
PharmaSUG 2012 - Paper CC02

Automatic Version Control and Track Changes of CDISC ADaM Specifications for
FDA Submission

Xiangchen (Bob) Cui, Vertex Pharmaceuticals, Cambridge, MA
Min Chen, Vertex Pharmaceuticals, Cambridge, MA

ABSTRACT

CDISC ADaM specifications documentation is the core of the programming activities in FDA submission. It serves as
the primary source for ADaM programming and validation, define.xml and reviewer guide, and also helps in
establishing metadata traceability. It is preferable to create ADaM specifications in Word® Format to facilitate both
reviewing and approving of specifications documentation by statisticians and/or validators. Since derivation rules
may be complex and subject to constant change during the whole ADaM programming activities, it is desirable to
automatically keep track of different versions of ADaM programming specifications. It is more beneficiary for sponsors
to keep track of different versions when ADaM programming is outsourced to external vendors. This paper introduces
a SAS macro to automatically detect and report any revisions between the new version and the old version of
programming specifications. It helps to generate necessary documents for version control, establishes traceability
and achieves high efficiency in FDA submission.

INTRODUCTION

The programming specification documentation is a key part of the ADaM derivation process as it is used for
programming and validation of ADaM datasets, preparation of reviewer guide, and the generation of the major parts
of define.xml. It is usually created in Word® format as Word documents are intuitive, flexible, and user friendly for
statisticians to review and track changes.

In word processing, ‘Track Changes’ is an editing command that is commonly used to keep track of the changes
made to the original document. It is also a useful tool for collaborating on a document, as it allows multiple users to
make revisions without losing the context of the original document. The tracked change will be deleted if it is
accepted or rejected. Since the programming specifications for ADaM datasets are frequently updated during the
whole ADaM programming activities due to complex derivation rules, ‘Track Changes’ command in Word can no
longer fulfill the needs for tracking the specifications changes. It is preferable to automatically accomplish version
control by keeping records of the different versions, and automatically track any changes in the programming
specifications from any previous versions in order to help statisticians and programmers to review the new
specifications and facilitate the decision making for the revision.

In this paper a macro %read_specs is called to automatically store both the word file and a SAS dataset of
specifications with time stamp in a study subfolder named as \history. The word file can be used to recover the old
version if needed, and the SAS dataset of programming specification can be used as an input to automatically detect
the changes of the programming specifications by a macro %track_change.

The macro %track_change is called to automatically detect any changes in current specifications with respect to any
previous version of specifications as per user request. Reports of specification changes will be generated by the
macro, including variable added, variable deleted, variable attributes revised, variable comments revised, variable
origin and/or controlled terminology revised, and variable number of order revised in the new specifications. The
reports of changes provide the developer and reviewers a convenient tool to track any changes from any old version
of specifications, and help to finalize the programming specification at the very early stage in an efficient way. The
automation of tracking changes can also be conducted at the post delivery stage. If there are any revisions in the
programming specification after the delivery, reports for changes will serve as documentation for audit trail. It ensures
the traceability and clear documentation for FDA submission.

AN INTRODUCTION OF PROGRAMMING SPECIFICATION FOR ADAM DATASET(S)

In order to facilitate statisticians to review the programming specification and track the change, the individual
programming specifications for ADaM are created in MS Word® format, as shown in Display 1. The specification for
each domain is composed of three parts: domain information table, variable information table, and an optional
appendix or notes for a complex algorithm or derivation rules. In the domain information table, description of the
domain will serve as the label of the ADaM dataset; in the variable information table, the variable name, label, type,
length, and the format will define the variable attributes of the ADaM dataset. The information in the first two parts will
be retrieved by the in-house Macros %read_specs during ADaM Programming, and a SAS data named
ADXX_VARS will restore the variable information from the individual programming specification. Example SAS

1

http://www.webopedia.com/TERM/T/word_processing.html

Automatic Version Control and Track Changes of CDISC ADaM Specifications for FDA Submission, continued

datasets from an ADaM specification are shown in Display 2.

Domain Information Table

Variable Information Table

Controlled
Terms
or
Value Level
Metadata

Display 1. ADaM Programming Specifications in Word Format

Display 2. ADaM Programming Specifications in SAS Format

A MACRO FOR RETRIEVING THE USEFUL INFORMATION FROM SPECIFICATION AND
VERSION CONTROL
The macro %read_spec reads the information from the individual domain programming specification in CSV format,
retrieves the useful domain information and variable information based on the standard structure of the given
specification, outputs SAS datasets containing ADaM specs information, and stores both word version and SAS
dataset of the programming specification with time stamp in a study subfolder, named as \history.

