
PharmaSUG 2012 - Paper AD05

The Application of SAS Perl Regular Expression in Clinical Trial Studies
- Batch Processing SAS Programs

Zhong Yan, PharmaNet/i3, Indianapolis, IN
Kimberly Jones, PharmaNet/i3, Austin, TX

ABSTRACT
In clinical trial research, it is sometimes necessary to batch process SAS programs within a study in order to ensure
consistent updates. The process of manually opening each program and searching for the places that need to be
updated is time consuming and prone to errors. SAS Perl Regular Expression is a powerful tool that can be used to
scan files for matches with an identifiable pattern and replace them with customized choices. This paper introduces
the application of SAS Perl Regular Expression to batch process SAS programs using SDD SAS programs as an
example.

INTRODUCTION
Regular expression is a single expression or pattern used to describe different pieces of text. The power of regular
expression is that it can specify a complicated pattern, rather than just fixed characters. Based on the matched
pattern, it is very easy to replace any part of or the entire matched pattern with a new string. SAS version 9
introduces Perl regular expressions via a set of functions - PRX functions (for example, PRXPARSE, PRXMATCH,
PRXCHANGE, PRXPOSN, PRXDEBUG, etc.). Only Perl regular expressions are available in SAS instead of the
entire Perl programming language.

In clinical trials, there can be scenarios that require consistent updates across all programs for a study. For example,
input data references may need to be updated to point to the final data lock location, additional titles or footnotes may
need to be inserted, or the titles/footnotes may need to be updated when the programs are promoted to the
production area. It is time consuming to manually open each program and update each piece of information. For SAS
programs in SDD, updating an input reference involves updating a SDD parameter. This is typically a manual process
requiring the user to open the program in SDD and click / browse the specific SDD parameter to point to the new
location. This manual process is both time consuming and inconvenient. . SAS Perl regular expressions can be used
to make these kinds of updates, making the process much easier, due to their unique power of text processing. In this
paper, we will introduce metacharacters used in regular expressions, the SAS Perl regular expression functions that
will be used in the following case study, and the case study to batch process SAS programs using SAS Perl regular
expressions.

METACHARACTERS USED IN SAS PERL REGULAR EXPRESSIONS
Metacharacters (see table 1) are characters and special characters that are used in Perl regular expressions. The
paired forward slashes (/…/) are the default delimiters of Perl regular expressions. When SAS searches a source
string for any match of the Perl regular expression, metacharacters give SAS flexibility to start the search at a
particular location for a match of a particular set of characters.

Metacharacter Behavior Example
. Match any character (one character)
\d Match a digit character /\d\d\d\d\d/ matches any

five digits such as 5 digit
zip code

\w Match a word character (upper- and lowercase
letters, digits, and underscore)

/\w\w\w\w\w/ matches
“ab_5D” but not “ab dd”

\s Match a whitespace character /\d\d\s\d/ matches “12 3”
but not “123”

\D Match a non-digit character /\D/ matches “x” or “,” but
not “1”

\W Match a non-word character

\S Match a non-whitespace character

1

Metacharacter Behavior Example
* Match >=0 times for the previous expression /ant*/ is like /an/ and /ant+/.

/ant*/ matches “ant”, “and”,
“antelope”, and “antttabc”

+ Match >=1 times for the previous expression /ant+/ matches “antelope”,
“anttq”, but not “and”

? Match 1 or 0 times for the previous expression /Males?/ matches “Male” or
“Males”

{n} Match exactly n times for the previous expression /\d{5}/ is same as
/\d\d\d\d\d/

{n,} Match at least n times for the previous expression /\d{2,}/ matches “12ab”,
“123aaa”, but not “1a”

{n,m} Match at least n but not more than m times /\d{1,3}done/ matches
“1done”, “12done”,
“123done”, but not
“1234done”

^ Match beginning of line /^Hi/ matches any line
beginning with “Hi”

$ Match end of line /\d$/ matches any line ends
with any digit
/^Warning:$/ performs
exact match of any line
“Warning:” only

