
1

PharmaSUG 2012 – TF16

Reading and Writing RTF Documents as Data:
Automatic Completion of
CONSORT Flow Diagrams

Art Carpenter, California Occidental Consultants, Anchorage, AK

Dennis G. Fisher, Ph.D., CSULB, Long Beach, CA

ABSTRACT

Whenever the results of a randomized clinical trial are reported in scientific journals, the published paper must
adhere to the CONSORT (CONsolidated Standards Of Reporting Trials) statement. The statement includes a flow
diagram, and the generation of these CONSORT flow diagrams is always problematic, especially when the trial is
not the typical two-arm parallel design. Templates of the typical two-arm design flow diagram are generally
available as RTF documents, however the completion of the individual fields within the diagram is both time
consuming and prone to error. The SAS Macro language was used to read a RTF template file for the CONSORT
flow diagram of choice, fill in the fields using information available to the SAS program, and then rewrite the
table as a completed RTF CONSORT flow diagram. This paper describes the process of reading and writing RTF
files.

KEYWORDS

RTF, CONSORT flow diagram, macro language, INFILE, _INFILE_

INTRODUCTION

 The CONSORT flow diagram is a graphical representation of the progress through the phases of a clinical trial
and typically includes: enrollment, allocation, follow-up, and analysis. While the overall complexity of the
diagram depends on the study design, and can vary radically in appearance from study to study, the diagram
itself is made-up of a series of interlinked boxes. These boxes contain specific information about that phase of

the study. Figure 1 to the left tracks the number of subjects
allocated to intervention for a particular ARM of a study.
Generally there will be many such boxes in the CONSORT
table and the manual completion of the individual values
can be both tedious and error prone.

 The tables are usually created using a word processor such
as MS Word®, which of course, saves the table in a file. One

of the more flexible file forms, and therefore the one most commonly used, is Rich Text Format, RTF (which is
assumed for this paper).

RTF is a proprietary document file format developed by Microsoft Corporation in the late 1980s. Unlike a MS
Word .DOC binary file, a RTF file can be read by text editors. This means that if we treat a RTF file as text, we
can use SAS to read and write the RTF file as data, and this opens the door for the power and flexibility
associated with the use of the SAS DATA step and the SAS macro language.

Allocated to intervention (n=)

 Received allocated intervention (n=)

 Did not receive allocated intervention (give

reasons) (n=)

Figure 1

http://en.wikipedia.org/wiki/Rich_Text_Format

2

The layout of the CONSORT table depends on the study design. This includes the number of ARMS and the
phases of the study. The techniques discussed in this paper, however, are completely independent of the study
design. The first step in its construction is to create a template form of the CONSORT table. This RTF table will
contain all the needed information with blank fields. Figure 2 shows the “Enrollment” portion of a CONSORT
table, which will show the number of subjects and their status relative to the study. Typically the N= values
would be filled in by hand once they had been determined.

Figure 2

The RTF CONSORT table can easily have over a dozen fields that require completion. In the process described
below, each field will be assigned a code unique to the table. The entire table (RTF file) will then be read as data
and the codes will be translated into the final values through the use of DATA step functions. The resulting
modified table will be rewritten, again as an RTF file, where it will then be available for use by a word processor.

TEMPLATE PREPARATION

The template is prepared for use by SAS by filling in each of the individual fields using unique codes. In Figure 3
the unique codes for the first six fields are TOTASSESSD, TOTEXCL, INELIG, DECLIN, EXCLOTH, and NRAN. For our
purposes we are assuming that these names never occur otherwise in the table. Other than being unique, the
code that you choose is unimportant, but for a more complicated table the field code names can be used to help
make sure that the values are inserted in the correct location.

3

Figure 3

RTF AS DATA

Fortunately we need to know very little about RTF code in order to work with it using SAS. A quick look at a
portion of the RTF code that generated Figure 3, shows a text language which is mostly not human readable.
However a closer inspection shows one of our designated keywords (DECLIN).

Our approach will be to have SAS read the RTF text strings, find the appropriate codes, replace the codes with
the values of interest, and then replace the modified RTF text strings. The search and replace operations will be
handled by using the TRANSTRN function, which replaces all occurrences of the second argument with the third
argument. For our purposes there should only be one occurrence for each of our codes.

