLUMNSCOPE.  For example, check SDTM0221 checks the values of the all the variables in 
which XMLCODELIST is populated against their corresponding codelists.  Let’s suppose that after having executed 
this check, one variable was in violation.  After making the necessary fixes, you only want to execute the same check 
against the one variable that was in violation.  The following example illustrates this with the AESEV variable from the 
AE domain. 

   data &vcref..&vcmember ; 

   set &mcref..&mcmember ; 

   where checked eq “SDTM0221” ; 

   tablescope=”AE” ;  

   columnscope=”AESEV” ; 

   run;  

 

RUN-TIME EXECUTION SUBSETS 

With over 200 observations in the SAS-installed master validation data set, how does one decide where to start, and 
how to subset the checks?  How does the user decide which checks are even worthy of executing?  For starters, we 
can use the variables provided in the data set as a guide. 

The CHECKSTATUS might be the first variable to look at.  It makes sense to immediately eliminate any checks that 
aren’t active.  This includes inactive, deprecated, and not-yet-implemented checks.  Depending on your 
circumstances, you may only need to be concerned about a certain level of severity, which would require a filter on 
CHECKSEVERITY.  CHECKTYPE provides a more logical grouping based on what is being checked.  With nine 
groupings, the number of checks in each group on average becomes more manageable. 

Most likely, the use of these SAS-supplied variables will serve only as a beginning for a subsetting strategy.  A 
thorough examination of the code that is executed, organizational decisions regarding the significance or lack thereof 
of certain checks, careful thought about a logical flow into which the checks can be organized, along with testing and 
experience will, over time, help your organization develop a natural process for handling these checks.  We’ll 
conclude this paper with some factors to consider beyond the variables in the master control data set when starting 
down this road. 

For starters, users should read through the checks, their messages, and in some cases, maybe even their code in an 
effort to decide whether or not the check is even worthy of executing.  For example, many of the checks whose 
CHECKSEVERITY is “Note” may be checking issues that aren’t of concern to you.  Examples include check 
SDTM0202 which reports on expected variables that have null values.  SDTM permits null value in Expected 
variables.  Check SDTM0005 checks for custom data sets to make sure their names start with “X”, “Y”, or “Z” - a 
CDISC suggestion, but not a requirement.  Check SDTM 0014 makes sure permissible variables are present - again, 
not a CDISC requirement. 

In some cases, what a particular check is trying to uncover overlaps with the intentions of another check.  SDTM0607 
checks to make sure that SITEID isn’t always null, a check that is also accomplished SDTM0605 which makes sure 
all variables are populated on at least one observation.  Perhaps the most overlap occurs in the CNTLTERM 
category.  Check SDTM0221 makes sure that all variables whose metadata variable XMLCODELIST is populated 
have values in the format defined and named by XMLCODELIST.  Most of the other CNTLTERM checks compare the 
values of an individual variable named in COLUMNSCOPE in the validation control data set to the format named in 
the corresponding value of LOOKUPSOURCE.  Any variable named in one of these checks whose metadata variable 
XMLCODELIST is populated will be checked against its controlled terminology in two different checks.  For example, 
the value of XMLCODELIST in the REFERENCE_COLUMNS provided by SAS is AESEV.  That means that check 
SDTM0221 will check values of this variable against a SAS format called AESEV (as well as other variables with a 
non-null value for XMLCODELIST).  In the master validation control data set, the value of LOOKUPSOURCE for 



An Introduction to the Clinical Standards Toolkit and Clinical Data Compliance Checking, continued 

 

13 

check SDTM0467, a CNTLTERM check, is $AESEV.  Both of these in the run-time control data set will result in the 
same compliance issue being checked. 

Technically, there’s nothing in the CST that prevents us from executing checks in any order we want.  However, a 
careful examination of all of the checks and the topics they cover reveals a logical flow that can serve to guide the 
user both in terms of order as well as execution groups.  The groups defined by SAS give us a good start, but we can 
dive a little deeper. 