[] Matches any single character inside the square
bracket. An “^” immediately following the opening
square bracket means “Anything but”

/[AEIOUaeiou]/ matches
any one of the vowels
/[^AEIOUaeiou] matches
any one of the non-vowels
/[a-zA-Z]/ matches any of
the letters of either case.

| Alternation /(B/b)ob/ matches Bob or
bob
/^(Note:|Warning:|Error:)/
detects any line starting
with any o “Note:”,
”Warning:”, or “Error:”

() Use it for a group of the metacharacters. Two major
uses of the grouping:

1. Allows for later retrieving of selected text
2. Allows for alternative phrases

/(Red|Blue|Green)/
matches any of the words
“Red”, “Blue”, and “Green”
and stores it in a scalar for
later retrieval when needed

i Use after the last delimiter to indicate case-
insensitive match

/Hi/i matches “Hi”, “hi”, “HI”,
or “hI”

\ Escape character that can be used to match the
next metacharacter such as any of: {}[]()^$.|*+?\

/\(/ matches “(abc123“
/\\/ matches “\abc123”

Table 1. Metacharacters in SAS Perl Regular Expressions

SAS PERL REGULAR EXPRESSION FUNCTIONS
Table 2 introduces three frequently used SAS Perl regular expression (PRX) functions: PRXPARSE, PRXMATCH,
and PRXCHANGE. Other SAS PRX functions such as PRXPOSN and PRXSUBSTR also have unique features.
Users can read SAS online documentation for their usage details.

PRX Function Description
PRXPARSE To be used to create a Perl regular expression and

return a sequential number as pattern ID for future
usage

2

PRX Function Description
PRXMATCH To be used for pattern searching based on pattern

ID or Perl regular expression and return the position
at which

 the pattern is found

PRXCHANGE To do pattern matching and replacement and return
the new string

Ta ntly Used SAS PRX Func

CASE STUDY USING SAS IONS IN A CLINICAL TRIAL
 necessary to make a consistent update to all SAS programs

rams need to be promoted
e programs. One of the

gram names to be processed. The FILENAME
AS keyword

 SAS programs

ble 2. Freque tions

 PRX FUNCT
Sometimes, during the course of a clinical trial, it is
stored within a particular study folder. One example of this would be when all of the prog
from a QA area to a production area. Update patterns need to be defined across all of th
challenges faced in defining such a pattern is that different programs might use different coding styles. Here we have
used a case study to show, step by step, how SAS Perl regular expressions can make pattern creation an easy task,
thus automating the process of updating a group of SAS programs.

READ SAS PROGRAM NAMES FROM A DIRECTORY INTO SAS MACRO VARIABLES
In order to batch process SAS programs, SAS needs to know the pro
statement in the code below uses a DOS command, “DIR” with “/B” option, to list the file names. The S
FILENAME points to the list via the PIPE option. The first DATA step uses an IF statement to exclude
with names beginning with “out_” or “ori_”. The macro variable num_pgms stores the total number of SAS programs
that need to be updated. The macro variables indsas1, indsas2 … etc store each individual SAS program name to be
processed later. The second DATA step initializes an empty data set which will later be used to store all of the
updated details.

libname db "u:\temp";

filename indata pipe 'dir u:\temp/b';

data _null_;
 length fname $50;
 infile indata truncover;

 input fname $50.;
 lfname=length(fname);

 if substr(fname,lfname-3,4) eq ".sas" and substr(fname,1,4) ne "out_" and
 substr(fname,1,4) ne "ori_" then do;
 count+1;
 call symput('indsas'|| compress(put(count, 8.)), fname);
 end;
 else delete;

 call symput ('num_pgms',compress(put(count,8.)));
run;

data log;
 set _null_;
run;

PR GRAMS ONE AT A TIME INSIDE THE LOOP
The code uses a DO loop to process the SAS programs one at a time. The two FILENAME statements are file name

tep reads a SAS program and stores
m does not contain “!”, as it was used as

OCESS SAS PRO

references, one for the input file and the other for the output file. The DATA s
each line of the program in the variable “line_ori”. It assumes the SAS progra
the line delimiter. Please note that some blocks of code originally appearing after the DATA step have been omitted..
The omitted code used SAS PRX functions to update the SAS program, and will be introduced. Before the end of the
loop, the X command was used to execute the Windows XP cmd command to rename the processed SAS program
by adding the prefix “ori_” and rename the output SAS program by removing the prefix “out_”.