\par }{\rtlch\fcs1 \af0\afs16 \ltrch\fcs0 \f3\fs16\lang0\langfe1033\langnp0

\fs16\lang4105\langfe1033\langnp4105\insrsid4260155\charrsid1516310 }{\rt

\f1\fs20\lang4105\langfe1033\langnp4105\insrsid1909421 DECLIN}{\rtlch\fcs1
\par }{\rtlch\fcs1 \af0\afs16 \ltrch\fcs0 \f3\fs16\lang0\langfe1033\langnp0

4

The DATA step used to read and write the RTF CONSORT table is fairly straight forward. RTF does not have a
fixed maximum record length;
however the length is generally
under 500 characters. Here the
LRECL is set to 3000 – just in case.
The incoming RTF file is designated
by the fileref CONFFILE1. The new
version of the CONSORT table is
written to the file named in the
CONFILE2 fileref. Through the use
of the automatic variable _INFILE_
we read each RTF line as an entire
entity. This string is then searched
and the appropriate codes are
replaced. In this example the

TRANSTRN function replaces the
text ‘TOTASSESSED’ with the

appropriate number which we have provided (345). Figure 5 shows that the placeholder codes that we used in
the template version of the table have been replaced with the values supplied in the SAS program.

Figure 5

USING DATA STEP STATEMENTS

In the previous example the field values have been hard coded (Figure 4). It is more likely that the values will be
contained in a data set or perhaps in a spread sheet. The DATA step used to fill in the values for Figure 5 can be
slightly modified to accept non-hardcoded values.

We create a single observation data set with one variable for each field that is to be replaced. For simplicity we
have named each field using the code that we placed in the RTF template file. The value of each variable is then
the value that is to be substituted into the template. This data set is then read into the DATA step that will be
reading and writing the RTF files, and the values are then available for substitution.

filename confile1 "C:\temp\CONSORT_Diagram1.rtf";

filename confile2 "C:\temp\CONSORT_Diagram2.rtf";

data _null_;

infile confile1 lrecl=3000;

input;

infile = transtrn(_infile_,'TOTASSESSED','345');

infile = transtrn(_infile_,'TOTEXCL', '56');

infile = transtrn(_infile_,'INELIG', '35');

infile = transtrn(_infile_,'DECLIN', '17');

infile = transtrn(_infile_,'EXCLOTH', '4');

infile = transtrn(_infile_,'NRAN', '289');

file confile2 lrecl=3000;

put _infile_;

run;

Figure 4

5

In this DATA step we are assuming that the data set COUNTS contains a single observation and a variable for

each of the fields. The COUNTS data set is read using a SET statement, however because of the restriction that
N=1, it is read only once. Since the TRANSTRN function expects the third argument to be character, the
numeric variables are converted using the PUT function. It is of course, only convenient and certainly not
necessary that the data set variable names and the field codes are the same.

Since we are working with a DATA step there is no reason why we cannot add some data checks as well. For
instance for these fields the number of subjects randomized must equal the total number of assess subjects less
those excluded. IF-THEN/ELSE processing can be used when reading in the data set containing the field values.

* Create data to simulate the numbers coming from data;

data counts;

 TOTASSESSED= 345;

 TOTEXCL = 56;

 INELIG = 35;

 DECLIN = 17;

 EXCLOTH = 4;

 NRAN = 289;

 output counts;

 run;

data _null_;

if _n_=1 then set counts;

infile confile1 lrecl=3000;

input;

infile = transtrn(_infile_,'TOTASSESSED',trim(left(put(totassessed,6.))));

infile = transtrn(_infile_,'TOTEXCL', trim(left(put(totexcl,6.))));

infile = transtrn(_infile_,'INELIG', trim(left(put(inelig,6.))));

infile = transtrn(_infile_,'DECLIN', trim(left(put(declin,6.))));

infile = transtrn(_infile_,'EXCLOTH', trim(left(put(excloth,6.))));

infile = transtrn(_infile_,'NRAN', trim(left(put(nran,6.))));

file confile2 lrecl=3000;

put _infile_;

run;

data _null_;

if _n_=1 then do;

 set counts;

 if nran ne (totassessed-totexcl)

 or totexcl ne (inelig + declin + excloth)

 then put 'WARNING: Counts incorrect';

end;

infile confile1 lrecl=3000;

input;

infile = transtrn(_infile_,'TOTASSESSED',trim(left(put(totassessed,6.))));

. . . . remainder of the DATA step is not shown

Figure 6

Figure 7

6

GENERALIZING WITH THE MACRO LANGUAGE

In the previous example (Figure 6) the COUNT data set was constructed with one observation containing a series
of variables. It could have also been built with one observation for each variable / value pair. A data set in this

form maximizes its
flexibility as it can be
used to build a CONSORT
table with any number of
fields, boxes, and ARMs.

