PharmaSUG 2012 - Paper DS20

An Innovative ADaM Programming Tool for FDA Submission

Xiangchen (Bob) Cui, Vertex Pharmaceuticals, Cambridge, MA
Min Chen, Vertex Pharmaceuticals, Cambridge, MA
Tathabbai Pakalapati, Vertex Pharmaceuticals, Cambridge, MA

ABSTRACT

It is a good practice to include data definition tables (define.xml) and a reviewer’s guide along with ADaM datasets to
minimize the time to familiarize with submitted clinical data and expedite the approval process by FDA reviewers. It is
important to ensure consistency in metadata among data definition tables, reviewer's guide and ADaM datasets. This
paper describes automated ADaM Programming Tool, consisting of six SAS macros, to streamline the process of
creating programming specification, compliance checking of specifications with FDA and CDISC requirements,
deriving ADaM datasets and generating define.xml and a reviewer’s guide. The tool also automates the processes of
version control of specifications, consistency checking of controlled terminology and value level metadata between
ADaM and define files, detection of empty variables in ADaM datasets, preparation of batch files, and addition of core
variables to both all ADaM datasets and define.xml at final run thereby achieving accuracy and efficiency.

INTRODUCTION

ADaM programming is an important and challenging part in biometrics deliverable life cycle. In addition to ADaM
datasets, sponsor needs to submit analysis reviewer guide and data definition tables (define.xml) to FDA reviewers.
Considering stringent timelines and frequent changes in statistical analysis plan it is always essential for a
sponsor/vendor to have an efficient ADaM processing mechanism to deliver data and supplemental documents with
high quality and accuracy. This paper presents an innovative ADaM Programming Tool to streamline the whole
process of creation of programming specification, compliance checking of metadata against FDA and CDISC
requirements, ADaM derivation, version control, tracking changes in specifications and generation of reviewer guide
and data definition tables. The tool consists of 6 macros: %get_adam_specs, %adam_attrib, %ctlist_checking,
%empty_var_checking, %get_adam_specs_final_call, %get_batch _file, and there are 10 step processes in the
programming tool to generate a complete ADaM package for FDA electronic submission.

Ten automations provided by the ADaM Programming Tool are summarized below and illustrated in the form of
flowchart in Display1.

1. Automatic compliance checking of metadata against CDISC standards

Automatic version control

Automatic track changes in analysis programming specification

Automatic define.xml generation

Automatic generation of ADaM dataset label and variable attributes in the form of macro variables

Automatic addition of core variables to both define.xml and ADaM datasets in the final run

N o o s~ D

Automatic consistency checking of controlled terminology and value level metadata between ADaM
datasets and programming specification

®

Automatic detection of empty variables in ADaM datasets

9. Automatic preparation of SAS scripts for final run of all ADaM specifications and combination of all
ADaM specifications into one Word document in a specified order

10. Automatic batch file preparation for the final run of ADaM datasets

Each step above is explained in detail in a separate section with real examples used in our FDA submission process.
Lastly, the paper tries to showcase the advantage of using the suggested ADaM Programming Tool to achieve high
operational efficiency.

An Innovative ADaM Programming Tool for FDA Submission, continued

Display 1 shows the process flow.

v

Individual Programming

Specification ADxx.doc

|

Copy to ADxx.csv

l %get_adam_specs

ADxx_vars.sas7bdat

!

. Non-compliant
Check Compliance P
Report

Fix

Specs

%adam_attrib
Generates 3 Global
Macro Variables:
ADaMLABEL
ADaMVARS

VAR _ATTRIB

|

Compliant
Combine Each Combine Each
Individual Individual
Specification ADxx_vars.sas?
into a bdat Dataset for
Reviewer’'s define.xml
Guide

Save Each Version of
Specification in Word
and
ADxx_vars_date.sas
7bdat for Version
Control

Y

Populate Variables

and their Attributes
in ADaM Dataset

Match

Detect
Empty Variables

No Issue

Mismatch .w¢

A

y

Report any Changes
Tracking Changes

Final Batch Run and
Generate XPT Files

\4

v v

Final Package for FDA Electronic Submission

Display 1. Overall of Process Flow

An Innovative ADaM Programming Tool for FDA Submission, continued

AN INTRODUCTION OF MODULARIZED WORD® SPECIFICATION FOR ADAM

An individual programming specification for ADaM in MS Word® format facilitates programmers and statisticians to
review and communicate derivation rules among them, as well as track the change. Display 2 shows the snapshot of
an ADaM programming specification. The specification for each domain is composed of three modules: domain
information table, variable information table, and an optional appendix or notes for a complex algorithm or derivation
rules. Information in the first two modules is the core for this ADaM programming tool and will be used for 10
automations listed in Introduction section.

: : Domain Information Table
1.1.1 |ADSL: Subject Level Analysis Dataset /
Dataset ADSL
Program Name
Description Subject-Level Analysis Data
Unigque identifier Variables | usubjid
General Class Special Purpose
Structure One record per subject
Input Datasets DM, DS, EX, V5, DC, HC, AE
Notes Includes all subjects enrolled.
Variable Variable Label | Type | Length Controlled Terms or Formats Origin Role Comments Core
Name
]
STUDYID Study Icerttifier | Char | 20 1 DMstudyicl | Idertifier | Constant Walug: "&BC-ZZZ-XxX" Req
USUBJID Unique Subject | Char | 40 v DMMsubid | dentifier | Equivalert to studyid [11 stipczieid) - 1 Feq
Iddertifier stripizuhiid)
SUBJID Subject dertifier | Char | 20 Controlled DMaubjid | idertifier | (e.g. 102130) Req
for the Study T
SITEID Studly Site Char g erms Cxhd. siteid Record Req,
Identifier or Guslifier | DMSITEID
AGE Aoe Mum g [20e Record Req,
Value Level Qualifier | Equals to DM.age.
AGEGR1 Pooled Age Char 20 Derived Record =45 if age == 45 Perm
Group 1 Metad ata‘ Gualifier =45 and ==65, if 45 = age == 65
=65, if age = 65
Mote: Decode variable for AGEGPMN.
AGEGRIM Pooled Age Mum g AGEGRIM (AGEGR1Y): Derived Synonym | Category dertved if age non-missing. Perm
Group 1 (M) (111 = ==45 Gualifier Eqjuals
[2) 2 = »45 and <=65 1,1 age <= 45
(3) 3= =65 2,if 45 = age == 65
3, if age = 65

\

Variable Information Table

Display 2. Individual Programming Specifications in Word® Format

In the domain information table, description of the domain will serve as the label of ADaM dataset; in the variable
information table, the variable name, label, type, and the length will define the variable attributes of ADaM dataset.
‘Controlled Terms or Formats’ Column specifies controlled terminologies for necessary variables and defines formats
for date/time variables which will also be presented in define.xml.

The contents of the Word programming specification are copied to a comma delimited document, as shown in Display
3, to be imported to a SAS dataset.

An Innovative ADaM Programming Tool for FDA Submission, continued

A [B [¢ [D] E [F] G [H [1
1.1.1 ADSL: Subject Level Analysis Dataset
Dataset ADSL
Program Name Adsl.sas
Description Subject-Level Analysis Data

Unigue identifier usubjid
General Class | Special Purpose

A

2z

3

A

| 5 |

B |

7

8 [Structure One recaord per subject

9 |[Input Datagets DM, DS, EX, v5, DC, HC, AE

10 [Motes Includes all subjects enrolled.

11

12 |Variable Mame | Variable Label Type Length Cantrolled Terms or Formats Origin Role Camments Core
13 [STUDYID Study Identifier Char 20 DM, studyid | Identifier Constant Value: "ABC-Z77-xux" Reg

14 |USUBJID Unigue Subject Identifier Char 40 DM.usubijid | Identifier Equivalent to studyid || "-" || strip(siteid) Req

15 [SUBJID Subject Identifier far the Study Char 20 DM.subjid | Identifier (e.g. 102130) Reg

(16 |SITEID Study Site Identifier Char g DM.siteid | Record Qualifier DM.SITEID Reg

7 |AGE Age MHurn g DM.age Record Qualifier Eguals to DM.age Reg

18 |AGEGR1 Pooled Age Group 1 Char 20 Derived Record Qualifier | «<=45, if age <= 45 Ferrn
19| =45 and <=h5, if 45 < age <= 65

20| =65, if age > B5

21 Mote: Decode variable for AGEGPN.

22 |AGEGRIN Pooled Age Group 1 (N) IHurn 8 AGEGRIN (AGEGR1): Derived Synonym Clualifie Category derived if age non-missing. Perm
23| (171 =<=45 Equals

24| (2) 2 = »45 and <=B5 1,ifage == 45

25| (33 =5 2, if 45 < age <= E5

26 | 3, ifage = G5

Display 3. Individual Programming Specification in Comma-Delimited CSV Format

AUTOMATION 1: COMPLIANCE CHECKING WITH FDA SUBMISSION REQUIREMENTS
AND CDSIC ADAM PROGRAMMING REQUIREMENTS FOR MODULARIZED ADAM
SPECIFICATIONS

GUIDELINE FOR WRITING ADAM SPECIFICATION AND COMPLIANCE CHECKING RULES

As shown in Display 2, each domain specification is modularized to facilitate the programming. CDISC ADaM
Implementation Guideline clearly defines ADSL and Basic Data Structure (BDS) data. CDISC ADaM validation
checks define associated validation checks to ensure high quality in submitted analysis datasets. Our programming
specifications are checked against these validation rules so that the submitted analysis dataset metadata will be
compliant to CDISC ADaM Guideline. Our macro based approach also checks the compliance of domain information,
the compliance between domain and variable information, the requirements or key words for each column in
programming specifications, and the existence of decoded variables defined in ‘Controlled Terms or Formats’
Column. The guideline for writing ADaM programming specification and the compliance checking rules, which are
objective and programmable, for ADaM metadata are listed in the Appendix 1.

A MACRO TO RETRIEVE INFORMATION FROM SPECIFICATION AND COMPLIANCE CHECKING

A macro %get_adam_specs is used to read the information from the individual domain programming specification in
CSV format, retrieve the useful domain information and variable information based on the standard structure of the
given specification, performs ADaM compliance checking with CDISC requirements and FDA submission
requirements, and outputs non-compliance reports if any. SAS datasets with ADaM specification information will be
generated only when the specifications are compliant with the rules predefined in Appendix 1. Other functions of this
macro will be introduced in subsequent sections.

The macro call is shown as follows.