The macro call is shown as follows.

%macro read_specs(indir=,specsnm=,outdir=,newdtnm=,runorder=);
Where

INDIR: Full Path for ADaM programming specification.
SPECSNM: Name of ADaM programming specification.
OUTDIR: Full Path for output SAS dataset which contains the attributes of ADaM variables.
NEWDTNM: A valid SAS dataset name for SAS dataset containing current specs information.

 2

Automatic Version Control and Track Changes of CDISC ADaM Specifications for FDA Submission, continued

RUNORDER: A valid numeral, defining the order for a specific domain to run (in the final run).

With the macro call, the SAS datasets containing ADaM specs information are output to a study folder defined by
macro variable OUTDIR. A Word file and a SAS dataset of the programming specification with time stamp at the
running are output to a subfolder \history under the study folder &OUTDIR, and the code for version control is shown
as follows:

*** Get date of programming running as time stamp ***;
data _null_;
 day = compress(put(today(),yymmdd10.),'-');
 call symput('day',strip(day));
run;
*** Output a SAS dataset of the specs with time stamp to a subfolder \history ***;
data history.&newdtnm._&day.;
 set __vars;
run;
*** Copy a Word Version with time stamp to a subfolder \history ***;
options noxwait NOXSYNC;
%let specdoc = %scan(&specsnm.,1);
X "%str(copy %"&indir.&specdoc..doc%" %"&outdir.history\&specdoc._&day..doc%")";

The word files of the specifications with different time stamps are stored in \history subfolder for version control
purpose. The SAS dataset of specification with a time stamp can serve as an input to automatically capture the
changes of the programming specifications. If needed, time can be added into the time stamp of word documents in
addition to date.

Display 3. An Example of Version Control for ADSL Specification Document

TRACKING CHANGES

A macro %track_change will be invoked when tracking changes function is activated. The macro users can assign
any SAS dataset in \history folder as an old version of specifications, to be compared with the current version of
specifications. The reports on specifications revisions will be automatically output in RTF formats.

The macro call is shown as follows:

%macro track_specs(newdir=, olddir=, newdtnm=, predtnm=, outdir=);
Where

NEWDIR: Full Path for new ADaM programming specification.
OLDDIR: Full Path for old ADaM programming specification.
NEWDTNM: A valid SAS dataset name for SAS dataset containing current specs information.
PREDTNM: A valid SAS dataset name for SAS dataset containing old specs information.
OUTDIR: Full Path for reports of specifications changes.

The following is some notes about the logic of the macro.

1. Merge new specification with old one by variable, if the record comes from the new specification only, then the
variable is a newly added one; if the record comes from the old specification only, then the variable is deleted from
the old specification; if both specifications contain the variable, it will be further checked in next step.

 3

Automatic Version Control and Track Changes of CDISC ADaM Specifications for FDA Submission, continued

data new_specs;
 length var_attrib $100.;
 set newspec.&newdtnm;
 if upcase(type)=:'CHAR' then var_attrib=trim(left(variable)) || " label='"
 || trim(left(label)) || "' length=$" ||trim(left(put(length,best3.)));
 else var_attrib=trim(left(variable)) || " label='" || trim(left(label))
 || "' length=" ||trim(left(put(length,best3.)));
run;
proc sort data=new_specs; by variable var_attrib; run;

data old_specs;
 length var_attrib $100.;
 set oldspec.&predtnm;
 if upcase(type)=:'CHAR' then var_attrib=trim(left(variable)) || " label='"
 || trim(left(label)) || "' length=$" ||trim(left(put(length,best3.)));
 else var_attrib=trim(left(variable)) || " label='" || trim(left(label))
 || "' length=" ||trim(left(put(length,best3.)));
run;
proc sort data=old_specs; by variable var_attrib; run;

data add_vars delete_vars both_;
 merge new_specs(in=new)
 old_specs(in=old rename=(var_attrib=o_var_attrib label=o_label
 type=o_type length=o_length
 datatype=o_datatype varnum=o_varnum
 origin=o_origin term=o_term
 codelist=o_codelist comment=o_comment));
 by variable;
 if new and not old then output add_vars;
 if old and not new then output delete_vars;
 if new and old then output both_;
run;

2. If the variable exists in both specifications, check whether there are any revisions on the variable attributes,
comments, origin or controlled terminology, or the order of the variable in the specifications.

