
PharmaSUG 2012 – Paper PO17

Basic Debugging Techniques
Beatriz Garcia, Pharmanet/i3, Mexico City

Alberto Hernandez, Pharmanet/i3, Mexico City

ABSTRACT
When we are working with a large amount of data, tracking down logic errors in our code may be difficult to do; for
example, the size of a Data Set may make it difficult to print, and manually tracing through record processing can
take a long time.

Since debugging is the process of removing logic errors from a program, this paper describes some useful
techniques like using a simple %PUT statement; PUT statement or the DATA Step Debugger(SAS® 9.2) to facilitate
and speed up the debugging of your SAS code.

INTRODUCTION
Debugging is the process of removing logic errors from a program. Unlike syntax errors, logic errors do not stop a
program from running, instead, they cause the program to produce unexpected results.

When the code is not working as expected, the starting point is to discover what it is doing.

This paper will present some useful techniques for all programmers, from beginners to advanced.

• %PUT Statement
• PUT Statement
• DATA Step Debugger

%PUT STATEMENT
Adding a % before the PUT statement displays the values of macro variables in the log.

In this case, is needed to know how many patients are for treatment; so it is useful for tracking the total of population.

Example:

DATA TTreatment;
INPUT Patient $ Rtrtn;
DATALINES;
1001 1
1002 2
1003 1
1004 1
1005 2
1006 1
1007 1
1008 2
1009 2
1010 2
;

Run;

Proc sql noprint;

Select count(distinct PATIENT) into:RND1 from TTreatment where RTRTN = 1;
Select count(distinct PATIENT) into:RND2 from TTreatment where RTRTN = 2;
Select count(distinct PATIENT) into:RND3 from TTreatment where RTRTN in (1,2);

Quit;

1

Basic Debugging Techniques, continued

%put &rnd1 &rnd2 &rnd3;

LOG Output

222 %put &rnd1 &rnd2 &rnd3;
5 5 10

PUT STATEMENT

CASE 1

PUT Statement allows the SAS programmer to evaluate whether a SAS function is working properly

Example:

DATA _NULL _;

Weight=65;
Height=1.51;
BMI= Weight/(Height*Height);
Put BMI;

Run;

LOG Output
28.5075216

Using a PUT statement after BMI evaluation, SAS LOG will indicate how data values are being transformed.

CASE 2

PUT Statement allows the SAS programmer to create messages that indicate something wrong is happening, it can
generate an alert message indicating which observation is failing.

Example:

DATA Temp1;
INPUT id $ Weight Height;
DATALINES;
001 65 1.52
002 53 1.52
003 . 1.65
004 66 .
005 . .
;

Run;

DATA Temp2;

Set Temp1;
If weight=. Then PUT "Weight is missing for ID: " ID=;

Run;

2

Basic Debugging Techniques, continued

The following is written to the SAS Log:
67 DATA Temp1;
68 INPUT id $ Height Weight;
69 DATALINES;

NOTE: The data set WORK.TEMP1 has 5 observations and 3 variables.
NOTE: DATA statement used (Total process time):
 real time 0.04 seconds
 cpu time 0.00 seconds

75 ;
76 Run;
77
78 DATA Temp2;
79 Set Temp1;
80 If weight=. Then PUT "Weight is missing for ID: " ID=;
81 Run;

Weight is missing for ID: id=004
Weight is missing for ID: id=005
NOTE: There were 5 observations read from the data set WORK.TEMP1.
NOTE: The data set WORK.TEMP2 has 5 observations and 3 variables.
NOTE: DATA statement used (Total process time):
 real time 0.06 seconds
 cpu time 0.00 seconds

DATA STEP DEBUGGER
The DATA Step Debugger is part of Base SAS software. By issuing commands, you can execute DATA step
statements one by one and pause to display the resulting variable values in a window. Then, observing the results
that are displayed, you can determine where the logic error lies.

In this example we can detect the logic error easily since we want to show the main function of the DATA Step
Debugger. Is recommended to use the DATA Step Debugger when there is a large amount of code or Data Set is too
big.

Example:

DATA Temp1;
INPUT id $ Weight Height;
DATALINES;
001 65 1.52
002 53 1.52
003 . 1.65
004 66 .
005 . .
;

Run;

DATA Temp2;

Set Temp1;
If height =. then height =0; /*This will cause an unexpected result*/
BMI= Weight/(Height*Height);

Run;

3

Basic Debugging Techniques, continued

This is the unexpected result.