An Innovative ADaM Programming Tool for FDA Submission, continued

%macro get_adam_specs(indir

Where,

, /* path of input ADaM specs

Specsnm =, /* specs name, e.g. adsl.csv
Outdir =, /* path for output data/reports
Newdtnm =, /* dataset name for new specs
Runorder =999, /* Run order for a specific domain
track_specs =N, /* Y: activate tracking change
olddir =, /* path of old specs

predtnm =, /* dataset name for old specs
generate_xml=N, /* Y: generate define.xml

xmldir =, /* path for define._xml

final_run =N /* Y: add core vars to define.xml
)

INDIR: Full Path for ADaM programming specification.

SPECSNM: Name of ADaM programming specification.

OUTDIR: Full Path for output reports or SAS dataset which contains ADaM specs information.
NEWDTNM: A valid SAS dataset name for SAS dataset containing current specs information.
RUNORDER: A valid numeral, defining the order for a specific domain to run (in the final run).

TRACK_SPECS: Flag for audit trail. If TRACK_SPECS is assigned to Y, the macro will compare dataset for the
new specs (NEWDTNM) at working folder (OUTDIR) with dataset for the old specs (PREDTNM) in the history

folder (OLDDIR).
OLDDIR: Full Path for history folder of SAS dataset containing old specs information.
PREDTNM: A valid SAS dataset name for SAS dataset containing old specs information.

GENERATE_XML: Flag for define.xml generation. If GENERATE_XML is assigned to Y, the macro will generate

define.xml for all the existing SAS datasets under the working (OUTDIR) folder.
XMLDIR: Full Path for define.xml.

FINAL_RUN: Flag for Final Run. If FINAL_RUN is assigned to Y, the macro will add core variables to both the

final ADaM datasets and define.xml

If one of the compliance checking rules is not satisfied, non-compliance reports in RTF format will be reported.
Displays 4-8 show the compliance checking reports for unfulfilled requirements.

The Following Domain Informafion Should be Provided!

Domain Error Type

AD3EL

IIizsitng Domain General Class

Greneral Class key word: Special PuarposedIntervertion s EventsFindings

Display 4. Non-Compliance Report for Domain Information Table

The Following Variables with Non-compliance Specs.!

Variable Error Type

EACE EOLE key word: Identifie ' Topic/Timing/Grouping Oualifier/Result QualifierSynonym QualifienFecord Cualifies/Variable
Qualifier/SelectionfAnalysis

VTEZGTYPE |VAR Label > 40 Chars
EOLE key word: Identifie ' Topic/Timing/Grouping OualifierResult QualifierSynonym QualifienRecord Cualifien/Variable
Qualifier/SelectionfAnalysis

AGE ROLE key word: Identifie /T opic/Timing/Grouping Qualifier/Fesult QualifierSynonym Qualifie ’Record Oualifier/V ariable
Cualifier/Zelecion/Analysis

BITEID EOLE key word: Identifie /T opic/Timing/Grouping Oualifier/Result QualifierSBynonym QualifierFecord Cualifies/V ariable
Cualifier/ZelectionAnalysis

O_TIMDIAG | VAR Mame > & Chars

DISCFH DISCFH wariable is present bt DISCFL wariable iz not presernt

AGEU AGEU variable is not in the dataset ADSL

AR ARM wvariable is not in the dataset ADEL

*FL Mo watiable that ends in FL is in the dataset ADSL

Display 5. Non-Compliance Report for Variable Information Table

An Innovative ADaM Programming Tool for FDA Submission, continued

The Following Varicbies with Duplicares Specs.!

WVariable
[Variable | Number

SEX 2
o2

Display 6. Non-Compliance Report for Duplicate Variables

The Following Key Variables are Defined in Domain Informuation Table, but Not Defined in Variabie Information Tuble!

[Variable Error Type
TRTCD Urdgue [dentified Variable TRTCD iz Defined in Domain Information Table, but Mot Defined in ¥ ariable Information Table

Display 7. Non-Compliance Report for Inconsistently Defined Key Variables

The Following Variables Do Not Have Decoded Variables Defined in Specs.!

Variahle Error Type
AVISITH | Variable AVISITN dose not have a decoded variable AVISIT defined in the specification ADLE.DOC

Display 8. Non-Compliance Report for Decoded Variables

COMPARISON WITH OPENCDISC VALIDATION

Compared with OpenCDISC Validation which normally occurs at the very end of ADaM programming activities, the
compliance checking by the tool focuses on the ADaM metadata now, including variable presence. The ADaM
programming specification is the ONLY source needed in the macro, which makes it possible to perform compliance
checking and finalize the ADaM metadata at the very early stage even before actual ADaM datasets are generated.
Specifically, the checking rules such as compliance checking of domain information, compliance checking between
domain and variable information, key words checking for each column in programming specifications, and existence
checking of decoded variables in ‘Controlled Terms or Formats’ Column, are not defined in CDISC ADaM Validation
Checks V1.1, but uniquely defined and applied in our approach instead. The tool will be further developed to check
ADaM datasets for compliance with CDISC models, in addition to ADaM metadata. More checking rules will be
incorporated into the tool as the tool is being fully developed regarding compliance checking of metadata against
CDISC standards.

OUTPUT OF SAS DATASETS CONTAINING ADAM SPECIFICATION INFORMATION

Not until all issues about the above-mentioned compliance checking are resolved, will the SAS datasets containing
ADaM specs information be output. Compared with OpenCDISC Validation which occurs at the very end of ADaM
programming activities, the method in this paper will ensure the resolution of nhon-compliance with CDISC and FDA
submission requirements, finalize the ADaM specification at the very early stage in the programming cycle even
before actual ADaM datasets are generated, and avoid the repetitive work to revise the ADaM data structure after
ADaM Derivation.

Display 9 shows a dataset named ADXX_DOMAIN containing the domain information for the individual ADaM
dataset after all compliance checking are passed, and Display 10 shows a dataset named ADXX_VARS containing
the attributes of the variables. They define individual ADaM metadata and will be used in the subsequent ADaM
programming activities.

=, SAS - [VIEWTABLE: TMP1.adsl_domain]

EFiIe Edit ‘iew Tools Data Solutions ‘Window Help 18 x|
|1 HosmEeRResox i 0 REE® |
[RUNORDER [DOMAIN | DESCRIFTION [STRUCTURE | KEYS |[PURPOSE| CLASS | PATH [RELPATH[CLASSORD |REPEATING]ISREFERENCEDATA ~[
1 1 ADSL Subject-Level Analpsis Data One record per subject USUBJID Analysis Special Purpose 1 Mo Ma

Display 9. Dataset Containing the Domain Information of an Individual ADaM Domain

An Innovative ADaM Programming Tool for FDA Submission, continued

E File Edit View Tools Data Solutions ‘Window Help =T
| I HosEanRaE-x i if=tERES
DOMAIN]VARNUM[VARIABLE | LAREL [1vPE[DaTATYPE[LEMGTH] ORIGIN [TERM [CODELIST [CONTROLLED_TERMINOLOGY [ROLE I COMMENT [CoRE [ManDATOR
93 ADSL 9 SEX Sex Char text 2 DM.sex Record Qualifier DM.SEX Req Yes
100 |ADSL 10 SEXM Sex (M) Mum float 2 Derived SEXN [2[]1]21 :FM SEXM (SEX)E (1)1 =M [212=F Svnorym Qualifier Equals,1.ifsex=M:2.ifsex=F FReg Yes
10 ADSL 4 SITEID Study Site Identifier Char text 8 DM.siteid Record Quslifier DM.SITEID Req Yes
Max (DS.DSSTDTC where
102 |ADSL 53 STDYEDT Study End Date Mum float 8 Derved YYMMDD10. YMMOD 10, Timing DSSCAT=STUDY Peim Mo
TERMINATION', SUPPDS QWAL

wihere QNAM=TASTYDT')
Display 10. Dataset Containing Variables Information of an Individual ADaM Domain

Display 11 shows a SAS dataset containing the domain information for all existing ADaM domains named
ALL_DOMAINS, and Display 12 shows a SAS dataset containing the attributes of the variables for all existing ADaM
domains named ALL_VARS. They are generated cumulatively each time when individual ADaM specification
programs are run, and output for preparing define.xml and batch file. If a particular ADaM specification program is run
several times, the information retrieved from the most recent call will replace the one in the previous run.

& SAS - [YIEWTABLE: Tmp1.All_domains]

g File Edit Yizw Tools Data Solutions ‘Window Help =l¢
| <1 dpsEsr:=n-x 2 iF=EEENEe
AUNORDER [DOMAIN | DESCRIPTION I STRUCTURE I KEYS [PURPOSE | cLeSS [PATH [RELPATH [CLASSORD [REPEATING]ISREFERENCED
1 1 ADSL Subject-Level Analysis Data One record per subject USUBJID Analysiz Special Purpose 1 No No
2 2| ADAE Analysis Dataset for ddverse One record per subject per each AE STUDYID, USUBJID, AEDECOD, Analpziz Events 1 Yes Mo
Events recorded in SOTM AE domain AESDT
3 3 ADCD CD4 Data Set One record per test per ime point per USUBJID, APHASEN, AVISITH, Analpziz Findings 1 Yes No
subject CDTESTCD, CODTC, CDORRES
4 4 ADCKM Concomitant Medication Data One record per medication intervention — STUDYID, USUBJID, CMTRT, CMSDT | Analysis Interventions 1 Yes MNa
epizode per subject
One record per eq test per time point per
subject. In caze of multiple
5 5 ADEG Electrocardiogram dnalysis measurements in a single visit window, USUBJID, PARCATT. PARAMCD, Analysis Findings 1 Yes Mo
Diata Set we will keep the multiple measurements APHASEM, &WISITM, EGDTC
but 'AYERAGE" will be alzo created for
the: multiple

Display 11. Dataset Containing the Domain Information of All ADaM Domains

% GAS - [VIEWTABLE: Tmp1.8ll_vars] [_]
mFile Edit View Tools Data Solutions Window Help ;[
|] HdpemEsprnee - x tEf=-EEEE®
DOMAIN[VARNUM [VARIAELE | LAREL [TYPE [DATATYPE[LENGTH] ORIGIN | TERM [CODEUST | CONTROLLED_TERMINOLOGY | ROLE | COMMENT [CARE [MaNDaTOF
142 |ADSL 62 VTRTEDT Evzat[;netntl’hasa Num float 8 Deiived '*YMMDDI0. VMMDD0 Timing | Equals TRTEDT +14. Pem No
iy ate

| Equals ws wastresn for vs vstested
= "WEIGHT'. Baseline walue is the
X X asgessment at the Day 1 wisit. If
143 |ADSL 22 WEIGHTBL Baseline Weight Mum float 3 WS.vsstres Record none, the |atest available Feq Yes
[kal Qualifier measurement from the screening
peniod will be used, including
ungcheduled visite before Day 1
Ifboth AESDT and AEEDT are
not miszing then; ADURM =