data changes;
 set both_;
 if upcase(var_attrib)^=upcase(o_var_attrib) then do; diff_attrib='Y';output;
end;
 if upcase(varnum)^=upcase(o_varnum) then do; diff_varnum='Y'; output; end;
 if upcase(origin)^=upcase(o_origin) then do; diff_origin='Y'; output; end;
 if upcase(term)^=upcase(o_term) then do; diff_term='Y'; output; end;
 if upcase(codelist)^=upcase(o_codelist) then do; diff_codelist='Y'; output;
end;
 if upcase(comment)^=upcase(o_comment) then do; diff_comment='Y'; output; end;
run;

3. Call a macro to check the number of observations in the datasets. If the datasets are not empty, output the reports
for the differences between the old version and new version of specifications.

 4

Automatic Version Control and Track Changes of CDISC ADaM Specifications for FDA Submission, continued

*** Macro to check the number of observations in the datasets. ***;
%macro get_cnt(datain=,m_cnt=new_cnt);
 %let dsid=%sysfunc(open(&datain)); ** Opens the data set to be read;
 %let &m_cnt=%sysfunc(attrn(&dsid,nobs));** Determine the number of records;
 %let rc=%sysfunc(close(&dsid)); ** Close the data set;
%mend;
%global add_vars_cnt delete_vars_cnt diff_attrib_cnt diff_comment_cnt otherchg_cnt
 diff_varnum_cnt;
*** 1. New variables added in the new version of specs. ***;
%get_cnt(datain=add_vars,m_cnt=add_vars_cnt);
%if &add_vars_cnt ^= 0 %then %do;
proc sort data=add_vars; by varnum variable var_attrib; run;
%end;
*** 2. Variables deleted in the new version of specs. ***;
%get_cnt(datain=delete_vars,m_cnt=delete_vars_cnt);
%if &delete_vars_cnt ^= 0 %then %do;
proc sort data=delete_vars; by o_varnum variable o_var_attrib; run;
%end;
*** 3. Attributes Changed ***;
proc sort data=changes(where=(diff_attrib='Y')) out=diff_attrib;
 by variable varnum;
run;
%get_cnt(datain=diff_attrib,m_cnt=diff_attrib_cnt);
%if &diff_attrib_cnt ^= 0 %then %do;
 data diff_attrib1(keep=variable varnum var_attrib)** Attributes from New Specs;
 diff_attrib2(keep=variable varnum o_var_attrib);*Attributes from Old Specs;
 set diff_attrib;
 run;
 data diff_attrib3;
 length index $12.;
 set diff_attrib1(in=a)diff_attrib2(in=b rename=(o_var_attrib=var_attrib));
 if a then index="New Specs"; else if b then index="Old Specs";
 run;
 proc sort data=diff_attrib3; by varnum variable index; run;
%end;
*** 4. Comments Changed ***;
proc sort data=changes(where=(diff_comment='Y')) out=diff_comment;
 by variable varnum;
run;
%get_cnt(datain=diff_comment,m_cnt=diff_comment_cnt);
%if &diff_comment_cnt ^= 0 %then %do;
 data diff_comment1(keep=variable varnum comment) ** Comments from New Specs;
 diff_comment2(keep=variable varnum o_comment); ** Comments from Old Specs;
 set diff_comment;
 run;
 data diff_comment3;
 length index $12.;
 set diff_comment1(in=a) diff_comment2(in=b rename=(o_comment=comment));
 if a then index="New Specs"; else if b then index="Old Specs";
 run;
 proc sort data=diff_comment3; by varnum variable index; run;
%end;
*** 5. Origin and/or Format Changed ***;
proc sort data=changes out=otherchg; by variable varnum;
 where diff_origin='Y' or diff_term='Y' or diff_codelist='Y';
run;
%get_cnt(datain=otherchg,m_cnt=otherchg_cnt);
%if &otherchg_cnt ^= 0 %then %do;
 data otherchg1(keep=variable varnum origin term codelist) ** From New Specs;
 otherchg2(keep=variable varnum o_origin o_term o_codelist);*From Old Specs;
 set otherchg;
 run;
 data otherchg3;