SAS categorizes the checks into the following groups:  CNTLTERM, COLUMN, COLUMNATTRIBUE, 
COLUMNVALUE, DATE, DERIVATION, METADATA, MULTIRECORD, and MULTITABLE.  While METADATA and 
COLUMNATTRIBUTE are concerned with data set and column structure, the rest of the categories are concerned 
with data values.  The overall approach advocated in this paper follows a natural sequence that begins with structural 
checks.  These are checks that involve metadata and comparisons between reference and source metadata.  This 
starts at the domain level and then works its way down to the column level.  Once confident that these are in place, 
and that the source metadata is set up the way it is supposed to be according to the reference metadata, then we’re 
ready to move more into value-level checks.  In terms of the SAS categories, on a high level, this means starting with 
the METADATA checks, and then progressing to the COLUMNATTRIBUTE checks.  More specifically, within 
METADATA, checks SDTM0004 and SDTM0006 are good to start with.  They make sure that data set-level 
alignment exists between reference metadata, source metadata, and the data itself.  Check SDTM0001 makes sure 
that all domains have observations. Once data set alignment is known to be in place, we move into column alignment 
and existence.  Still within METADATA, SDTM0015 checks alignment between reference and source metadata, while 
SDTM0012 and SDTM0013 make sure that required and expected columns, as determined by metadata, are 
present.  Once column existence is established, then we can look at adherence to standard column attributes such as 
length (SDTM0022 and SDTM0023), labels (SDTM0030), type (SDTM0019), and order (SDTM0020).  These checks 
still fall into SAS’s METADATA category, but this is also a good time for SAS’s COLUMNATTRIBUTE category, which 
make sure that the number of characters in values of certain variables don’t exceed thresholds specified in the SDTM 
IG.  Examples include the eight character limit on the values of --TESTCD, QNAM, ETCD, etc. 

We can begin our venture into the value level checks with those concerned with the existence of data.  Many of these 
are found in the COLUMN category such as SDTM0201 and SDTM0271 which make sure required and key variables 
have values.  The MULTIRECORD check SDTM0605 makes sure all variables have values for at least one 
observation.  Others include making sure variables aren’t don’t have null values when another variable is non-null.  
One example of this is check SDTM0231 which makes sure AGE isn’t null when AGEU isn’t null.  SDTM0507 checks 
the opposite, that AGEU has a value when AGE is populated. 

Next, single value checks can be executed.  These include all of the controlled terminology checks (CNTLTERM), 
plus various COLUMNVALUE and DATE checks.  COLUMNVALUE checks make sure column values make sense, 
such as AGE>0 (SDTM0506), DOMAIN=the name of the domain (SDTM0206), study day variables (--DY) are never 
0 (SDTM0222).  DATE checks like SDTM0101 and SDTM0102 make sure date and duration values are ISO8601 
compliant.  Following these are certain COLUMN and DATE checks that check consistency of values across 
variables, such as the requirement that ARM is set to “Screen Failure” or “Not Assigned” when ARMCE is 
“SCRNFAIL” or “NOTASSGN” (checks SDTM0500 and SDTM0501). 

Once comfortable that variable values are populated when necessary, and populated appropriately and consistently 
with other variables, we can then start checking that they’re consistent with variable values from other records 
(MULTIRECORD) and even with other data sets (MULTITABLE).  Examples of the former include checks for 
uniqueness (SDTM0602 checks uniqueness in the key variables, 0641 checks USUBJID uniqueness in DM).  Once a 
data set’s data appears clean within its own context, then the MULTITABLE checks can be executed to make sure 
rules that span data sets are met.  Examples include making sure that USUBJID values found outside of DM are also 
found in DM (SDTM0801), subject element codes (ETCD) and visits found outside of TE and TV respectively, are 
also found in those domains (SDTM0811 and SDTM0846). 

The checks mentioned in the examples above are far from exhaustive, and the approach is just one of a number of 
approaches to test.  The above discussion is meant to serve as a guide for those getting started with compliance 
checks, but in the end, it will require time and experimentation for an organization to decide which checks are 
important, and which execution strategy works best for them. 

CONCLUSION 
Since the dawn of organized clinical trial data standards when data managers, programmers, and statisticians started 
to see language in the documentation about required data elements, organizations have been trying in some fashion 
not only to create compliant data, but somehow “make sure” it was right.  Because we create the data by writing SAS 
code, using the same method to check compliance seems a natural extension.  Unfortunately, without discipline built 
around this process, compliance checks get lost in free-text code, often localized to individual work stations, and 
become nearly impossible to maintain and spread across an organization.  In short, they become difficult to manage.  



An Introduction to the Clinical Standards Toolkit and Clinical Data Compliance Checking, continued 

 

14 

The CST attempts within the free text editor of BASE SAS to take a step back, look at everything that needs to feed 
into such a process, account for it all with an intelligent directory and data set structure, and build a framework around 
it.  Yes, opportunity still exists for programmers to slip outside of the process, but with proper foresight and 
management of central files, this can be kept to a minimum. 

RECOMMENDED READING  
• SAS Clinical Standards Toolkit User’s Guide 1.4  

• CDISC SDTM Implementation Guide 

CONTACT INFORMATION <HEADING 1> 
Your comments and questions are valued and encouraged. Contact the author at: 

Name:   Mike Molter 
Company:   d-Wise Technologies 
Work Phone:  919-600-6237  
E-mail:   mmolter@d-wise.com 
  

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration.  

Other brand and product names are trademarks of their respective companies.  

mailto:mmolter@d-wise.com

	Abstract
	Introduction
	THE CST FRAMEWORK
	SAS-installed files

	Recommended Reading
	Contact Information <heading 1>