144 |&DAE 106 ADURN Humeric AE Mum float 8 Derived Timing AEEDT-SESDT+1;Ekeif sither Pemn Mo
Duration [days] AESDT or AEEDT missing then
ADURN i missing.
145 | ADAE 26 AEACN Action Taken with Char test 40 AE.aeach Record | Equals 4E.asach Cond Mo
Study Treatment Gualifier
(11DOSE NOT AEACNF: [1] DOSE MOT
X CHANGED [2)DOSE CHAMGED {2) DOSE REDICED Derived from MedDRA dictionary:
146 [ADAE 30 AEACNHAS Action Takenwith Char test 200 SUPPAE. AEACNF REDUCED [3)DRUG (3] DRUG INTERRUPTED [4] Pecord | Equals SUPPAE qval when Pem Mo
HEART INTERRUPTED 4] DRUGWITHDRA&WN (SINOT GQualifier SUPPAE ONAM = BEACHHAS'

DRUG WITHORAWN APPLICABLE
(5] NOT APPLICABLE

Display 12. Dataset Containing Variable Information of All ADaM Domains

AUTOMATION 2: VERSION CONTROL

Version control of ADaM programming specifications can be achieved by the tool. In addition to outputting SAS
datasets containing ADaM specs information to a study folder &OUTDIR, the macro %get_adam_specs can also
store both word version and SAS dataset of the programming specification with time stamp in a study subfolder,
named as \history. This function is performed after passing the compliance checking.

The word files of the specifications with different time stamps are stored for version control purpose. The SAS dataset
of specification with a time stamp can serve as an input to automatically capture the changes of the programming
specifications. The traceability can be achieved with the storage of the previous version of specifications.

An example of version control is shown in Display 13. If needed, time can be added into the time stamp of word
documents in addition to date.

An Innovative ADaM Programming Tool for FDA Submission, continued

Mame = I vI Date modified I vI Type | vI Size | -|
@ADSL_ED 110913 9f12/2011 9:08 AM Microsoft Word Document 341 KB
IEI_:IADSL_ED 110915 /152011 9:51 AM Microsoft Word Document 340 KB
@ADSL_ZD 110919 9f19,/2011 4:11 FM Microsoft Word Document 345 KB
@ADSL_ED 111007 Of22/2011 4:35 FM Microsoft Word Document 342 KB
l_,IADEL_ED 111018 10142011 9:41 AM Microsoft Weord Document 237 EB
E=dadsl_wvars_20110913 9/13/2011 11:15AM SAS Data Set 1,921 KB
Ezaadsl_vars_zﬂ 110915 Of15/2011 10:15 AM S5A5 Data Set 1,921 KB
Ecdadsl_vars_20110919 9/19/2011 4:12 PM SAS Data Set 1,921 KB
E=dadsl_vars_20111007 1072011 10:31 AM SAS Data Set 1,889 KB
Ezjadsl_vars_ltl 111018 10182011 12:50 PM SAS Data Set 1,873 KB

Display 13. An Example of Version Control for ADSL Specification Document

AUTOMATION 3: TRACK CHANGES

Since derivation rules may be complex and subject to constant change during the whole ADaM programming
activities, it is desirable to automatically keep track of different versions of ADaM programming specifications in order
to help statisticians and programmers to review the new specifications and facilitate the decision making for the
revision. It is more beneficiary for sponsors to keep track of different versions when ADaM programming is
outsourced to external vendors.

A MACRO FOR TRACKING CHANGES

Tracking changes function will be activated when macro variable &track_specs is setto Y at the invoking of macro
%get_adam_specs. The macro users can assign any SAS dataset in \history folder as an old version of
specifications, to be compared with the current version of specifications. The reports on specifications revisions will
be automatically output in RTF formats.

Tracking changes function makes it possible to capture any changes in current specifications with respect to any
previous version of specifications as per user request, including variable added, variable deleted, variable attributes
revised, variable comments revised, variable origin and/or controlled terminology revised, and variable number of
order revised in the new specifications, and thereby facilitates reviewing the new ADaM specification. The Display 14
- 19 show the typical reports of specification changes when tracking change function is triggered.

The following Variables Were Added in the New Version of Specs. !

Yariable Aariable Attribute Cominent
A RWICD ARMNICD label="Arm' length=%8 | DIV ARWCD

Display 14. An Example Report for Tracking Changes: Adding Variable(s)

The foillowing Variabies Were Deleted in the New Version of Specs.!

[Variable Variable Attribute Comment
AGEC AGEC label='Enrollment A ge |if . < age <= 45 then, agec = "AGE <= 45 wears", elze if 45 < age <= 65 then; agec="45 <
Category length=540 AGE <= 63 years"; else if 63 < age then; agec="AGE * 62 ywears",

Display 15. An Example Report for Tracking Changes: Deleting Variable(s)

An Innovative ADaM Programming Tool for FDA Submission, continued

The following Variabies with Attributes Changed!

Variable
Variable | Number | Source Variable Attribute
COHORTH (29 HNew Specs | COHORTH label="Cohott () length=%
O1d Zpecs | COHORTH lahel='Cohort Code' length=8

Display 16. An Example Report for Tracking Changes: Change of Variable Attributes

The following Variables with Comment Changed!

Variable
Variable | Number | Source Cominent
RYEFH 104 Hew 3pecs |Equalsto 1 if grpfl="Y"; Equals to 0 if mrfl="H"
0Old 3pecs |Equalsto 1 if gypfl="Y"; Eqpuals to 0 if mrfl="N"; Equals to ? if tyfl="U"; Equals to 99 if fyfl="NA"

Display 17. An Example Report for Tracking Changes: Change of Comments

The following Variables with Origin and/or Controiled Terminology Format Chanped!

Controlled
Variable Term or
Variable | Number| Sowrce Origin Format Codelist
UNDW2I4FH (108 Hew 3pecs | Detived YESWOFH |(M1=¥(ho=N
Old Specs | Derived NYNULLFN [(131=Y(DH0=N(3H9 =179 =HNa

Display 18. An Example Report for Tracking Changes: Change of Origin or Controlled Terminology

The following Variables with Variable Number Changed!

Variable
Variable Source | Number
AGE New Specs | 5
O1d Bpecs | 25
AGEU New Specs |8
O1d Bpecs | 28
A RN New Specs |34
Old Bpecs 15

POST-DELIVERY CHANGES AND TRACKING CHANGES

Tracking changes function is indispensable for programming and/or documentation after a Clinical Study Report
(CSR) delivery. If there are any changes in the programming specifications post-delivery, the tracking change
function will be triggered when invoking macro %get_adam_specs, and reports will be generated to capture changes
from the last version of specifications. The reports will serve as documentation for audit. For example, if comments
column is updated after the delivery due to editorial change, only one report is generated: the report of change of
comments, as shown in Display 17.

Display 19. An Example Report for Tracking Changes: Change of Variable Order in the ADaM Dataset

An Innovative ADaM Programming Tool for FDA Submission, continued

AUTOMATION 4: CREATE DEFINE.XML

Define.xml is used to be generated after the CSR stage for submission purpose only, which is provided for FDA
reviewers to familiarize the data and speed up the overall review process. It is desirable if the study statisticians can
review metadata earlier in the programming cycle as well. Our ADaM Tool automatically creates define.xml at the
same time as CSR stage and thereby makes it possible for the study statisticians to validate the ADaM metadata and
provide feedbacks at early stage of ADaM programming activities.

A MACRO FOR CREATING DEFINE. XML

Define.xml generation function will be activated when macro variable &generate_xml is set to Y at the invoking of
macro %get_adam_specs. The generated SAS datasets ALL_DOMAINS and ALL_VARS, which contain domain
information and variable information for all domains as shown in Display 11 and 12, respectively, will be output to the
domain information spreadsheet, variable information spreadsheet, value level spreadsheet, and controlled
terminology spreadsheet for define.xml generation. These spreadsheets will be combined with manually generated
study level spreadsheet to create define.xml.

Display 20 shows an example of Table of Contents for define.xml, which describes the domain information. The
detailed derivation rules and origin information in the programming specification, in addition to variable attributes, are
shown in Display 21. The links to the individual ADaM datasets will not work until ADaM datasets are finalized, QCed,
and converted to transport files.

{f'Study ABC-272-r#x (ADaM ¥1.0), Data Definitions - Internet Explorer provided by SAS Institute

. Ii ‘iksclientiCyMy Document|papersidemotdefine _xmlidefine. xml j | K|
i:? alp {é Study ABC-ZZZ-xxx (ADaM Y1.0), Data Definitions | | 'ﬁ}
s Supplemental Study Data Specification
o Datasets
o Value Level Metadata
s Controlled Terminology
Datasets for Study ABC-ZZZ-xxx (ADalM V1.0)
Dataset Description Class Structure Purpose Keys Location
ADAE | Analysis Dataset for Events One record per subject per Analysiz | STUDYID, USTURIID, adae.zpt
Adverse Events each AE recorded m SDTH AEDECOD, AESDT
AF domain
ADCD | CDd Data Set Findings Cne record per test per time Analysiz | TSTTBRIID, APHASEN, AVIETIHN, | aded apt
point per subject CDTESTCD, CDDTC,
CDORERES
ADCM | Concomitant Medication |Interventions | One record per medication Analysiz | STUDYID, USUBIID, CWTRT, | adem.zpt
Drata mtervention episode per subject ChWEDT
ADEG | Electrocardiogram Findings One record per eg test per tme | Analysis | TSTURIID, PARCATI, adeg wpt
Analysiz Data Set point per subject. PARAMCD, APHASEN,
AVISTIH, EGDTC
ADHC |HCV ENA Analysis Findings Cne record per HOW EIA Analysiz | TTSTTBRIID, APHASEN, AVIETIHN, | adhc upt
Data Set assessment per tine point per HCDTC, HCOEERES
subject
ADHI |HIV ENA Data Set Findings COne record per test per time Arnalysis | TTSTRIID, APHASEN, AVISTTH, | adhi wpt
point per subject HITESTCD, ADTC, HIOREES
ADLB | Laboratory Analysis Findings Cne record per subject per lab | Analysis | STUDYID, TETTRIID, PARAN, | adb.apt
Drataszet test per tumepoint PARAMWCD, LEDTC
ADEL | Subject-Level Analysis | Special Cne record per subject Analysiz | TTSTTRIID adslapt
Data Purpose

