A PARADIGM SHIFT IN CLINICAL DATA PREPARATION

THE POWER OF GRAPHICAL DATA FLOW

Vineet Jain
Nimble Clinical Research
INTRODUCTION

- **Traditional Statistical Programming**: Tiedious, & error-prone

- **Graphical Data Flow**: A visual approach to data integration and transformation that is intuitive and efficient

- **The Imperative**: With the changing technology landscape, and the demand for real-time insights, there’s an opportunity for change.
CURRENT OPTIONS

- **Tableau Prep**: Interactive platform for data cleansing and preparation with a drag-and-drop interface.
- **Alteryx Designer**: End-to-end platform offering data blending, analytics, and visualization capabilities.
- **KNIME**: Open-source analytics platform, harnessing data through modular workflows.
- **Talend**: Cloud-based tool focusing on big data integration and management through a visual approach.
- **SAS Based Solutions**:
 - Data Integration Studio
 - SAS Enterprise Guide
 - SAS Studio
CHALLENGES

Complex Logic & Custom Code
• Graphical interfaces might not capture the nuances or allow for highly customized code.
• May not support SAS or R

Lack of Targeted tools
• Lack of tools targeting CDISC standards and Clinical Data needs

Performance & Scalability
• For large datasets and complex operations, concerns about the performance and scalability

Interoperability & Integration
• Integration with existing workflow may be challenging.
Evolving Technology Landscape
Shift towards R & cloud, with integration capabilities with powerful open-source technology solutions making graphical data flow viable.

Industry Pressures for Efficiency
With increasing pressures for faster drug development and data analysis, efficiencies in data management become critical.

Collaboration
As pharma becomes more interdisciplinary, tools that can bridge the knowledge gap and provide self-service capabilities in demand.

Demand for Real-time Analysis
The need for instant insights and real-time data analysis drives the adoption of more intuitive tools.

Integration of AI/ML Capabilities
Web based platforms increasingly offer AI/ML integration
OUR JOURNEY: EMBRACING THE GRAPHICAL APPROACH

Identifying the Needs
- Interactivity
- Simplicity
- Low-code Env.
- Excel like Specs in the web

Flexible Programming Backbone
- Choose R
- Open-source benefits
- Meet complex needs

Design a modern Web-App
- Scalable in cloud
- Programmable in browser
- Responsive Design

Programming Flexibility
- Functions
- Standard Nodes
- Custom Nodes
- Custom Scripts

Productivity/Ease of Use*
- Automations, validations
- AI integration
- Define.xml and compliance

*To be ready by end of 2023
USE CASE: SDTM

Data In
Read Source Data

Mapper
Map variable, test-level, & value-level data in an excel like structure, embedded with R-code snippets for granular mapping control

Finalize
Split, names, labels, sort, order variables, trim, basic checks per CDISC expectation

