
PharmaSUG 2012 – Paper AD23

Accessing Microsoft Excel® Workbook Cell Attributes from within SAS® v9
Timothy J Harrington, Dataceutics, Inc. Pottstown, PA

ABSTRACT

Data in a Microsoft Excel worksheet is now readily accessible to SAS v9 using the IMPORT Procedure, and to SAS
v9 and earlier using the DDE triplet. Although worksheet cell contents can be read into a SAS dataset, cell attributes
such as bold, italics, underscore, strikethrough, and color are not, at least in present releases of SAS, readily
accessible. This paper discusses and uses an example SAS program to show how cell attributes in Microsoft Excel
can be determined by a SAS program reading the contents of an Excel worksheet.

INTRODUCTION

Situations often occur when reading data or text from Excel when the formatting of the cells, such as text color is
important. An example is a list of items to be read into a SAS dataset, but when an item is no longer required it is
marked with a strike-though instead of being deleted. This is often good practice for auditing purposes. Another
example is where the color of the text is to be used to determine how the SAS system will process it.

EXAMPLE SITUATION

The example shown here is an Excel worksheet named ‘Study Datasets’ containing the following list of SAS dataset
IDs and names which may or may not be included in a proposed SAS library.

Dataset Dataset
 ID Description

Figure 1. Worksheet Listing of Dataset IDs and Names

Over time decisions are made as to which datasets to include and which to exclude, but for auditing purposes,
previously included but no longer required datasets cannot be deleted from the list, instead they are marked as
excluded by using the strike-through attribute. In this example if the Electrocardiogram (EG) and Tumor Response
(TR) datasets are to be dropped the worksheet would look like this:

Accessing Microsoft Excel Workbook Cell Attributes from within SAS, continued

Dataset Dataset
 ID Description

Figure 2. Same Sheet as Figure 1 but with Two of the Dataset IDs and Names Struck Out

The problem now is how to ‘read’ the strike-through, which is not a text character but an attribute of each cell
containing the characters. Unfortunately there is no widely known way present versions of SAS are able to access
attributes in MS Excel directly. However, attribute data is readily handled by Microsoft Visual Basic (VB) and VB
commands can be issued from within a SAS DATA step using the DDE triplet. This means the struck-through rows of
data can be identified and tagged with a text indicator (A unique character sequence such as ‘<XOUT>’) in the first
column (Column A). The data in this first column can then be reread with this tagging and be merged against the
original data and the presence or absence of the tag indicates if the first column had the strike-through attribute or
not.

The diagram overleaf shows the overall process. There are four parts to the SAS program:

1. Reading the original data into a SAS data set

2. Writing the VB commands to a VB macro and running the macro

3. Reading the first column of the data tagged by the VB macro into a SAS dataset

4. Merging the original and tagged SAS datasets to select the required observations

Accessing Microsoft Excel Workbook Cell Attributes from within SAS, continued

Figure 3. Overall Process Diagram

Original Data
worksheet

AE Adverse Events
CM Conmeds
DM Demographics
EG Electrocardiogram
EX Drug Exposure
LB Lab Data
MH Medical History
TR Tumor Response
TX Treatment
VS Vital Signs

Visual
Basic
Macro

SAS
DATA
Step

SAS
DATA
Step

Resulting DATA set

AE Adverse Events
CM Conmeds
DM Demographics
EX Drug Exposure
LB Lab Data
MH Medical History
TX Treatment
VS Vital Signs

SAS DATA set of
Original Data

AE Adverse Events
CM Conmeds
DM Demographics
EG Electrocardiogram
EX Drug Exposure
LB Lab Data
MH Medical History
TR Tumor Response
TX Treatment
VS Vital Signs

Tagged Col A
worksheet

AE
CM
DM
<XOUT>EG
EX
LB
MH
<XOUT>TR
TX
VS

SAS DATA
Step Merge
by Col A
(excludes
“<XOUT>”
items)

SAS DATA set
of Tagged Col
A contents

AE
CM
DM
<XOUT>EG
EX
LB
MH
<XOUT>TR
TX
VS

SAS
DATA NULL_
Step writes
VB code

1

2

3

4

Accessing Microsoft Excel Workbook Cell Attributes from within SAS, continued

METHOD

Using DDE to access MS Excel is fairly common practice but it must be done carefully due to MS Excel and SAS
running concurrently. The top-down design, including the SAS program steps from the above diagram is:

Run the Excel application from within SAS and define it as a DDE file

Read the original worksheet data into a SAS dataset (Step 1)

Create a new sheet in the opened workbook to hold the VB commands

Create a new sheet to hold the output from the VB code (tagged Column A)

Load the VB commands into the first sheet and execute them. The VB code will find the first character of the text in
each of the cells of the first column (Column A) with the required attribute (strike-though in this example), mark each
row containing that attribute with the unique character sequence, and then output to the second sheet (Step 2)

Read the second sheet containing the tagged Column A data including the marked character sequence into a SAS
dataset. (Step 3)

Close the Excel workbook and application without saving, so no changes are made to the original workbook.

Merge the marked Column A dataset with the original data dataset by Column A. The observations with the tagged
Column A values will not match and hence be dropped. (Step 4)

EXAMPLE SAS PROGRAM

The following program opens the Excel worksheet and performs the above functions, each section of code is
explained in due course. Before running the program Excel should not already be running, the workbook should be
read and write-accessible, and the data on the page to be read should all be displaying, not just a subset displayed
from the column header, unless that specific subset is all that is needed. The program will re-open the Excel
workbook exactly as it was previously closed.

The first step is to start the DDE application from within the SAS program by issuing the command to run Excel from
the Windows command window. To do this without the user being prompted and to keep the command window
minimized on the screen the applicable SAS options noxsync, noxwait, and xmin must be set. Then the command
to run the Excel system can be issued using the SAS x call facility. Note: The full path of the location of excel.exe
must be specified.

Having started the Excel system the next step is to open the DDE triplet as a SAS filename. A problem arises with
synchronizing the execution of Excel and SAS concurrently, so the SAS execution must be temporarily suspended to
allow the Excel system to complete its current task. This is achieved by using a DATA _NULL_ with a five second
delay. This causes the message ‘SAS will awaken at <hh:mm:ss>’ to be shown on the screen while SAS is
suspended. The filename statement then assigns the filename sas2xl to the Excel system.

options noxsync noxwait xmin;

x call "C:\Program Files\Microsoft Office\Office12\excel.exe";

%let delay=5;

data _null_;
 rc=sleep(&delay);
run;

filename sas2xl dde 'excel|system';

data _null_;
 rc=sleep(&delay);
run;

Accessing Microsoft Excel Workbook Cell Attributes from within SAS, continued

Now SAS is communicating with the MS Excel application, the next stage is to open the specific workbook, the name
of which is stored in the macro variable mapwkbk. This must be the complete directory path and file extension ‘.xlsx’.
For example: ‘C:/clinical studies/study a1/list of raw datasets.xlsx’. Note the need for the delay to synchronize the
SAS and MS Excel applications before issuing the VB command to open the workbook.

data _null_;
 file sas2xl;
 rc=sleep(&delay);
 put '[open("' "&mapwkbk" '")]';
run;

Having opened the workbook the first task (Step 1 in the diagram) is to create a dataset containing the original data
from the worksheet. This must be done before running the Visual Basic macro which will look for the strikethrough
attribute because the macro will add marker tags to these data. As shown in the diagram above, the original data will
later be merged with the marked observations after the macro has run. The macro variables maxrows and maxrecl
must contain the maximum column number, in this case 2, and the maximum record length to be read, respectively.
The filename statement specifies the sheet and the range of cells on that sheet to be read into the dataset, in this
example the range is from row 1 and column 1 (top left corner cell) to &maxrows and column 2. The dlm parameter
‘09’x specifies the tab character as being the cell delimiter. (The notab in the filename statement is to allow the dlm
option to be used either with the tab or any other character).