Display 20. Table of Contents (TOC) of Sample define.xml - Domain Information

An Innovative ADaM Programming Tool for FDA Submission, continued

{f'study ABC-ZZZ-xxx {ADaM ¥1.0), Data Definitions - Internet Explorer provided by SAS Institute

@._ y - I_: files fftsclient/C My 200ocument/papers/demo/define _xmifdefine, xml#ADSL j 2| X

%.__—,Convert - [P Select

W & ,é Study ABC-ZZ7-xxx (ADaM ¥1.0), Data Definitions | |

Subject-Level Analysis Data Dataset (ADSL) adslxpt
Controlled
Variahle Lahel Type Terminology Origin Role Comment
STUDYID Study Identifier | text Dl studyid Tdentifier | Constant Value: "ABC-ZZ7-on"
TTETTRIID TThirue Subject | text Dl usubiid Identifier | Equivalent to studyid || "-" || strip(siteid) || "-"
Tdentifier || strip{subijid)
STTRIID Zubject text Dl subijid Tdentifier |(e.g 102130%
Tdentifier for the
Study
ETTEID Study Site text Dl siteid Eecord | DM STTEID
Tdentifier Qualifier
AGE Lge float Dl age Eecord | Equals to DI age
Qualifier
AGEGE1 Pooled Age text | AGEGEIN Dertved Eecord |==45, fage <= 45, =45 and <=£5, {45 =
Group 1 ualifier | age <= 63, =63, fage > £3; HMote: Decode
variable for AGEGPI.
AGEGEIN Pooled Age float | AGEGSEIN Derived Synonym | Category denved f age non-mizsing. Equals,
Group 1 (M) Qualifier | 1, fage <=45, 2, f45 = age == 63, 3, 1f
age = 65

Display 21. Data Definition Table of Sample define.xml - Variable Information

Since the ADaM programming specifications are the unique source for generating both ADaM metadata and
define.xml, the consistency between ADaM metadata and programming specification, and further between ADaM
metadata and the define files can be automatically guaranteed.

AUTOMATION 5: GENERATION OF GLOBAL MACRO VARIABLES OF METADATA FOR
ADAM DERIVATION PROGRAMMING

Every analysis dataset should be associated with a dataset label, and all variables in the analysis dataset are defined
by attributes label, type (Numeric or Character) and length. Dataset label and variable attributes of an ADaM dataset
are retrieved from ADXX_DOMAIN and ADXX_VARS datasets as shown in Display 9 and Display 10, respectively,
which are generated by macro %get_adam_specs from programming specification document. Macro %adam_attrib
is called in each ADaM derivation program to generate global macro variables &ADAMLABEL, &ADAMVARS, and
&VAR_ATTRIB which upon resolution provide ADaM dataset label, variables in the ADaM dataset and their
attributes, respectively.

The macro call of %badam_attrib is as follows:

%macro adam_attrib(libin=adamspec, dsin=, dmin=);

Where,

LIBIN: the libref associated with a SAS data library that has ADaM domain information dataset
(ADXX_DOMAIN) and variable information dataset (ADXX_VARS)

DSIN: Name of the SAS dataset storing ADaM variable information, default value ADXX_VARS

DMIN: Name of the SAS dataset storing ADaM domain information, default value ADXX_DOMAIN

Global macro variables &ADAMLABEL, &ADAMVARS, and &VAR_ATTRIB will be used in the DATA step of ADaM
conversion program to populate dataset label and variable attributes in the final ADaM dataset. Sample SAS code
from ADLB (Laboratory Analysis Dataset) derivation program is shown below. This methodology avoids defining
variable attributes for all the variables in the dataset in the conversion program thereby significantly reducing
programming work load and occurrence of human errors. It guarantees the consistency between the ADaM datasets
and the specifications. Validation programmer can review specification document for variable metadata and use the
same mechanism in the QC program. This methodology is especially feasible in handling any changes of variables
and their attributes. Cost effectiveness is achieved since the only update needed is the programming specifications.

An Innovative ADaM Programming Tool for FDA Submission, continued

*** Qutput ADaM dataset ***;

data ad.adlb(keep=&adamvars. label=&adamlabel.);
attrib &var_attrib._;
set adlb;

run;

The resolution of global macro variables &ADAMLABEL, &ADAMVARS, and &VAR_ATTRIB in log file of ADHC
conversion programs are as follows.

%put &adamlabel .;
Laboratory Analysis Dataset

%put &adamvars.;

STUDYID USUBJID LBSEQ LBREFID PARAMCD PARAM PARAMN PARCAT1 APHASE APHASEN DTYPE
AVISIT AVISITN TVRFL ONTRTFL LBORRES LBORRESU LBORNRLO LBORNRHI LBSTRESC LBSTRESN
LBSTRESU LBSTNRLO LBSTNRHI ANRLO ANRHI ANRIND LBSTAT LBREASND LBNAM LBSPEC LBMETHOD
LBFAST BASE BASEC CHG BNRIND ADTM ADT ATM ADY LOCALFL VISIT VISITNUM LBDTC LBRPTLBL
LBPREC ATOXGR ATOXGRN ATOX ATOXGRH ATOXGRHN ATOXH BTOXGR BTOXGRN BTOX BTOXGRH
BTOXGRHN BTOXH MXGR_T MXGR_A HMXGR_T HMXGR_A MXNR_T MXNR_A MNNR_T MNNR_A HGB1OFL
HGB8FL UACIDFL HGB10_T HGB10_A HGB1ON_T HGB1ON_A HGB8_T HGBS_A HGBSN_T HGBSN_A
UACID_T UACID_A UACIDN_T UACIDN_A TABLEFL TABLESFL LISTNGFL ABLFL ANLO1FL ANLO2FL
AVAL AVALC PCHG MINFL MAXFL MINFL_TW

%put &var_attrib.;

STUDYID label="Study ldentifier” length=$20 USUBJID label="Unique Subject
Identifier®™ length=$40 LBSEQ label="Sequence Number® length= 8 LBREFID
label="Specimen ID" length=$20 PARAMCD label="Parameter Code" length=$8 PARAM
label="Parameter” length=$80 PARAMN label="Parameter (N)" length= 8 PARCAT1
label="Parameter Category 1" length=$40 APHASE label="Phase" length=$40 APHASEN
label="Phase Number® length= 8 DTYPE label="Derivation Type" length=$40 AVISIT
label="Analysis Timepoint Description® length=$40 AVISITN label="Analysis Timepoint
Description Number® length= 8 TVRFL label="TVR/Pbo Treatment Phase Event (+1 day)-~
length=$1 ONTRTFL label="0n Treatment Record Flag® length=$1 LBORRES label="Result
or Finding in Original Units® length=$120 LBORRESU label="0Original Units~
length=%$40 LBORNRLO label="Reference Range Lower Limit in Orig Unit" length=%$40
LBORNRHI label="Reference Range Upper Limit in Orig Unit" length=$40 LBSTRESC
label="Character Result/Finding in Std Format®™ length=$120 LBSTRESN label="Numeric
Result/Finding in Standard Units®" length= 8 LBSTRESU label="Standard Units”
length=$40 LBSTNRLO label="Reference Range Lower Limit-Std Units" length= 8
LBSTNRHI label="Reference Range Upper Limit-Std Units" length= 8 ANRLO
label="Analysis Normal Range Lower Limit" length=$40 ANRHI label="Analysis Normal
Range Upper Limit" length=$40 ANRIND label="Reference Range Indicator” length=$8
LBSTAT label="Lab Status® length=$8 LBREASND label="Reason Test Not Done*"
length=$200 LBNAM label="Vendor Name®" length=%$200 LBSPEC label="Specimen Type~
length=$40 LBMETHOD label="Method of Test or Examination® length=$100 LBFAST
label="Fasting Status™ length=$2 BASE label="Baseline Value™ length= 8 BASEC
label="Character Baseline Value" length=$40 CHG label="Change from Baseline"”
length= 8 BNRIND label="Baseline Reference Range Indicator® length=$8 ADTM
label="Analysis Date/Time" length= 8 format=DATETIME20. ADT label="Analysis Date"”
length= 8 format=YYMMDD10. ATM label="Analysis Time" length= 8 format=TIME5. ADY
label="Analysis Relative Day" length= 8 LOCALFL label="Local Lab Result Flag"
length=$2 VISIT label="Visit Name" length=$80 VISITNUM label="Visit Number® length=
8 LBDTC label="Date/Time of Specimen Collection™ length=$20 LBRPTLBL
label="Laboratory Test label for reports® length=$80 LBPREC label="Decimal
precision for reports®™ length= 8 ATOXGR label="Analysis Toxicity Grade" length=$2
ATOXGRN label="Analysis Toxicity Grade (N)" length= 8 ATOX label="Toxicity"
length=$80 ATOXGRH label="Analysis Toxicity Grade for High Value® length=$2
ATOXGRHN label="Analysis Tox Grade for High Value (N)" length= 8 ATOXH
label="Toxicity, for High Value® length=$80 BTOXGR label="Baseline Toxicity Grade~”
length=$2 BTOXGRN label="Baseline Toxicity Grade (N)" length= 8 BTOX
label="Baseline Toxicity"™ length=$80 BTOXGRH label="Baseline Toxicity Grade, for
High Values®™ length=%$2 BTOXGRHN label="Baseline Tox Grade, for High Values (N)*
length= 8 BTOXH label="Baseline Toxicity, for High Values™ length=$80 MXGR_T
label="Max toxicity tru TVR Treatment Phase® length= 8 MXGR_A label="Max toxicity

