
Pharmasug 2010 – Paper AD14

RTF_READ: Decoding RTF Files
Sandeep Juneja, Ockham, Cary, NC

Andrew Illidge, Genzyme, Cambridge, MA
Daniel Boisvert, Genzyme, Cambridge, MA

ABSTRACT:
RTF has quickly become the standard medium for the production of tables and listings. RTF, while very useful to
medical writers and other downstream processes, has hindered SAS® programmers in that automating QC of tables
and listings seemed to become unattainable. Previously, when outputs were produced in ASCII format (.lst) the
outputs could simply be read in to create a SAS dataset which could then be compared to the output dataset of the
QC program. This paper presents a detailed process of decoding RTF files using SAS and generating SAS
dataset(s), thus enabling us to automate QC. In this paper we explain how to identify important tokens in RTF files
to extract data, convert special symbols to SAS tokens, handle complex column header spanning and distinguish
between the Title and Footnote data from the normal document data. This paper employs only functions that are
available in BASE/SAS though due to the nature of parsing text files this paper is aimed at an audience very familiar
with complex data step processing.

INTRODUCTION:

Rich Text Format Specification (RTF) version 1.6:
The Rich Text Format (RTF) Specification provides a format for text and graphics interchange that can be used with
different output devices, operating environments, and operating systems. With the RTF Specification, documents
created under different operating systems and with different software applications can be transferred between those
operating systems and applications.

RTF Syntax

RTF syntax breaks down into four basic categories: commands, escapes, groups, and plaintext.

RTF Command
An RTF command is like \pard or \fs120: a backslash, some lowercase letters, maybe an integer (which might have a
negative sign before it), and then maybe a single meaningless space character. In terms of regular expressions, a
command matches /\\[a-z]+(-?[0-9]+)? ?/ (including the optional space at the end). An RTF parser knows that a
command has ended when it sees a character that no longer matches that pattern. For example, an RTF parser
knows that \i\b is two commands because the second “\” couldn’t possibly be a continuation of the \i command.

RTF Escapes
RTF escapes are like commands in that they start with a backslash, but that is where the similarity ends. The
character after the backslash is not a letter. If the escape is \' then the next two characters will be interpreted as hex
digits and the escape is understood to mean the character whose ASCII code is the given hex number. For example,
the escape \'ea means the ê character because character 0xEA in ASCII is ê. If the character after the \ isn’t an
apostrophe, the escape consists of just that one character.

There are only three escapes that are of general interest: \~ is the escape that indicates a nonbreaking space; \- is an
optional hyphen (a.k.a. a hyphenation point); and _ is a nonbreaking hyphen (that is, a hyphen that that’s not safe for
breaking the line after). The escape * is also part of a construct discussed later. Be sure to note that there is no
optional meaningless space after escapes; while \foo\bar is the same as \foo \bar, \'ea\'ea means something different
than \'ea \'ea. The first one means “êê” (no space) and the second one means “ê ê” (with a space).

RTF Group
An RTF group is whatever is between a { and the matching }. For example, {\i Hi there!} is a group that contains the
command \i and the literal text Hi there!. Some groups are only necessary for certain constructs (like the {\fonttbl...}
construct we saw earlier). But most groups have a more concrete purpose: to act as a barrier to the effects of
character formatting commands. If you want to italicize the middle word in “a sake cup”, use the code a {\i sake} cup.
In terms of how this is parsed, the { means “save all the character formatting attributes now,” and the } means
“restore the character formatting attributes to their most recently saved values.”

Plaintext
The final bit of RTF syntax is plaintext: the text that is sent right through to the document, character for character. For
example, when we had Hello, World! in our document, it turned into the text that said simply “Hello, World!”.

data READFILE;
 length ver $1000;
 infile "&RTFFile." missover length = l
 end = lastobs lrecl = 2000;
 input string $varying1500. l;
 rownum = _n_;
 string=_infile_;

 rc1=prxparse("/*\\generator/");
 rc2=prxparse("/\\version\d+/");
 if prxmatch(rc1,string) then MWFLG=1;
 ……