%let sheet_id=Study Datasets;
%let maxrows=10;
%let maxrecl=40;

filename origfile dde "excel|&sheet_id!r1c1:r&maxrows.c2" notab;

data original;
 length col_a col_b $&maxrecl;
 infile origfile dsd dlm='09'x missover pad lrecl=&maxrecl;
 input col_a $ col_b $;
run;

filename origfile clear;

Having read the original data into the dataset original, the next task is to insert two new sheets into the mapwkbk
workbook, one to contain the VB commands to look for the strike-through attribute (Step 2 in the diagram) and the
other to contain the tagged Column A values output by the VB code.

data _null_;
 file sas2xl;
 put '[workbook.next()]';
 put '[workbook.insert(3)]';
run;

The first new sheet must now be opened as a DDE file for writing the VB commands to:

filename xlmacro dde "excel|macro1!r1c1:r99.c1" notab
 lrecl=&maxrecl;

The filename is xlmacro and the VB macro to be created will be called macro1 (this is also the default name) and
the code will occupy rows 1 onwards (up to 99 rows) in column 1. Only one column is needed for the VB code.

The sheet is now ready for the VB commands to be written to it and to be run. The DATA _NULL_ step is used with
put statements to write the code to the sheet. The first line tells the put statements to write to the sheet defined
above as xlmacro. The put statements output the VB text as literal character strings and hence must be enclosed in
quotation marks, double quotation marks are needed to enable the resolution of macro variables such as &sheet_id,
which contains the name of the sheet containing the input data. However, first, the attribute being sought, in this case
‘strike-through’ needs to be specified, as do the characters that will be used to mark a row as struck-out. This
example code uses the macro variable attrcode to contain the cell attribute code, in this case 23, the ‘strike-through’

Accessing Microsoft Excel Workbook Cell Attributes from within SAS, continued

attribute number. The most commonly used attribute numbers are listed at the end of this paper. The macro variable
marked will contain the characters used to mark a row as struck-out.

%let attrcode=23;
%let marked=’<XOUT>’;

data _null_;
 file xlmacro;
 put '=set.name("Tag",!b1)';
 put '=formula("' "&marked"' ",Tag)';
 put '=set.name("OldValue",!c1)';
 put '=set.name("NewValue",!b2)';
 put '=for.cell("CurrentCell",' "'" "&sheet_id" "'"
 "!a1:a&maxrows,true)";
 put "=if(get.cell(&attrcode,CurrentCell),
 formula(get.cell(5,CurrentCell),OldValue),)";
 put '=formula("=concatenate(Tag,OldValue)",NewValue)';
 put "=if(get.cell(&attrcode,CurrentCell),
 formula(NewValue,CurrentCell),)";
 put '=next()';
 put '=halt(true)';
 put '!dde_flush';
 file sas2xl;
 put '[run("macro1!r1c1")]';
run;

The first put statement names the first blank cell as ‘Tag’, the second statement then populates that cell, using the
formula command with a character string ‘<XOUT>’. The ‘<’ and ‘>’ characters surrounding the ‘XOUT’ string are to
ensure uniqueness in case these characters happen to be in the text. The next two put statements specify holding
cells to contain the next row read (OldValue), and subsequently written with or without the ‘<XOUT>’ text accordingly
(NewValue). Now the first column of the input sheet &sheet_id is read for each cell from row 1 to row &maxrows. If
the data retrieved has the attribute &attrcode (The get.cell function returns TRUE) it is stored in OldValue, then,
using the formula command, is concatenated to the ‘<XOUT>’ text stored in the tag location and placed in
NewValue before being output to the second sheet. If the strike-through attribute is not present the text is simply
copied between OldValue and NewValue without the concatenation. After the last row has been reached the process
halts and the DDE buffer is flushed clear. The last put statement runs the macro just created (macro1) using the
second new sheet as output.

As this section of the program runs the changes being made to the Excel session appear ‘live’ on the screen. When
this stage completes the xlmacro file must be closed using:

filename xlmacro clear;

Now the second worksheet has been populated with the copy of the input sheet data but with the struck out lines
prefixed with ‘<XOUT>’ all that remains is to identify the struck-out rows and select only the non struck-out rows. The
following code is very similar to the original DATA step in that it creates a dataset of the first column (Column A)
contents, but this time the data will include the ‘<XOUT>’ tags (Step 3 in the diagram).

filename markfile dde "excel|&sheet_id!r1c1:r&maxrows.c1" notab lrecl=&maxrecl;

data marked;
 length col_a $&maxrecl;
 infile markfile dsd missover;
 input col_a;
run;

filename markfile clear;