An Innovative ADaM Programming Tool for FDA Submission, continued

tru Overall Treatment Phase® length= 8 HMXGR_T label="Max toxicity tru TVR Phase,
for High® length= 8 HMXGR_A label="Max toxicity tru Overall Phase, for High*
length= 8 MXNR_T label="Normal Range (Max) tru TVR Treat Phase" length=$8 MXNR_A
label="Normal Range (Max) tru Overall Phase® length=$8 MNNR_T label="Normal Range
(Min) tru TVR Treat Phase” length=$8 MNNR_A label="Normal Range (Min) tru Overall
Phase® length=$8 HGB1OFL label="HGB flg (Male <105 g/L, Female <100 g/L)" length=$2
HGB8FL label="HGB flag (Male <85 g/L, Female <80 g/L)" length=$2 UACIDFL
label="Elevated Uric Acid flag (>=446 umol/L)" length=%$2 HGB10_T label="Days to 1st
HGB10 Flg tru TVR Trt Phase" length= 8 HGB10_A label="Days to 1st HGB10 Flag tru
Overall Phase® length= 8 HGB1ON_T label="Days, 1st HGB10 FIg - Norm tru TVR Phase®
length= 8 HGB1ON_A label="Days, 1lst HGB10 Flg - Norm tru Overall®™ length= 8 HGB8 T
label="Days to 1st HGB8 Flag tru TVR Trt Phase® length= 8 HGB8_A label="Days to 1st
HGB8 Flag tru Overall Phase®™ length= 8 HGBS8N_T label="Days, 1lst HGB8 Flag - Norm
tru TVR Phase® length= 8 HGB8N_A label="Days, 1lst HGB8 Flag - Norm tru Overall®
length= 8 UACID_T label="Days to 1st Elevated UAcid tru TVR Phase” length= 8
UACID_A label="Days to 1st Elevated UAcid tru Overall® length= 8 UACIDN_T
label="Days, 1st Elevated UAcid - Norm tru TVR" length= 8 UACIDN_A label="Days,1lst
Elevated UAcid-Norm tru Overall®™ length= 8 TABLEFL label="Selected Analysis Flag
for Summary Table® length=%$2 TABLESFL label="Selected Analysis Flag for Shift
Tables®™ length=$2 LISTNGFL label="Selected Analysis Flag for Listings" length=%$2
ABLFL label="Baseline Record Flag®™ length=$2 ANLO1FL label="Analysis Record Flag
01" length=$2 ANLO2FL label="Analysis Record Flag 02" length=%$2 AVAL
label="Analysis Value™ length= 8 AVALC label="Analysis Value (C)" length=$20 PCHG
label="Percent Change from Baseline® length= 8 MINFL label="Minimum on Treatment
Measurement Flag®™ length=$2 MAXFL label="Maximum on Treatment Measurement Flag"
length=$2 MINFL_TW label="Lowest Measures During Each Trt WD Flag™ length=$2

AUTOMATION 6: ADD CORE VARIABLES TO DEFINE.XML AND ADAM DATASETS AT
FINAL RUN

FDA advises to populate a set of basic subject level variables to all analysis datasets. These variables are called core
variables. Core variables include study/protocol, site, country, treatment assignment, sex, age, race, ethnicity,
analysis population flags (e.g. full analysis set flag, per protocol flag etc.) and other important baseline demographic
variables. They will be identified from ADSL and populated in all analysis datasets, which avoids the additional step of
merging analysis datasets with ADSL to get basic subject level information while generating TFLs.

ADD CORE VARIABLES TO DEFINE. XML AT FINAL RUN

Adding core variable function will be activated when macro variable &final_run is set to Y at the invoking of macro
%get_adam_specs in final stage of ADaM programming activities. The core variables are stored in a global macro
variable &core_vars which is defined in the study set up file. The attributes of these core variables are retrieved from
the specification of subject level analysis dataset ADSL. The core variables will be added to ALL_VARS for all
analysis datasets, and further populated into define.xml.

The Display 22 shows the final SAS data named FINAL_ALL_VARS, which contains variable information including
added core variables for all ADaM datasets. The variables in each anlaysis dataset are re-ordered so that core
variables are added after the key variables. If adding core variable function is activated, FINAL_ALL_VARS will be
used to create define.xml, which includes core variables in all analysis datasets.

% SAS - [VIEWTABLE: Tmpl.Final_all_wvars]
[l File Edit View Tools Data Solutions ‘Window Help

[] CFlpEemsarRe - x 2 A= GERE®
RUNORDER | DOMAIN | VARNUM | VARIABLE | LABEL | TvPe| DATATYPE [LENGTH| ORIGIN | TERM | CODELIST
167 2 ADAE 28 TRTOMP Flanned Treatment for Period 01 Char text 10 Derived
168 2 ADAE 29 TRTMPN Planned Treatment for Period 01 (M) Mum float 8 Derived TRTPN (111 =TVR/PR (2) 2 = Pbo/PR
163 2 ADAE 30 TRTOTA Actual Treatment for Period 01 Char text 10 Derived
170 2 ADAE 31 TRTMAN Actual Treatment for Period 01 (M) Mum float 8 Derived TRT&N (111 =TVR/PR (2) 2 = Pbo/PR
171 2 ADAE 32 BIOPRSLT Biopsy Result Char test 200 DC.destresc
172 2 ADAE 33 TRTP Plarined Treatment Char test 10 Derived
173 2 ADAE 34 TRTPN Planned Treatment (M) Mum float 8 Derived TRTPN (111 =TVR/PR (2) 2 = Pbo/PR
174 2 ADAE 35 TRTA Actual Treatment Char text 10 Derived
178 2 ADAE 36 TRTAN Actual Treatment (M) Mum float 8 Derived TRT&N (111 =TVR/PR (2) 2 = Pbo/PR
176 2 ADAE 37 AESEQ Sequence Murber Murn float 8 AE.aeseq
177 2 ADAE 38 AESPID Sponzor-Defined [dentifier Char test 8 AE. aespid
178 2 ADAE 39 AEDECOD Dictionary-Derived Term Char test 200 AE.aedecod

Display 22. Final Dataset Containing Variable Information of All ADaM Domains with Core Variables Added

An Innovative ADaM Programming Tool for FDA Submission, continued

ADD CORE VARIABLES TO ADAM DATASETS AT FINAL RUN

Similar to adding core variables to define.xml, core variables are automatically retrieved from ADSL and added to all
ADaM datasets, which avoids the redundant and error-prone process to develop the same variables in different
ADaM derivation programs. In our ADaM tool core variables are not even included in the individual derivation
programs when developing Individual ADaM datasets. Instead, a separate SAS script named add_corevars.sas is
created to add core variables to all analysis datasets defined in ALL_DOMAINS in the final run. Add_corevars.sas
will later be used in the batch file _runADaM.bat for batch submitting ADaM derivation programs. This process
introduces the flexibility of developing individual ADaM datasets before ADSL is ready for use.

AUTOMATION 7: CONSISTENCY CHECKING OF CONTROLLED TERMINOLOGY AND
VALUE LEVEL METADATA BETWEEN ADAM DATASETS AND PROGRAMMING
SPECIFICATION

It is very critical for FDA submission to ensure consistency in controlled terminology and value level metadata
between programming specifications and ADaM datasets. ADaM programming tool uses SAS macro
%ctlist_checking to automate the process of checking consistency in controlled terminology and value level
metadata between ADaM datasets and programming specifications. This macro can be called at any stage of ADaM
programming cycle and helps in finalizing the programming specifications at an earlier stage. The controlled
terminology in ADaM datasets can be categorized as value level metadata originating from source SDTM datasets to
ADaM BDS Datasets, sponsor-defined terminology for the code-decode variable pair, controlled terminology inherited
from SDTM domains, and therapeutic-specific terminology defined by FDA. While writing ADaM programming
specifications these controlled terminology and value level metadata follow a particular style for proper function of
macro %ctlist_checking as shown in Display 23 — 26.

(4) 4 = LIFE-THREATENING

Variable Variable Label | Type | Length Controlled Terms or Formats Origin Role Comments Core
Name
PARAMCD Parameter Code | Char g (1) BMI = BODY MASS INDEX (KG/M2) W vstested Topic Equals upcaselstrip(y's vstestzd)) Ren
(2) DIABP = DIASTOLIC BLOOD PRESSURE
{rMHG)
{3) HEIGHT = HEIGHT (CM)
(4) PULSE = PULSE RATE (BEATS/MIN)
(8) RESP = RESPIRATORY RATE
(BREATHSMIN)
(B) 5Y5BP = S¥STOLIC BLOOD PRESSURE
{MMHG)
{7) TEMP = TEMPERATURE (C)
{8) WEIGHT = WEIGHT (K3)
PAR A Parameter Char 40 W3,rstest Synonym | If paramed="BMI" then Reg
Description Gualifier | param=strip(¥'3,vstest)]|" (KGM2)"
Else if paramed="DIABP" then
param=strip(yS.vstes|l” (MMHE)"
Elze if paramed="HEIGHT" then
param=strip(yS.ystesnl” (CM)"
Elze if paramed="PULSE" then
param=strip(yS.ystagll” (BEATSMIN"
Else if paramed="RESF" then
m=strip(ys, II"
(BREATHSMIN)";
Elze if paramecd="5Y SEF" then
param=stripysystestl” MMMHG)",
Else if paramed="TEMP" then
param=strin(yS vstest)||” (C)")
Elze if paramed=""EIGHT" then
param=striply.ystespll” (KE)"
Display 23. Illustration of PARAMCD Value Level Metadata in an ADaM Specification
Variable Variable Label | Type |Length| Controlled Terms or origin Role Comments Core
Name Formats
ATOXGR Analysis Toxicty | Char 20 Derived Record Qualifier Get the decoded value of ATOXGRN. Perrmn
Grade Equals
MILD' if ATOXGRN =1
'MODERATE' if ATORGRN =2
'SEVERE' if ATOXGRN = 3
LIFE-THREATENING if ATOXGRN = 4
ATOXGRMN Analysis Toxicty | Mum 8 ATOXGRN (ATOXGR): AEAETOXGR | Synonym Qualifier | Equals AEAETOXGR Perrmn
Grade Mumber (11 =MILD
(2) 2 = MODERATE
(33 =SEVERE
)

Display 24. lllustration of Sponsor-Defined Controlled Terminology in an ADaM Specification

An Innovative ADaM Programming Tool for FDA Submission, continued

Variable Variable Label | Type | Length Controlled Terms or Formats Origin Role Comments Core
Name
LBSPEC Specimen Type Char 40 LBSPEC: LB.|bspec. Record Equals LB, |bspec Ferm
{1) BLOOD Qualifier
{2) SERUM
{3) URINE
Display 25. lllustration of Controlled Terminology Inherited from CDISC SDTM Domain
Variable Variakle Label | Type | Length Contrelled Terms or Formats Origin Role Comments Core
Name
OUTCOME i Char 40 OUTCOME: Derived Result Outcome equals to "5vR" if a subject Perrm
Cutcame (1) 8VR Cualifier | has HCY RNA below level of
(2) Relapse guantification at last assessment in
(3) Or-treatment Yirologic Failure Antiviral Follow-up Yveek 24.
(4) Other Cutcome equals to "Relapse” if

undetectable at planned EQT and any
detectable during follow-up

Cutcome equals to "On-treatment
YWirnlpgic Failure” if subject met a
stopping rule or (had aviral
breakthrough and detectable at planned
EOT)

else equals to "Cther”

Display 26. lllustration of FDA Defined Therapeutic Specific Controlled Terminology

Macro %ctlist_checking compares the controlled terminology and value level metadata defined in the ADaM
programming specifications with that in the ADaM datasets, detects any mismatches, and generates inconsistency

report in RTF format if any exists.
The macro call of %ctlist_checking

%ctlist_checking(specdir
datadir
domain

)
Where,

is as follows:

&sty ad_spec.,
&sty data_ad.,
_ALL

SPECDIR: Full Path for ADaM Programming Specifications. Default value as study folder for ADaM

specifications.