3

%macro processit;

 %do i=1 %to &num_pgms;

 filename myfile "u:\temp\&&indsas&i.";
 filename myout "u:\te

mp\out_&&indsas&i.";

 data indpgm;
 length line_ori $5000;
 infile myfile lrecl=5000 dsd missover dlm="!";
 input line_ori;
 row+1;
 run;

 …(omitted code for updating the SAS program – will be described later)…

 x "ren u:\temp\&&indsas&i. ori_&&indsas&i." ;
 x "ren u:\temp\out_&&indsas&i. &&indsas&i." ;

 %end;

%mend processit;
%processit;

USE SAS PRX FUNCTIONS TO UPDATE SAS PROGRAM SDD PARAMETERS
If the requeste ate involves a data reference, such as updating a data reference from QA to PRD for SDD SAS
programs, instead of opening the programs to update the SDD parameter, SAS PRX functions can be used to make

r the pattern that contains “displaypath” followed by zero or more white spaces, then a “=”, then

tead
 –

e_new”

d upd

such an update.

The first step is to construct SAS Perl regular expressions using the function PRXPARSE. The code below constructs
four SAS Perl regular expressions with the returned pattern IDs: pid1, pid2, spid1, and spid2.

• Pid1 is fo
zero or more white spaces, followed by a pair of double quotes containing the reference path. The reference
path must contain “/qa/”.

• The patter for Pid2 is very similar to that of Pid1. The only difference is that the word “id”, rather than
“displaypath”, must be in the pattern. Both pid1 and pid2 patterns use a pair of slashes “/…/” as the
delimiters for the patterns.

• The syntax of the patterns for spid1 and spid2 are slightly different from that used in pid1 and pid2. Ins
of a pair of slashes, they use 3 slashes and an “s” in the very front. This serves as a substitute operator
“s/…/…/”. The syntax is “s/original pattern/replacement text in SAS Perl regular expression/”. The “lin
contains the updated original line or the original line when an update is not needed. Flagparm1 and
flagparm2 are flags used to indicate the row(s) that were updated.

data temp1(drop=pid1 pid2 spid1 spid2);
 length line_new $5000;
 retain pid1 pid2 spid1 spid2;

set indpgm;
if _N_=1 then do;
 pid1=prxparse('/displaypath\s*=\s*\"[\d\w\/]+\/qa\/[\d\w\/]+\"/');
 pid2=prxparse('/id\s*=\s*\"[\d\w\/]+\/qa\/[\d\w\/]+\"/');

 spid1=prxparse('s/(displaypath\s*=\s*\"[\d\w\/]+)\/qa\/([\d\w\/]+\")/$1\/prd\/
 $2/');
 spid2=prxparse('s/(id\s*=\s*\"[\d\w\/]+)\/qa\/([\d\w\/]+\")/$1\/prd\/$2/');
 end;

 if prxmatch (pid1, line_ori) then do;
 flagparm1=1;
 line_new=prxchange(spid1, -1, line_ori);

4

 if prxmatch (pid2, line_new) then do;
 flagparm2=1;
 line_new=prxchange(spid2 - , line_new); , 1
 end;
 end;
 else if prxmatch (pid2, line_ori) then do;
 flagparm2= ; 1
 line_new=prxchange(spid2, -1, line_ori);
 end;

 if line_new = '' then line_new=line_ori;
run;

USE SAS PRX FUNCTIONS TO UPDATE SAS PROGRAM PATH AND RELATED INFORMATION
When promoting programs from QA to a production area, it is necessary to update not only the actual data reference,

 will

es not need any updates.

but also the program headers and footnotes to reflect the new path. If the title contains “Test Data – Test Mode”, it
be needed to be updated to “Production Data – Production Mode” at the time of promotion.