This completes all the tasks involving the Excel application through DDE, but it must now be closed, and without
saving the workbook so the original data is left unchanged. This is accomplished with the following code:

Accessing Microsoft Excel Workbook Cell Attributes from within SAS, continued

data _null_;
 file sas2xl;
 x=sleep(&delay);
 put '[error("false")]';
 put "[file.close()]" ;
 put "[quit()]" ;
run;

filename sas2xl clear;

data _null_;
 rc=sleep(&delay);
run;

Once again the delay is needed to allow MS Excel to perform the functions without SAS getting too far ahead. The
‘[error("false")]’ put statement is to prevent the user dialog box ‘Save changes Yes/No/Cancel’ from being displayed
and waiting for input from the user terminal.

The final task (Step 4 in the diagram), is to merge the marked data is with the original data by the first column,
Column A, dropping observations with the tagged struck-through Column A values.

proc sort data=marked;
 by col_a;
run;

proc sort data=original;
 by col_a;
run;

data final;
 merge marked(in=a) original(in=b);
 by col_a;
 If a and b;
run;

Note: The in variables a and b may be used to include instead of exclude as required, by specifying:

if a and not b;

ATTRIBUTE CODES

The attribute code (attrcode) of 23 is the code for strikethrough font for the cell or the first character of the text in a
cell. Bold text is selected with a code of 20, italic text with 21, and underlined text with 22. When any of these
particular values are used with the VB function get.cell, the function returns a Boolean TRUE or FALSE result.
Note: Two or more of these attributes may be present for a given cell, such as bold and italic, in which case setting
attrcode to 20 or 21 will cause it to be tagged.

IDENTIFYING ROW COLOR

The Visual Basic get.cell command can be used with different attribute codes to determine the text (foreground) or
cell (background) color, useful when rows are highlighted or shaded. For foreground color the attribute code is 64 and
for background color the code is 63, but this time the get.cell function returns the numeric code for the color found
instead of just TRUE or FALSE, hence the VB get.cell function must be tested against the color code for being TRUE
or FALSE. For example:

get.cell(&attrcode,CurrentCell)=&color

where &attrcode is code 64 or 63 accordingly and &color is the numeric code for the particular color. The most
commonly used colors and their codes are listed in the table below:

Accessing Microsoft Excel Workbook Cell Attributes from within SAS, continued

Color Code
White 2
Gray 25% 15
Gray 40% 48
Gray 50% 16
Gray 80% 56
Black 1
Cyan Highlight 37
Green Highlight 35
Yellow Highlight 36
Magenta 13
Blue 5
Green 10
Yellow 6
Orange 46
Red 3

Table 1. List of Colors and Attribute Codes

NOTES

The column being marked (Column A in the above example) must have distinct values, so there are no repeats of by
variables in the merge.

The Excel application must be closed prior to running this code. When Excel is opened using DDE it opens the sheet
as it was last saved, including any sub-setting of a column contents.

A long enough input buffer (&maxlen in the above example) must be specified to read in all of the longest line of
original text without truncation.

The ranges of columns and rows (rnn:cnn) must be at least large enough to hold all of the input data, even if this
original data is being sub-setted by if-then or a where clause. If the first row of the sheet contains titles this must be
skipped by specifying the second row ‘r2’ instead of the first row as the top row of the range.

The above code has been tested on Windows 7 with Microsoft Office 2006 and later. Earlier versions of Windows or
Microsoft Office may not be compatible.

SOURCES OF INFORMATION

All of the above information is derived from the author’s own experience, the SAS Institute and Microsoft corporation
on-line support services, and informal on-line discussion threads.

SAS and all other SAS Institute Inc. product or service names are registered trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Accessing Microsoft Excel Workbook Cell Attributes from within SAS, continued

CONTACT INFORMATION

Timothy J Harrington
Dataceutics Inc.
1600 Medical Drive
Suite 300
Pottstown PA 19464

www.dataceutics.com

Work Phone: 610 - 970 - 2333
FAX: 610 - 970 - 4884

Email: BritishCWhizz@Chartermi.net

http://www.dataceutics.com/
mailto:BritishCWhizz@Chartermi.net