DATADIR: Full Path for ADaM datasets. Default value as study folder for ADaM datasets.

DOMAIN: An ADaM domain to be checked with controlled terminology and value level metadata. If the macro
variable &DOMAIN is not assigned a value, all ADaM domains will be checked for consistency of the controlled
terminology and value level metadata.

Display 27 — 30 show typical reports of non-consistency between ADaM datasets and specifications. Decision will be
made by programmers to update either the programming specifications or the ADaM derivation program to handle
these mismatches. The general decision-making rules for mismatches are listed in Appendix 2.

The following PARCATY Variables with Different Value Level Metadata beiween Programming Specs. and Datasets

Terms | Terms
Value In In
Value Label | Specs. | Dataset
Label in |NOTin|NOT In
Domain| Variable Value in Dataset | Specs.|Dataset| Specs.
ADLE PARCATI WIROLOGY VIROLOGY Tes

Display 27. Non-Consistency Report of Value List Metadata for PARAMCAT Between ADaM Datasets and

Specifications

An Innovative ADaM Programming Tool for FDA Submission, continued

The following PARAM Variables with Different Value Level Metadata between Programming Specs. and Dataseis

Terms
Terms In
In |Dataset
Value Value Specs. | NOT Different
Variahle Lahel Lahel NOTin| In Controlled
Domain| Variable Lahel Value in Dataset in Specs. Dataset| Specs. | Terminology
ADVE PARAMCD |Parameter Code | RESF |RESPIRATORY RATE (BREATHE/MIIN) Tes
BMI BODY MASS INDEX (EGTZ BODY MASS INDEX Tes
REZFR REZFIRATORY RATE (BREATHS/MIN) |Ves

Display 28. Non-Consistency Report of Value List Metadata for PARAMCD between ADaM Dataset and
Specification

The foilowing Coded Variables with Different Decoded Terminology beiween Programming Specs. and Daiasets

Terms
Terms In
Decoded Decoded In Dataset
Coded Controlled Controlled Specs. | NOT Different
Controlled Term Term Codelist |NOTin In Decoded
Domain| WVariable Variable Label Term in Dataset in Specs. in Specs. |Dataset| Specs. | Terminology
ADAE AEACHNHN Action with Study 3 WOT AFPLICAELE Yes
Treatment Number
ABOUTH Outcome of Adverse 3 RECOVEREDY RESGOLVED RECOVEREDVREZOLVED (AECUTH Yes
Ewvent Mumber WITH SEQUELAE WITH SEQUELAE
4 FATAL AEOUTH Yes
5 UM E MO AEOUTH Yes
ADEG BOTGRIN Baseline Pooled QT 4 = 500 = 500 meee, BOTGRIN Tes
Group 1 (M
ADSL |OUTCOMEN | Virologic Cutcome (F) |3 Rebound at FOT+12 COUTCOMEN | Yes
4 Rebound at EDT+24 OUTCOMEN | Yes

Display 29. Non-Consistency Report of Sponsor Defined Controlled Terminology between ADaM Datasets
and Specifications

The following Variables with Different Conirolled Terminology between Programming Specs. and Datasets

Terms | Terms
In In
Controlled Controlled Codelist| Specs. | Dataset
Term Term in NOTin|NOTIn
Domain| WVariable Variable Label in Dataset in Specs. Specs. | Dataset| Specs.
ADAE | ABACNTE | Action Taken with Telaprevir DOSE REDUCED AEACNF |Ves
DRUG INTERUPTED AEACHF [Tes
AEACHNHAA [Action Taken with HAART DRUG WITHDRAWN AEACHF [Tes
DRUG INTERRUPTED Yes

Display 30. Non-Consistency Report of CDISC or FDA defined Controlled Terminology Between ADaM
Datasets and Specifications

AUTOMATION 8: DETECTING EMPTY VARIABLES

When submitting clinical study data in electronic format to the FDA, it is preferable to submit as few as possible
unnecessary variables which have all missing values. These variables are called empty variables. CDISC introduced
a concept of core variable in an ADaM dataset and categorized a variable as Required, Conditionally Required,
and Permissible in an ADaM dataset. Applying the information of core variable categories to these empty variables
provides a better decision to handle these empty variables in an FDA submission. ADaM programming tool uses
macro %empty_var_checking to automatically detect and identify empty variables in ADaM datasets and thereby
ensures technical accuracy and submission quality. It can be performed at any stage of the programming cycle.

Macro %empty_var_checking calculates the number of observations with missing value for each variable. If the
count is equal to the number of the observations in the dataset, then the variable will be flagged as an empty variable.
A report will be generated for all empty variables which include error messages for specially-defined ADaM required
variables such as USUBJID, STUDYID, SEX, COUNTRY, and etc., warning messages for other ADaM required or

An Innovative ADaM Programming Tool for FDA Submission, continued

conditionally required variables, and warning messages for ADaM permissible variables. The general decision-
making rules for handle empty variables for FDA submission are listed in Appendix 3.

The macro call of %empty_var_checking is as follows.

%macro empty_var_checking(cdisc=, specdir=,datadir=, domain=_ALL);
Where,

CDISC: Specifies the data model as ADaM.

SPECDIR: Full Path of ADaM Programming Specifications.

DATADIR: Full Path of ADaM datasets.
DOMAIN: An ADaM domain. If assigned _ALL_ or blank all ADaM domains will be checked.

Display 31 shows a typical report of empty variables in ADaM datasets. Decision will be made by programmer
whether to drop, retain or update ADaM conversion programs for these variables.

The Following ADald Variables in Study xxx Have All Missing Values

Total
Variable Number of
Domain | Order | Variable Variable Label Observations | Core Comnent
ADAE |73 DCRABHFL |Discontimiation due to Rash 33C 61 Perm | Warning: Permissible ¥ ariable is Empty. Delete it?
74 DCPRURFL | Discontimiation due to Proritus 33C (561 Perm | Warning: Permissible ¥ ariable is Empty. Delete it?
Ta DCANORFL | Disc. due to Anorectal Disorder 61 Perm | Warning: Permissible ¥ ariable is Empty. Delete it?
T DCINIAFL | Disc. due to Injection Bite Reaction [361 Perm | Warning: Permissible Variable is Empty. Delete it?
ADIL 15 COUNTRY |Couttty 62 Reg |Error: Reguited Variable is Empty. Correct/Check 3AS Program!
36 TRTO1P Platined Treatment for Period 01 62 Req |Watning: Requited Variahle is Empty. Check the 3AS Program!
46 TRTEDT Date of First Exposure to Treatment |62 Cond | Warning: Conditionally Required Variable is Empty. Check the 343 Program!

Display 31. A Report of Empty Variables with Different CORE Attribute Categories in ADaM Datasets

If the final ADaM Datasets still contains empty variables, the rationale to keep these empty
variables in the ADaM datasets will be given in the reviewer guide for FDA reviewers. An
example of rationale to keep empty variables in ADAE dataset is shown in Display 32.

Wariahle
Domain | Order Wariahle Wariahle Lahel Core | Comment
ADAE (73 DCEASHFL | Discontinuation due to Rash 353C Ferm | The event did not ocour in the study, but
the variable is needed for analysis,
T4 DCPRURFL | Discontitmiation due to Prasitas 33C | Perm | The event did not ocour in the study, but
the variable is needed for analysis,
Té DCANORFL | Disc. due to Anprectal Disorder Ferm |The event did not ocoar in the study, but
the variable iz needed for analysis.
7 DCINIEFL | Disc. due to Injection 3ite Eeation, |Perm | The event did not ocour in the study, but
the variable is needed for analysis.

Display 32. The Rationale to Keep Empty Variables in ADaM Datasets — in Reviewer Guide

AUTOMATION 9: PREPARATION OF SAS SCRIPTS FOR FINAL RUN OF ALL ADAM
SPECIFICATIONS AND CREATION OF ADAM SPECIFICATIONS FOR ALL DOMAINS
FROM INDIVIDUAL ONES

At the final stage of ADaM programming we need two SAS programs for most updated specifications and metadata,
one for rerun of all ADaM specifications to update the metadata, and another for combining all individual ADaM
specifications into one Word file as ADaM programming specifications. Manually preparing the SAS programs for this
function is labor intensive and error prone. ADaM Programming Tool calls macro %get_adam_specs_final_calls to
automatically generate these SAS scripts. Successful execution of macro %get_adam_specs_final_calls generates
SAS code adam_specs_final_calls.sas which contains macro calls %get_adam_specs to convert individual
domain programming specification files to SAS datasets, and SAS code get_all_adam_specs.sas which combines
all individual ADaM specifications into one Word file. SAS code adam_specs_final_calls.sas and
get_all_adam_specs.sas will later be written into the batch file _runADaM.bat for batch submitting ADaM derivation
programs.

An Innovative ADaM Programming Tool for FDA Submission, continued

The macro call of %get_adam_specs_final_calls is as follows:

%macro get_adam_specs_Ffinal_calls(indir=, dom_del=, xmldir=);
Where,
INDIR: Full Path of SAS dataset ALL_DOMAINS which contains all the ADaM domain information.
DOM_DEL: Name of ADaM domains to be excluded in the final run.
XMLDIR: Full Path of define.xml.

The SAS code adam_specs_final_calls.sas generated by macro %get_adam_specs_final_calls is shown below:

%include " E:\final\standard.sas";

**** Initiation: Set all_domains and all_vars datasets empty;
libname __in "E:\Ffinal\convert\analysis\specification\";
Data __in.all_domains; if 0; run;

Data __in.all_vars; if 0; run;

**** macro call for ADaM specs for ADSL;
%get_adam_specs(indir %str(E:\Final\convert\analysis\specification\),

specsnm = ADSL.csv,
outdir = Wstr(E:\final\convert\analysis\specification\),
runorder = 1);

**** macro call for ADaM specs for ADAE;

%get_adam_specs(indir = %str(E:\final\convert\analysis\specification\),
specsnm = ADAE.csv,
outdir = Wstr(E:\Ffinal\convert\analysis\specification\),
runorder = 2);

**** macro call for ADaM specs for ADVS;

%get_adam_specs(indir = Wstr(E:\final\convert\analysis\specification\),
specsnm = ADVS.csv,
outdir = Wstr(E:\final\convert\analysis\specification\),
runorder = 9,
generate_xml =Y,
xmldir = Wstr(E:\final\define_xmIN\analysis\),

final_run = Y);
The order of each individual ADaM specification macro call in the final run is decided by the variable RUNORDER in
ALL_DOMAINS dataset.