 5

Automatic Version Control and Track Changes of CDISC ADaM Specifications for FDA Submission, continued

 length index $12.;
 set otherchg1(in=a)
 otherchg2(in=b rename=(o_origin=origin o_term=term
 o_codelist=codelist));
 if a then index="New Specs"; else if b then index="Old Specs";
 run;
 proc sort data=otherchg3;by varnum variable index;run;
%end;
*** 6. Varnum Changed;
proc sort data=changes out=diff_varnum;by variable;
 where diff_varnum='Y';
run;
%get_cnt(datain=diff_varnum,m_cnt=diff_varnum_cnt);
%if &diff_varnum_cnt ^= 0 %then %do;
 data diff_varnum1(keep=variable varnum) diff_varnum2(keep=variable o_varnum);
 set diff_varnum;
 run;
 data diff_varnum3;
 length index $12.;
 set diff_varnum1(in=a) diff_varnum2(in=b rename=(o_varnum=varnum));
 if a then index="New Specs"; else if b then index="Old Specs";
 run;
 proc sort data=diff_varnum3; by variable index; run;
%end;

Tracking changes function is useful to capture any changes of the current version of ADaM specifications from any
previous version, and facilitates reviewing the new ADaM specification. For example, tracking change function makes
it possible to find out what contents in the ADaM specification are added, deleted, or revised. The Display 4 - 9 show
the typical reports of specification changes when tracking change function is triggered.

Display 4. An Example Report for Tracking Changes: Adding Variable(s)

Display 5. An Example Report for Tracking Changes: Deleting Variable(s)

Display 6. An Example Report for Tracking Changes: Change of Variable Attributes

 6

Automatic Version Control and Track Changes of CDISC ADaM Specifications for FDA Submission, continued

Display 7. An Example Report for Tracking Changes: Change of Comments

Display 8. An Example Report for Tracking Changes: Change of Origin or Controlled Terminology

Display 9. An Example Report for Tracking Changes: Change of Variable Order in the ADaM Dataset

POST-DELIVERY CHANGES AND TRACKING CHANGES

If there are any changes in the programming specifications after a Clinical Study Report (CSR) delivery, the tracking
change function will be triggered, and the macro %track_specs can be used to generate reports to capture changes
from the last version of specifications. The reports will serve as documentation for audit. For example, if comments
column is updated after the delivery due to editorial change, only one report is generated: the report of change of
comments, as shown in Display 7.

CONCLUSION

In summary, this paper introduces an efficient macro-based tool for automatic version control, and tracking changes
of the ADaM programming specifications. The macro makes it possible for the developer of the programming
specifications and the reviewers to track any changes of the specifications in an efficient way. The traceability can be
achieved with the storage of the previous version of specifications. The documentation for audit can be automatically
generated for post delivery changes. These features improve the submission quality in a cost-effective way. We hope
this tool can help you in ADaM Programming for FDA submission.

REFERENCES

CDISC Analysis Data Model Team. “Analysis Data Model (ADaM) Implementation Guide”. December 2009.
http://www.cdisc.org/adam

“How Does Track Changes in Microsoft Word Work”.
http://www.shaunakelly.com/word/sharing/howtrackchangesworks.html

 7

http://www.cdisc.org/adam
http://www.shaunakelly.com/word/sharing/howtrackchangesworks.html

Automatic Version Control and Track Changes of CDISC ADaM Specifications for FDA Submission, continued

 8

Xiangchen (BoB) Cui, Min Chen, and Tathabbai Pakalapati. “An Innovative ADaM Programming Tool for FDA
Submission”, PharmaSUG, May 2012

ACKNOWLEDGEMENTS

Appreciation goes to Kelly Blackburn, Stacy Surensky and Tathabbai Pakalapati for their review and comments.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

 Name: Xiangchen (Bob) Cui, Ph.D.
Enterprise: Vertex Pharmaceuticals, Inc.
Address: 88 Sidney Street
City, State ZIP: Cambridge MA, 02139
Work Phone: 617-444-6069
Fax: 617-460-8060
E-mail: xiangchen_cui@vrtx.com

Name: Min Chen, Ph.D.
Enterprise: Vertex Pharmaceuticals, Inc.
Address: 88 Sidney Street
City, State ZIP: Cambridge MA, 02139
Work Phone: 617-444-7134
Fax: 617-460-8060
E-mail: min_chen@vrtx.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:xi
mailto:min_chen@vrtx.com

	ABSTRACT
	INTRODUCTION
	AN INTRODUCTION OF PROGRAMMING SPECIFICATION FOR ADAM DATASET(S)
	A MACRO FOR RETRIEVING THE USEFUL INFORMATION FROM SPECIFICATION AND VERSION CONTROL
	TRACKING CHANGES
	POST-DELIVERY CHANGES AND TRACKING CHANGES
	CONCLUSION
	REFERENCES
	ACKNOWLEDGEMENTS
	CONTACT INFORMATION