LOG OUTPUT

NOTE: Division by zero detected at line 149 column 17.
id=004 Weight=66 Height=0 BMI=. _ERROR_=1 _N_=4

A statement has been added to set the value of HEIGHT to 0 if it is missing. However, this will cause an unexpected
result in our output data set. If there are many records in our data set, then DATA Step Debugger becomes useful for
locating logic errors.

The DATA Step Debugger is triggered by adding the DEBUG option at the end of the Data statement:.

DATA Temp2/Debug;

The screen splits into two debugger windows; the upper window is the DEBUGGER LOG window, where you can
issue debugger commands by typing them on the debugger command line (marked by a > prompt).

The lower window is the DEBUGGER SOURCE window. DATA step execution pauses just before the execution of
the highlighted statement.

Display 1. DATA Step Debugger.

4

Basic Debugging Techniques, continued

EXAMINE COMMAND.

The EXAMINE command displays the values of one or all variables in the Program Data Vector before execution
begins.

Display 2. Examine command.

Its acronym is:

e _all_

Or you can examine a specific variable:

E bmi

Check Appendix A for more commands.

Check Appendix B for syntax.

CONCLUSION
The %PUT statement is a very simple instruction, but it is useful when we want to look at totals, numbers or specific
data.

The PUT statement is very helpful when you need to evaluate if a SAS function is working properly or you want to
display any alert message.

If we want to find out how the code is working, the DATA Step Debugger is a very powerful tool for all levels of
programmers. Its interactive environment allows us to look directly at how the data is processed in order to identify
why we are not getting the expected results.

We conclude that if we have few code is recommended to use %PUT Statement if you want to look any total or PUT
Statement if you need to evaluate if a SAS function is working properly.

If we want to dive into a large amount of code and the logic error is not easy to identify or to know the behavior of the
variable, the best suggestion would be the DATA Step Debugger.

5

Basic Debugging Techniques, continued

RECOMMENDED READING
• Base SAS® Procedures Guide

• SAS® For Dummies®

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Name: Beatriz Garcia
Enterprise: Pharmanet-i3
Address: Insurgentes Sur #716
City, State ZIP: Mexico City, 03100
Work Phone: +52 55 2210 0181
E-mail: begarcia@pharmanet-i3.com

Name: Alberto Hernandez
Enterprise: Pharmanet-i3
Address: Insurgentes Sur #716
City, State ZIP: Mexico City, 03100
Work Phone: +52 55 5005 5507
E-mail: ahernandez@pharmanet-i3.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

6

Basic Debugging Techniques, continued

APPENDIX A.- DEBUGGER COMMANDS BY CATEGORY
Category DATA Step Debugger Description

Controlling Program
Execution

GO Starts or resumes execution of the DATA step

 JUMP Restarts execution of a suspended program

 STEP Executes statements one at a time in the active program

Controlling the Windows HELP Displays information about debugger commands

 SWAP Switches control between the SOURCE window and the LOG
window

Manipulating DATA Step
Variables

CALCULATE Evaluates a debugger expression and displays the result

 DESCRIBE Displays the attributes of one or more variables

 EXAMINE Displays the value of one or more variables

 SET Assigns a new value to a specified variable

Manipulating Debugging
Requests

BREAK Suspends program execution at an executable statement

 DELETE Deletes breakpoints or the watch status of variables in the DATA
step

 LIST Displays all occurrences of the item that is listed in the argument

 TRACE Controls whether the debugger displays a continuous record of
the DATA step execution

 WATCH Suspends execution when the value of a specified variable
changes

Tailoring the Debugger ENTER Assigns one or more debugger commands to the ENTER key

Terminating the
Debugger

QUIT Terminates a debugger session

7

Basic Debugging Techniques, continued

8

APPENDIX B.- SYNTAX

BREAK location <AFTER count> <WHEN expression> <DO group >

CALC expression

DELETE BREAK location
DELETE WATCH variable(s) | _ALL_

DESCRIBE variable(s) | _ALL_

EXAMINE variable-1 <format-1> <...variable-n <format-n>>
EXAMINE _ALL_ <format>

GO <line-number | label>

LIST _ALL_ | BREAK | DATASETS | FILES | INFILES | WATCH

QUIT

SET variable=expression

WATCH variable(s)

	ABSTRACT
	INTRODUCTION
	%PUT STATEMENT
	LOG Output

	PUT STATEMENT
	CASE 1
	CASE 2

	DATA STEP DEBUGGER
	LOG OUTPUT

	CONCLUSION
	RECOMMENDED READING
	CONTACT INFORMATION
	APPENDIX A.- DEBUGGER COMMANDS BY CATEGORY
	APPENDIX B.- SYNTAX