SAS code get_all_adam_specs.sas generated by macro %get_adam_specs_final_calls is shown below:

%include "E:\final\standard.sas"';

**** macro call of WORDNTO1l to combine all ADaM specs into ONE;

Y%wordntol(inputfn = %str(E:\final\convert\analysis\specification\ADSL.doc,
E:\final\convert\analysis\specification\ADAE.doc,
E:\final\convert\analysis\specification\ADCD.doc,
E:\final\convert\analysis\specification\ADCM.doc,
E:\final\convert\analysis\specification\ADEG.doc,
E:\final\convert\analysis\specification\ADHC.doc,
E:\final\convert\analysis\specification\ADHI .doc,
E:\final\convert\analysis\specification\ADLB.doc,
E:\final\convert\analysis\specification\ADVS.doc),

E:\final\convert\analysis\specification\all_ADaM_specs.doc,

No);

Outputfn
deletein

in which macro %wordntol is a macro developed in-house to combine multiple input word files into one Word file.

The order of each individual ADaM specification in the final ADaM specifications is decided by the variable
RUNORDER in ALL_DOMAINS dataset.

The combined ADaM specifications will be sent to statisticians for review. Once approved, it is considered to be the
final version and will serve as part of the reviewer guide to facilitate FDA reviewers to familiarize the submitted data.

10

An Innovative ADaM Programming Tool for FDA Submission, continued

AUTOMATION 10: CREATION OF BATCH FILE FOR FINAL RUN

A batch file for batch submitting both ADaM specification programs and ADaM derivation programs is needed for the
final run. Creation of the batch file manually is time consuming and error prone. The Tool calls macro %get_batch_file
to automatically generate the batch file with a specified order defined by the variable RUNORDER in ALL_DOMAINS
dataset.

Successful execution of macro %get_batch_file generates batch file _runADaM.bat containing batch commands to
run SAS codes adam_specs_final_calls.sas to update the variable attributes and define.xml,
get_all_adam_specs.sas to combine all the individual specifications into one word document for reviewer guide,
ADaM derivation programs to update ADaM datasets, add_corevars.sas to add core variables to all ADaM
datasets, mk_xpt.sas to generate SAS transport files for define.xml, ctlist_checking_call.sas for final consistency
checking of controlled terminology and value level metadata, and empty_var_checking.sas for identifying and
detecting variables with all values missing in final ADaM datasets. The execution order of each ADaM derivation
programs is decided by the variable RUNORDER in ALL_DOMAINS dataset.

The macro call of %get_batch_file is as follows:

%macro get_batch_file(indir=, saslocat=);
Where,
INDIR: Full Path of SAS dataset ALL_DOMAINS and ADaM specification programs.
SASLOCAT: Full Path of ADaM conversion programs and output BAT file.

The batch file _runADaM.bat generated by macro %get_batch_file is shown as follows:

"C:\program files\sas\sas.exe" -sysin
"E:\final\convert\analysis\specification\adam_specs_final_calls.sas"
"C:\program files\sas\sas.exe" -sysin
"E:\final\convert\analysis\specification\get_all_adam_specs.sas"
"C:\program files\sas\sas.exe" -sysin
"E:\final\convert\analysis\conversion\ADSL .sas""

"C:\program files\sas\sas.exe" -sysin
"E:\Final\convert\analysis\conversion\ADAE.sas"

"C:\program files\sas\sas.exe'" -sysin
"E:\Ffinal\convert\analysis\conversion\ADCD.sas"

"C:\program files\sas\sas.exe'" -sysin
"E:\Ffinal\convert\analysis\conversion\ADCM.sas"

"C:\program files\sas\sas.exe" -sysin
"E:\Ffinal\convert\analysis\conversion\ADEG.sas"

"C:\program files\sas\sas.exe'" -sysin
"E:\Ffinal\convert\analysis\conversion\ADHC.sas"

"C:\program files\sas\sas.exe' -sysin
"E:\Final\convert\analysis\conversion\ADHI .sas"

"C:\program files\sas\sas.exe' -sysin
"E:\final\convert\analysis\conversion\ADLB.sas""

"C:\program files\sas\sas.exe" -sysin
"E:\final\convert\analysis\conversion\ADVS.sas""

"C:\program files\sas\sas.exe" -sysin
"E:\Ffinal\convert\analysis\conversion\add_corevars.sas"
"C:\program files\sas\sas.exe" -sysin
"E:\final\convert\analysis\conversion\mk_xpt.sas"

"C:\program files\sas\sas.exe' -sysin
"E:\Ffinal\convert\analysis\conversion\ctlist_checking_call_sas"
"C:\program files\sas\sas.exe" -sysin
"E:\Final\convert\analysis\conversion\empty_var_checking.sas"

11

An Innovative ADaM Programming Tool for FDA Submission, continued

SUMMARY

Comparison of conventional methodology for ADaM programming and the innovative one introduced in this paper is

shown in Table 1.

Comparison

Conventional Methodology

New Methodology

1. Automation of
Compliance Checking
CDSIC ADaM
Programing
Specifications

No

(1) DETECT ANY NONCOMPLIANCE with FDA submission
requirements, CDISC ADaM GUIDELINE, and Vertex Guideline for
writing specifications

(2) REPORT any findings

(3) ENSURE the resolution

(4) FINALIZE specifications earlier in programming cycle

Programming
Specification

2. Version Control of [No Keep both word version and SAS dataset of programming specifications
Programming in a study subfolder “\History’

Specifications

3. Track Changes of No (1) Report changes from any previous version of specifications

(2) Help developer and reviewers to trace back changes
(3) Serve as a tool for audit from post delivery changes

4. define.xml Generation

(1) Timing: 2 stages (First CSR,
second define.xml)

(2) Trainings needed

(3) Additional resources/times to
prepare spreadsheets

(1) Same time as CSR

(2) A tool for statisticians to review metadata earlier
(3) Minimal training needed

(4) No extra resources/times

(5) Automatic generation per the macro user request

5. Generation of
\Variable Attributes or
IAny Changes of
\Variable & Attributes
and Adding/Deleting
\ariables

(1) Write an additional SAS
program to generate a template
insert it into data step in SAS
(2) Update both SAS template
program and specifications

(3) More time needed

(4) Error-prone, inconsistent

(1) Call a SAS macro to automatically generate a dataset by extracting
from the programming specifications.

(2) Call a SAS macro to automatically generate SAS macro variables to
be used in final data step of SAS program

(3) Update programming specifications ONLY

(4) Less time needed, cost-effective

(5) Ensure quality and consistency between data and specifications

6. Adding Core
\Variables into ADaM
Data and define.xml for
Final Run

(1) Develop additional SAS
programs to populate core variables
into ADaM data and define.xml

(2) Error-prone and labor-intensive!

(1) Automatically generate define.xml with core variables. Automatically
generate a SAS program for populating core variables into ADaM
datasets

(2) Automation saves time and energy!

7. Automatic
Consistency Checking of
Controlled Terms
between ADaM Data
and Specifications

No

(1) DETECT ANY MISMATCHES between ADaM datasets and
specifications for Controlled Terminology and Value Level Metadata at
any stage of programming cycle

(2) REPORT any findings

(3) FINALIZE specifications earlier in programming cycle

8. Automatic Detection
of Empty Variables in
JADaM Datasets

No

(1) DETECT ANY EMPTY VARIABLES
(2) REPORT any findings with the information of core attributes
(3) DECISION MAKING AND FINALIZE specifications at early stage

9. Combination of All
IADaM Specifications
into One

Manually copy and paste

Automatically combine all individual ADaM specifications into ONE
\Word document

10. Batch File
Preparation for Final
Run of ADaM Datasets

Error-prone type-in or copy/paste

L Automatic generation with high quality

Table 1. Comparison of Conventional Methodology for ADaM Programming and the Innovative One

CONCLUSION

In summary, all by automation the new methodology streamlines the process of ADaM programming activity: from
compliance checking with CDISC and FDA submission requirements, version control, tracking the changes of the
specification, define.xml generation at any time point, combination of all ADaM specifications into one Word
document for reviewer guide, generation/update dataset label and variable attributes, adding or deleting variables in
ADaM programming, adding core variables into both all ADaM datasets and define.xml, consistency checking of
controlled terminology and value level metadata between ADaM specification and datasets, detection and
identification of empty variables in ADaM datasets, to batch file preparation for final run of ADaM datasets.

Since the ADaM dataset structure, define.xml, reviewer guide, and the batch files for final run are all generated from
the Word® specification documents, the methodology ensures the consistency in the entire study from ADaM

12

An Innovative ADaM Programming Tool for FDA Submission, continued

Derivation to FDA Electronic Submission, and achieves the high quality of submission, the cost-effectiveness and the
efficiency. Moreover, consistency checking of controlled terminology and value level metadata, and empty variables
detection and handling further ensure the submission quality.

The ADaM Programming tool is easy to use and only needs minimal trainings. We hope the methodology can assist
you in saving your time and resources for clinical study reporting, especially for FDA submission.
REFERENCES

CDISC Analysis Data Model (ADaM) Team. “CDISC ADaM Validation Checks”, January 2011.
http://www.cdisc.org/adam

CDISC Analysis Data Model Team. “Analysis Data Model (ADaM) Implementation Guide”. December 2009.
http://www.cdisc.org/adam

Xiangchen (BoB) Cui, Min Chen. “Automatic Version Control and Track Changes of CDISC ADaM Specifications for
FDA Submission”, PharmaSUG, May 2012.

Xiangchen (BoB) Cui, Min Chen. “Automatic Consistency Checking of Controlled Terminology and Value Level
Metadata between ADaM Datasets and Define.xml”, SAS Global Forum, April 2012.

Xiangchen (BoB) Cui, Min Chen. “Automatic Detection and Identification of Variables with All Missing Values in
SDTM/ADaM Datasets for FDA Submission”, PharmaSUG, May 2012.

ACKNOWLEDGEMENTS

Appreciation goes to Kelly Blackburn, Stacy Surensky, Abdul Sankoh, Hang Pang, Hongyu Liu, and Tuanyu Wang for
their review and comments.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Xiangchen (Bob) Cui, Ph.D.
Enterprise: Vertex Pharmaceuticals, Inc.
Address: 88 Sidney Street

City, State ZIP: Cambridge MA, 02139
Work Phone: 617-444-6069

Fax: 617-460-8060

E-mail: xiangchen_cui@vrtx.com

Name: Min Chen, Ph.D.