These data values are
then loaded into macro

variable lists, and the
values from these lists

will then be used in the TRANSTRN function. The data values can be written to the macro symbol table in either
a DATA step (using CALL SYMPUTX) or in a SQL step. The SQL step is easiest for building a macro list and is

shown in Figure 9. The macro variable lists,
shown in Figure 10, will necessarily be
synchronized so that, for instance, the second
name (TOTEXCL) will be associated with the
second number (56). This allows us to use a %DO
loop to step through these lists and generate a
TRANSTRN function call for each pair of values

individually.

Because we are using %DO loops to
construct the TRANSTRN functions, we
must therefore also create a macro to
control the overall process. Most of the
actual DATA step that does the
translations remains unchanged. We no

longer need to import the COUNTS data set as we did in Figures 6 and 7, however we do need to parse the
macro lists, and this is done with the %SCAN macro function.

A macro %DO loop is now used in what will become the DATA step. The %DO loop is used to control the word
counter, which in turn is used to parse the word list using the %SCAN function. The &ith word is selected by the
%SCAN function and written to the appropriate macro variable (&NAME and &VALUE). These macro variables

are then
used in the
assignment
statement
that
modifies the
INFILE
value. We
could use
the %SCAN

data counts;

 fldname='TOTASSESSED'; fldvalue= 345; output counts;

 fldname='TOTEXCL'; fldvalue= 56; output counts;

 fldname='INELIG'; fldvalue= 35; output counts;

 fldname='DECLIN'; fldvalue= 17; output counts;

 fldname='EXCLOTH'; fldvalue= 4; output counts;

 fldname='NRAN'; fldvalue= 289; output counts;

 run;

Figure 8

proc sql noprint;

select fldname, fldvalue

 into :fnamelist separated by ',',

 :fvaluelist separated by ','

 from &dsn;

%let fldcnt = &sqlobs;

quit;

Figure 9

%put &fnamelist;

TOTASSESSED,TOTEXCL,INELIG,DECLIN,EXCLOTH,NRAN

%put &fvaluelist;

345,56,35,17,4,289

Figure 10

data _null_;

infile confile1 lrecl=3000;

input;

%do i = 1 %to &fldcnt;

 %let name =%scan(%bquote(&fnamelist),&i,%str(,));

 %let value =%scan(%bquote(&fvaluelist),&i,%str(,));

 infile = transtrn(_infile_,"&name",trim(left(put(&value,6.))));

%end;

file confile5 lrecl=3000;

put _infile_;

run;

Figure 11

7

 function calls within the assignment statement, and could have saved the generation of the &NAME and
&VALUE macro variables, however that would have also made the code more complex.

The resulting macro (the full macro code for the %FILLFLDS macro can be found in the appendix at the end of
this paper) can be used to replace as many text character strings as needed. The macro is independent of the
number of fields, the number of ARMs, and the number of text boxes in the table.

SUMMARY

The manual completion of a study’s CONSORT flow diagram can be prone to error. Since the data are already
being analyzed in SAS and the numbers are already available in SAS, why not let SAS do the work for us. Using
the techniques shown here allows us to eliminate the necessity of manually editing the table and to easily auto-
complete the CONSORT flow diagram as a part of the processing of the data.

ABOUT THE AUTHORS

Art Carpenter’s publications list includes four books, and numerous papers and posters presented at SUGI, SAS
Global Forum, and other user group conferences. Art has been using SAS® since 1977 and has served in various
leadership positions in local, regional, national, and international user groups. He is a SAS Certified Advanced
Professional programmer, and through California Occidental Consultants he teaches SAS courses and provides
contract SAS programming support nationwide.

Dennis Fisher, PhD is the current director of the Center for Behavioral Research and Services at California State
University, Long Beach. He has been the Principal Investigator on two randomized clinical trials funded by the
National Institute on Drug Abuse. He is the co-author (with Scott Hershberger and Brian Wiens) of a book titled
Multivariate Clinical Trials for Randomized Experiments in the Behavioral Sciences. He has published over 200
peer-reviewed journal articles.

AUTHOR CONTACT

Dennis G. Fisher, Ph.D.
Professor and Director
Center for Behavioral Research and Services
1090 Atlantic Avenue
Long Beach, CA 90813

562-495-2330 x121
dfisher@csulb.edu

Arthur L. Carpenter
California Occidental Consultants
10606 Ketch Circle
Anchorage, AK 99515

(907) 865-9167
art@caloxy.com
www.caloxy.com

ACKNOWLEDEMNENTS

We would like to thank at least someone. Probably that is the one person who actually read the paper to the
end, and that would be you.