In the code below, “i” was used after the ending slash of all of the patterns defined by PRXPARSE. This indicates
that a case insensitive match is to be performed. For example:

• The pattern for PIDQA defines a pattern that contains “/qa/”, “/QA/”, “/qA/”, or “/Qa/”.
• The pattern for PIDREQ can match “Requirements Location:”, “Requirements:”, or “Requirement :”, et al. In

our case, the path for the requirements documentation do
• The pattern for PIDQA1 can match “%let status=qa;”, “%let area = QA;”, et al.
• The patterns for SPIDQA, SPIDTEST and SPIDQA1 contain substitution text.
• The final updates are stored in line_new2.

data temp2(drop=pidqa pidreq pidtest pidqa1 spidqa spidtest spidqa1);
 retain pidqa pidreq pidtest pidqa1 spidqa spidtest spidqa1;
 length line_new2 $5000;
 set temp1;

 if _N_=1 then do;
 pidqa=prxparse(\/qa\//i'); '/.*
 pidr q=pe rxparse('/requirements?\s*(location)?\s*:/i');
 pidtest=prxparse('/TEST DATA\s*-\s*TEST MODE/i');
 pidqa1=prxparse('/%let\s+\w+\s*=\s*qa\s*/i');

 spidqa=prxparse('s/(.*)\/qa\//$1\/prd\//i');
 spidtest=prxparse('s/TEST DATA(\s*-\s*)
 TEST MODE/PRODUCTION DATA$1TEST MODE/i');
 spidqa1=prxparse('s/(%let\s+\w+\s*=\s*)qa(\s*)/$1prd$2/i');
 end;

 -- There is no need to update the requirements path indicated in the --
 -- program header. Other than that, all qa need to be updated to prd --;

 if ^prxmatch (pidreq, line_new) then do;
 if prxmatch (pidqa, line_new) then do;
 flagqa=1;
 line_new2=prxchange(spidqa, -1, line_new);
 end;
 end;

 if prxmatch (pidtest, line_new) the do; n
 flagtest=1;
 line_new2=prxchange(spidtest, -1, line_new);
 end;

 -- Update qa into prd for macro variable --;

5

 if prxmatch (pidqa1, line_new) then do;
 flagqa1= ; 1
 line_new2=prxchange(spidqa1, -1, line_new);
 end;

 if line_new2 = '' then line_new2=line_new;
run;

PR
The output of our case study will be

grams – the contents of line_new2 was output to a new SAS file line by line;
set logtemp, in the code below, was used to store the updates from each

ase

OGRAM OUTPUT

• updated SAS pro
• SAS data set log – the data

program

Finally, the updates were appended to the data set log. Output 1 shows the contents of the log data set in our c
study.

Program
Name Row Original Line Updated Line

demog.sas 1011

/* <sourceContainer

udy
pgx"

fied"

ource="DOMAIN"
system="SDD"
source="DOMAIN"
displaypath="/root/qa/st
1/data/shared/
displayname="modi
id="/root/qa/study1/data/sh
ared/pgx/modified"
itemtype="Container"*/

/* <sourceContainer
system="SDD" s
displaypath="/root/prd/study1
/data/shared/pgx"
displayname="modified"
id="/root/prd/study1/data/sha
red/pgx/modified"
itemtype="Container"*/

dsbas.sas 2

CODE NAME :
/root/qa/study1/programs
at/dsbas.sas

_st s_sta

CODE NAME :
/root/prd/study1/program
t/dsbas.sas

dsbas.sas 8
1/data/custom dy1/data/custom/

OUTPUT :
/root/qa/study
/bas.sas7bdat

OUTPUT :
/root/prd/stu
bas.sas7bdat

kmnomrk.sas 2

CODE NAME :
Home/root/qa/study1/program
s_stat/kmnomrk.sas

CODE NAME :
Home/root/prd/study1/programs
_stat/kmnomrk.sas

kmnomrk.sas 10
nomrk.p 1/programs

_stat/tfl_output/kmnomrk.ps

OUTPUT :
Home/root/qa/study1/program
s_stat/tfl_output/km
s

OUTPUT :
Home/root/prd/study

kmnomrk.sas 30
%let title1 =TEST DATA -
TEST MODE;