Enterprise: Vertex Pharmaceuticals, Inc.
Address: 88 Sidney Street

City, State ZIP: Cambridge MA, 02139
Work Phone: 617-444-7134

Fax: 617-460-8060

E-mail: min_chen@vrtx.com

Name: Tathabbai Pakalapati

Enterprise: Vertex Pharmaceuticals, Inc.
Address: 88 Sidney Street

City, State ZIP: Cambridge MA, 02139
Work Phone: 617-444-7404

Fax: 617-460-8060

E-mail: Tathabbai Pakalapati@vrtx.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

13

http://www.cdisc.org/adam
http://www.cdisc.org/adam
mailto:xiangchen_cui@vrtx.com
mailto:min_chen@vrtx.com
mailto:Tathabbai_Pakalapati@vrtx.com

An Innovative ADaM Programming Tool for FDA Submission, continued

Appendix 1

Guideline for ADaM Programming Specifications and Compliance Checking Rules

1. The compliance rules for domain information are described in Table 2. They are not defined in CDISC ADaM
Validation Checks V1.1.

Checking Checking Requirement Key Words

Number

1 Description 1. Non-Missing

2. length <= 40

2 Unigue Identifier Variables Non-Missing

3 Structure Non-Missing

4 General Class Non-Missing Special Purpose,
Interventions, Events, and
Findings

Table 2. Domain Information Compliance Checking

2. Table 3 defines variable compliance rules. Some of these rules are also defined in OPENCDISC or CDISC
ADaM Validation Checks V1.1 in which case the Rule ID/Checking Number are mentioned in last two columns of

the tables.
Checking | Checking Requirement Key Words Source Corresponding | Checking
Number Rule ID in Number
OpenCDISC in ADaM
Validation
Checks
5 Variable 1. Length <=8, CDISC AD1006 13
Name 2. Start with a letter, Request 14
comprised of letters (A-Z), 15
underscore (), and
numerals (0-9).
6 Variable Length <= 40 CDISC ADO0016 16
Label Request
7 Type Non-Missing Char CDISC
Num Request
8 Length Non-Missing for character CDISC 17
variables Request
Length <=200 for character
variables
9 Controlled If the Controlled Terms are 1.Vertex For Datetime For
Terms or given: Request Variables: Datetime
Formats 1. Provide Controlled Term 2.Vertex ADO0041 Variables:
Name with Colon (%), Request ADO0042 41
followed by code lists 3.CDISC | AD0043 42
preceeded by ‘(#). e.g., Request 43

YESNOF:

@y

(2)N

Or AVISITN (AVISIT):

(1) 950 = Baseline

(2) 1001 =Day 1

(3) 1029 = Week 4

for a pair of code-decode
variables

2. If no Controlled Term
Name is provided, then
assume it the same as the
Variable Name.

3. If the Formats are given,
the following condition must

14

An Innovative ADaM Programming Tool for FDA Submission, continued

be satisfied:

a. if the Variable Name ends
with DT, then Variable Label
must contain ‘Date’, Type =
‘Num’, Role = ‘Timing’, and
format = SAS date format or
1ISO8601 Format (Date9. in
Vertex Guideline)

b. if the Variable Name ends
with TM, then Variable Label
must contain ‘Time’, Type =
‘Nunmv’, Role = ‘Timing’, and
format = SAS date format or
1ISO8601 Format (1S8601dt.
in Vertex Guideline)

c. if the Variable Name ends
with DTM, then Variable
Label must contain
‘Date/Time’, Type = ‘Num’,
Role = ‘Timing’, and format
= SAS date format or
1ISO8601 Format (time5. in
Vertex Guideline)

10

Origin Non-Missing

CDISC
Request

11

Role Non Missing Identifier
Topic
Timing
Grouping
Qualifier
Result
Qualifier
Synonym
Qualifier
Record
Qualifier
Variable
Qualifier
Selection
Analysis

Vertex
Request

12

Comments Non-Missing for Origin =
Derived (at the FINAL run)

Vertex
Request

13

Core Non-Missing Req
Cond
Perm

CDISC
Request

Table 3. Variable Information Compliance Checking

3. Table 4 defines general compliance rules. Among them, CDISC requested rules are also defined in OPENCDISC
or CDISC ADaM Validation Checks V1.1 in which case the Rule ID/Checking Number are mentioned in last two
columns of the tables.

Checking | Rule Source Corresponding | Checking
Number Rule ID in Number
OpenCDISC in ADaM
Validation
Checks
14 All ADaM datasets must contain SDTM STUDYID and CDISC Request 88, 89
USUBJID variables.
15 ADSL dataset must have the variable SUBJID, SITEID, | CDISC Request 47, 49, 50,
AGE, AGEU, SEX, RACE, ARM 51, 52, 55,
71

15

An Innovative ADaM Programming Tool for FDA Submission, continued

16 ADSL must have at least one variable that ends in FL CDISC Request | AD0048 48
as a population flag.
17 All *DT, *TM, *DTM, and PARAMN variables must be CDISC Request | AD0O058 58
numeric AD0059 59
ADO0060 60
AD0148
18 All variable name are defined in uppercase Vertex Request
19 All Unique Identifier Variables should be defined in Vertex Request
Variable Information Table
20 If the numeric flag (*FN) is used, the character version CDISC Request | AD0007 7
(*FL) is required
21 The decoded variables defined in the ‘Controlled Terms | Vertex Request
and Formats’ Column must exist in the specification.

Table 4. General Rules for Compliance Checking

Appendix 2

Decision Making for Mismatches of Controlled Terminology and Value Level Metadata
between ADaM Specifications and Datasets

| Scenario Condition Action Taken
1| Controlled Terms or Value Lists are not in the Code lists are correctly defined in No Action Needed
Datasets but in the Specifications specifications
2 | Controlled Terms or Value Lists are in the Specification does not list all the possible Add Missing
Datasets but not in the Specifications values for the controlled terms or value lists Controlled Terms or
Value Lists to
Specifications
3 | Code Value for Sponsor-Defined Controlled Code Value or Value in datasets is not Revise ADaM
Terminology or Value for Value Level consistent with Standard Controlled Terms Datasets
Metadata PARAMCD are Differently Defined in ["coqe value or Value in specifications is not Revise ADaM
the Datasets from that in the Specifications consistent with Standard Controlled Terms Specifications
4 | Decoded Value for Sponsor-Defined Decode Value or Value Label in datasets is not | Revise ADaM
Controlled Terminology or Value Label for consistent with Standard Controlled Terms Datasets
Value Level Metadata PARAMCD are _ | Decode Value or Value Label in specifications | Revise ADaM
Differently Defined in the Datasets from thatin | i ot consistent with Standard Controlled Specifications
the Specifications Terms
5| Typo Occurs Either in ADaM Specifications or Correct the typo

in ADaM Derivation Programs

Table 5. Summary of 5 Scenarios of Mismatches between ADaM Datasets and Specifications

16

An Innovative ADaM Programming Tool for FDA Submission, continued

Appendix 3

Decision Making on the Empty Variables

Scenario

Condition

Action Taken

Empty Specially-defined ADaM
Required Variables

Any Program Errors

Correct ADaM SAS Programs

No Program Errors

Describe Rationale for Data
Oddities in Reviewer Guide

Empty ADaM Required Variables
Other Than USUBJID, SITEID,
SEX, COUNTRY, and etc.

Any Program Errors

Correct ADaM SAS Programs

No Program Errors

Keep the Variable for Submission,
and Document in Reviewer Guide

Empty ADaM Conditionally
Required Variables

Any Program Errors

Correct ADaM SAS Programs

No Program Errors,
Needed in Analysis

Keep the Variable for Submission,
and Document in Reviewer Guide

No Program Errors,
Not Needed in Analysis

Drop the Variable

Empty ADaM Permissible Variables

A Variable Derived or Not Specified in CRF

Drop the Variable

A Variable Collected or Needed in Analysis

Keep the Variable for Submission,
and Document in Reviewer Guide

Table 6. Summary of 4 Scenarios of Empty ADaM Variables

17

	ABSTRACT
	INTRODUCTION
	AN INTRODUCTION OF MODULARIZED WORD® SPECIFICATION FOR ADAM
	AUTOMATION 1: COMPLIANCE CHECKING WITH FDA SUBMISSION REQUIREMENTS AND CDSIC ADAM PROGRAMMING REQUIREMENTS FOR MODULARIZED ADAM SPECIFICATIONS
	GUIDELINE FOR WRITING ADAM SPECIFICATION AND COMPLIANCE CHECKING RULES
	A MACRO TO RETRIEVE INFORMATION FROM SPECIFICATION AND COMPLIANCE CHECKING
	COMPARISON WITH OPENCDISC VALIDATION
	OUTPUT OF SAS DATASETS CONTAINING ADAM SPECIFICATION INFORMATION

	AUTOMATION 2: VERSION CONTROL
	AUTOMATION 3: TRACK CHANGES
	A MACRO FOR TRACKING CHANGES
	POST-DELIVERY CHANGES AND TRACKING CHANGES

	AUTOMATION 4: CREATE DEFINE.XML
	A MACRO FOR CREATING DEFINE.XML

	AUTOMATION 5: GENERATION OF GLOBAL MACRO VARIABLES OF METADATA FOR ADAM DERIVATION PROGRAMMING
	AUTOMATION 6: ADD CORE VARIABLES TO DEFINE.XML AND ADAM DATASETS AT FINAL RUN
	ADD CORE VARIABLES TO DEFINE.XML AT FINAL RUN
	ADD CORE VARIABLES TO ADAM DATASETS AT FINAL RUN

	AUTOMATION 7: CONSISTENCY CHECKING OF CONTROLLED TERMINOLOGY AND VALUE LEVEL METADATA BETWEEN ADAM DATASETS AND PROGRAMMING SPECIFICATION
	AUTOMATION 8: DETECTING EMPTY VARIABLES
	AUTOMATION 9: PREPARATION OF SAS SCRIPTS FOR FINAL RUN OF ALL ADAM SPECIFICATIONS AND CREATION OF ADAM SPECIFICATIONS FOR ALL DOMAINS FROM INDIVIDUAL ONES
	AUTOMATION 10: CREATION OF BATCH FILE FOR FINAL RUN
	SUMMARY
	CONCLUSION
	REFERENCES
	ACKNOWLEDGEMENTS
	CONTACT INFORMATION