Data Out
Save datasets to target data libraries
USE CASE: SDTM SPECIFICATIONS

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Source</th>
<th>Target</th>
<th>Destination</th>
<th>ID Variable</th>
<th>Function</th>
<th>Params</th>
<th>Label</th>
<th>Type</th>
<th>Map Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS1</td>
<td>CNO</td>
<td>CNO</td>
<td>SUPP</td>
<td>VISITNUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VS1</td>
<td>F_STATUS</td>
<td>STATUS</td>
<td>SUPP</td>
<td>VSDTC</td>
<td></td>
<td></td>
<td>Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VS1</td>
<td>PAGE</td>
<td>PAGE</td>
<td>CO</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VS1</td>
<td>PATNO</td>
<td>PATNO</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VS1</td>
<td>PNO</td>
<td>PNO</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VS1</td>
<td>REC_ID</td>
<td>REC_ID</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VS1</td>
<td>R_DRUG</td>
<td>R_DRUG</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VS1</td>
<td>SCTR</td>
<td>SCTR</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VS1</td>
<td>TAREA</td>
<td>TAREA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VS1</td>
<td>VSDAT</td>
<td>VSDTC</td>
<td>conv2DTC</td>
<td>"sasdt": "df$VSDAT","sastm": "df$VSTIM"</td>
<td></td>
<td></td>
<td>Date/Time of Measurements</td>
<td>C</td>
<td>ISO 8801</td>
</tr>
<tr>
<td>VS1</td>
<td>EVENT_ID</td>
<td>VISITNUM</td>
<td>unschVisit</td>
<td>"date": "df$VSDTC"</td>
<td></td>
<td></td>
<td>Visit Number</td>
<td>N</td>
<td>VISITNUM</td>
</tr>
<tr>
<td>VS1</td>
<td>VSDY</td>
<td>VSDY</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td>Study Day of Vital Signs</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>VS1</td>
<td>VSTIM</td>
<td>VSTIM</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VS1</td>
<td>VSYN</td>
<td>VSYN</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VS1</td>
<td>STUDYID</td>
<td>STUDYID</td>
<td>Value</td>
<td>"code": "NIM-01"</td>
<td></td>
<td></td>
<td>Study Identifier</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>VS1</td>
<td>DOMAIN</td>
<td>DOMAIN</td>
<td>Default</td>
<td>"code": "paste('NIM-01', df$SCNO, df$PATNO, sep ="-"")"</td>
<td></td>
<td></td>
<td>Domain Abbreviation</td>
<td>C</td>
<td>DOMAIN</td>
</tr>
<tr>
<td>VS1</td>
<td>USUBJID</td>
<td>USUBJID</td>
<td>Value</td>
<td>"code": "paste('NIM-01', df$SCNO, df$PATNO, sep ="-"")"</td>
<td></td>
<td></td>
<td>Unique Subject Identifier</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>VS1</td>
<td>VSEQ</td>
<td>VSEQ</td>
<td>Default</td>
<td>"code": "paste('NIM-01', df$SCNO, df$PATNO, sep ="-"")"</td>
<td></td>
<td></td>
<td>Sequence Number</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>VS1</td>
<td>VTEST</td>
<td>VTEST</td>
<td>Default</td>
<td>"code": "paste('NIM-01', df$SCNO, df$PATNO, sep ="-"")"</td>
<td></td>
<td></td>
<td>Vital Signs Test Name</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>VS1</td>
<td>VTESTCD</td>
<td>VTESTCD</td>
<td>NA</td>
<td>Default</td>
<td>"code": "paste('NIM-01', df$SCNO, df$PATNO, sep ="-"")"</td>
<td></td>
<td></td>
<td>Result or Finding in Origin</td>
<td>C</td>
</tr>
<tr>
<td>VS1</td>
<td>VSORRES</td>
<td>VSORRES</td>
<td>Default</td>
<td>"code": "paste('NIM-01', df$SCNO, df$PATNO, sep ="-"")"</td>
<td></td>
<td></td>
<td>Result or Finding in Origin</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>
USE CASE: GRAPHICAL PATIENT PROFILE

- **Plug-n-play**: Plug a SDTM dataset to feed into graphical patient profiles
- No programming background needed
- The output dataset, feeds into graphical patient profile
USE CASE: GRAPHICAL PATIENT PROFILE

Subject ID: 100014, Age: 66, Sex: F, Race: White

Milestones:
- Visit 1
- Visit 2
- Visit 3
- Visit 10

AE:
- Diarrhoea
- Haemorrhoids
- Headache
- Vomiting
- Blisters

CHEMISTRY:
- Bilirubin
- Blood Urea Nitrogen
- Glucose
- Vitamin B12
- Vitamin B9
- LANSOPRAZOLE
- MIDAZOLAM
- PANTOPRAZOLE SODIUM
- PROCHLORPERAZINE EDISYLATE

CONCOMITANT MEDICATIONS:
- QTcB - Bazett's Correction
- QTcF - Fridericia's Correction
- Summary (Mean) PR Duration
- Summary (Mean) QRS Duration

Vitamin B9
- Date: Oct 6, 2003
- 52.8 nmol/L HIGH

H/L/Abnormal
USE CASE: RBQM

- Data-In squeezed into * icon on top of node
- Plug-n-play KRIs design
- No programming background needed
USE CASE: RBQM
USE CASE: ADAM CREATION

- ADaM programming harder to standardize
- For now, all the ADAE programming in a single node
- For efficiency, code can be created offline and pasted in the web
CONCLUSION

One will not turn to graphical data flow for show, but for the promise of better workflow!

• Lower-level nodes in other applications such as join, sort and so on… are not convenient to meet complex clinical data analysis needs

• Flexible Scripting node needed for complex custom programming

• Sophisticated high-level nodes can facilitate:
 • Low code environment
 • Plug-n-play solutions
 • Self-service environment
 • Rapid Prototyping
THANK YOU

Q & A