%let title1 =PRODUCTION DATA
- TEST MODE;

kmnomrk.sas 31 %let status=qa; %let status=prd;

kmnomrk.sas 273

udy
x"
fied"

ainer
e="DOMAIN"

/* <sourceContainer
system="SDD"
source="DOMAIN"
displaypath="/root/qa/st
1/data/shared/pg
displayname="modi
id="/root/qa/study1/data/sh
ared/pgx/modified"
itemtype="Container"*/

/* <sourceCont
system="SDD" sourc
displaypath="/root/prd/study1
/data/shared/pgx"
displayname="modified"
id="/root/prd/study1/data/sha
red/pgx/modified"
itemtype="Container"*/

Output 1. Output Data Set Log

data _null_;
 set temp2;
 file myout ;

6

7

 put line_new2;
run;

-- Extract all updated lines into a data set for validation purpose --;
data logtemp;
 length pgmname $50;
 set temp2;
 where flagqa= or flagqa1=1 1 1 1 1 or flagtest= or flagparm1= or flagparm2= ;
 pgmname="&&indsas&i.";
run;

data log(keep = pgmname row line_ori line_new2);
 set log logtemp;
 label pgmname="Program Name" line_ori="Original Line" line_new2="Updated Line";
run;

CO
Using SAS Perl regular expressions for pattern matching enables the search for and the extract of multiple matching

 step. The same result could be achieved by SAS programs without SAS Perl regular
r multiple programs, due to different coding styles, would require complicated coding logic to

ge in

Cody, Ron(2004), “An Introduction to Perl Regular Expression in SAS 9”, Proceedings of the 29th. Annual SAS
tional

Your comments and questions are valued and encouraged. Contact the authors at:

 IN 46280

250 South Capital of Texas Hwy, Bldg. 1, Suite 250

SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Instit ountries. ® indicates USA registration.

NCLUSION

patterns in one DATA
expressions. Howeve
handle each string for each program. SAS Perl regular expressions can be used to summarize similar strings to a
pattern and efficiently process updates to multiple programs. This paper used a case study to show their usa
batch processing clinical trial programs.

REFERENCES

Users Group Interna

CONTACT INFORMATION

Zhong Yan
PharmaNet/i3
4745 Haven Point Blvd,
Indianapolis,
(317) 564-2858
ZYan@Pharmanet-i3.com

Kimberly Jones
PharmaNet/i3
1
Austin, TX 78746
(512) 347-2671
KJones@Pharmanet-i3.com

and all other SAS
ute Inc. in the USA and other c

Other brand and product names are trademarks of their respective companies.

	ABSTRACT
	INTRODUCTION
	METACHARACTERS USED IN SAS PERL REGULAR EXPRESSIONS
	SAS PERL REGULAR EXPRESSION FUNCTIONS
	CASE STUDY USING SAS PRX FUNCTIONS IN A CLINICAL TRIAL
	READ SAS PROGRAM NAMES FROM A DIRECTORY INTO SAS MACRO VARIABLES
	PROCESS SAS PROGRAMS ONE AT A TIME INSIDE THE LOOP
	USE SAS PRX FUNCTIONS TO UPDATE SAS PROGRAM SDD PARAMETERS
	USE SAS PRX FUNCTIONS TO UPDATE SAS PROGRAM PATH AND RELATED INFORMATION
	PROGRAM OUTPUT

	CONCLUSION
	REFERENCES
	CONTACT INFORMATION