REFERENCES

 Fairfield-Carter, Brian and Suzanne Humphreys, 2011, “Alternative Approaches to Creating Disposition Flow
Diagrams”, proceedings of the Pharmaceutical SAS Users Group Conference (PharmaSUG), 2011, Cary, NC: SAS
Institute Inc. http://www.pharmasug.org/proceedings/2011/TT/PharmaSUG-2011-TT08.pdf

http://www.pharmasug.org/proceedings/2011/TT/PharmaSUG-2011-TT08.pdf

8

Tran, Duong, 2008, “A Novel Approach to Patient Profiling”,
http://www.tranz.co.uk/PSI2008_WD_Patient_Profiling.pdf
This paper uses a similar approach to fill cells in an EXCEL table.

Xu, Michelle and Jay Zhou, 2007, “%DIFF: A SAS Macro to Compare Documents in Word or ASCII Format”,
proceedings of the Pharmaceutical SAS Users Group Conference (PharmaSUG), 2007, Cary, NC: SAS Institute Inc.
http://www.lexjansen.com/pharmasug/2007/cc/cc09.pdf

A discussion of the CONSORT standards can be found at:
http://www.consort-statement.org/index.aspx?o=1413, which includes an example of a downloadable flow
diagram at: http://www.consort-statement.org/consort-statement/flow-diagram0/

TRADEMARK INFORMATION

SAS, SAS Certified Professional, SAS Certified Advanced Programmer, and all other SAS Institute Inc. product or
service names are registered trademarks of SAS Institute, Inc. in the USA and other countries.
® indicates USA registration. Other brand and product names are trademarks of their respective companies.

APPENDIX – SAMPLE CODE
%let path= c:\temp;

filename confile1 "&path\CONSORT_2011_Flow_Diagram1.rtf";

filename confile2 "&path\CONSORT_2011_Flow_Diagram4.rtf";

* Use a data table to provide input to a DATA step;

* Create data to simulate the numbers coming from data;

data counts;

 TOTASSESSED= 345;

 TOTEXCL = 56;

 INELIG = 35;

 DECLIN = 17;

 EXCLOTH = 4;

 NRAN = 289;

 output counts;

 run;

data _null_;

if _n_=1 then do;

 set counts;

 if nran ne (totassessed-totexcl)

 or totexcl ne (inelig + declin + excloth) then put 'WARNING: Counts

incorrect';

end;

infile confile1 lrecl=3000;

input;

infile = transtrn(_infile_,'TOTASSESSED',trim(left(put(totassessed,6.))));

infile = transtrn(_infile_,'TOTEXCL', trim(left(put(totexcl,6.))));

infile = transtrn(_infile_,'INELIG', trim(left(put(inelig,6.))));

infile = transtrn(_infile_,'DECLIN', trim(left(put(declin,6.))));

infile = transtrn(_infile_,'EXCLOTH', trim(left(put(excloth,6.))));

infile = transtrn(_infile_,'NRAN', trim(left(put(nran,6.))));

http://www.tranz.co.uk/PSI2008_WD_Patient_Profiling.pdf
http://www.lexjansen.com/pharmasug/2007/cc/cc09.pdf
http://www.consort-statement.org/index.aspx?o=1413
http://www.consort-statement.org/consort-statement/flow-diagram0/

9

file confile2 lrecl=3000;

put _infile_;

run;

**;

filename confile5 "&path\CONSORT_2011_Flow_Diagram5.rtf";

* Use a data set to provide input to a macro;

data counts;

 fldname='TOTASSESSED'; fldvalue= 345; output counts;

 fldname='TOTEXCL'; fldvalue= 56; output counts;

 fldname='INELIG'; fldvalue= 35; output counts;

 fldname='DECLIN'; fldvalue= 17; output counts;

 fldname='EXCLOTH'; fldvalue= 4; output counts;

 fldname='NRAN'; fldvalue= 289; output counts;

 run;

%macro fillflds(dsn=counts);

%local fnamelist fvaluelist fldcount i name value;

* Load the values into macro variable lists;

proc sql noprint;

select fldname, fldvalue

 into :fnamelist separated by ',',

 :fvaluelist separated by ','

 from &dsn;

%let fldcnt = &sqlobs;

quit;

%* For illustration: Show the lists;

%put &fnamelist;

%put &fvaluelist;

data _null_;

infile confile1 lrecl=3000;

input;

%do i = 1 %to &fldcnt;

 %let name =%scan(%bquote(&fnamelist),&i,%str(,));

 %let value =%scan(%bquote(&fvaluelist),&i,%str(,));

 infile = transtrn(_infile_,"&name",trim(left(put(&value,6.))));

%end;

file confile5 lrecl=3000;

put _infile_;

run;

%mend fillflds;

%fillflds(dsn=counts)