%* Header Section;
if index(string,'\header')>0 and index(string,'\footer')=0
then hdrflg=1;
if hdrflg=1 then do; %* HEADER SECTION;
%* PATTERN 1 HEADER INFORMATION *;
 if index(string,'\trowd')>0 then hdr= hdr + 1;
 else if index(string,'\pard{\par}')>0 then do;
 hdr= 0;
 hdrflg=0;
 end;
end;
else do; %* DOCUMENT SECTION;
%* PATTERN 2 HEADER INFORMATION **;
 if index(string,'\headery')>0 and index(string,'\footery')>0
 then hdrflg1=1;
 if index(string,'\pard{\par}')>0 then hdrflg1=0;
 if hdr=1 and index(string,'\trowd')>0 then tblid = tblid + 1;

*Extract data from file and store it in Col1 variable.;
if index(string,'{')>0 and index(string,'\cell')>0
 and index(string,'}')>0 then do;
 _col1='';
 col1=trim(left(substr(string,(index(string,'{')+1))));
 col1=tranwrd(col1, '\cell}' , '');
end;

Control Words:
Although there might be lot of control words used in RTF, only a few are required to understand the basic structure of
the RTF file and extract data out of it.

Control Word Comment Control Word Comment
1. \header Identify Title in Header Section 2. \headery Identify Tiles in Document section
3. \footer Identify Footnotes in Footer Section 4. \footery Identify Footnotes in Document Section
5. \trhdr Identify Column header 6. \trowd Identify Table Row
7. \cell Identify the Table Cell 8. \cellx Identify the cell size in twips
9. \line Identify line break 10. \li200 Works line tab, use to enter extra space.

Note numeric value represents twips.

SAS & RTF
The process for converting SAS datasets to RTF files is well documented. However, there is little information
available about reading RTF files. Decoding RTF files can be a complex process depending upon the level of
automation and the requirements of the output dataset desired. The process below explains various steps required in
converting an RTF file into a SAS dataset.

Step 1: Read the RTF document in SAS and confirm it is generated by SAS
Read any input RTF File using below lines of code. Because the RTF generated by Microsoft or other applications is

very different to the RTF generated by SAS we
must first confirm that this RTF is in the structure
we are expecting. By default, the keyword
“generator” won’t be present if the file is generated
by SAS but if it is modified outside SAS it will
contain “Microsoft generator” token. To make sure
it is modified outside SAS we can also check for file
version. By default any fresh run of file will produce
version 1 when generated in SAS and if it is greater
than 1 that double confirms that its modified outside
SAS and we can gracefully exit the macro,
otherwise we can continue to process the input file.
Once we confirm our RTF was produced by SAS

we can continue parsing.

Step 2: Identify if the Titles and Footnotes are present in the Header and Footer section or
document section of the file

Identifying the presence
of \header or \headery
and \footer or \footery let
us know whether the
Titles and Footnotes are
located in the header &
footer section or
document section of the
file. Once the location is
identified using \trowd
token and \trhdr token
let us identify presence
of different variables or
columns in output file.

Step 3: Extract the Data into SAS dataset:
Identify the location of the \cell
token and it lets you extract the
table cells data into col1 variable.
Since the structure for the
content of the cell is
{<data>\cell}, where <data>
would be any text contain in the

* Intialize counters for identifying Rows and Cols;
data DATARECS;
 set PARSEFILE1;
 by tblid;
 where indexw(string,'\cellx')=0; * Keep only data records;
 retain rowid colid 0;
 if first.tblid then rowid=0;
 if index(string, '\trowd') or index(string,'\pard{\par}')>0
 then do;
 rowid=rowid + 1;
 colid=0;
 end;
 else do;
 if (index(string,'\cell')>0 then colid=colid+1;
 if (index(string,'\bkmkstart')>0 or
index(string,'\bkmkend')>0)
 then colid= colid + 1;
 if index(string,'{\row}')>0 or index(string,'\footer')>0
 then colid=0;
 end;
run;
*Transpose Vertical data to Horizontal table like structure.;
proc transpose data=DATARECS1 out=TDATARECS(drop=_NAME_)
prefix=c;
 by tblid rowid hdr;
 id colid;
 var col1;
run;

%*Extract twip values and generate twip
data;
data &prefix._twipdata;
 set &prefix._hdr1;
 by tblid hdr;
 where index(string,'\cellx')>0;

current cell, this code
snippet checks for the
existence of {, \cell
and }. Once it finds all
three tokens, it
extracts the data from
the control word and
captures it in col1.

There are multiple
possibilities for \cell
control word. This
code snippet will
capture correct data.

Step 4: Distinguish between different rows and columns
Keep only records where \cell control word is present because \cell is the control word which contains data.

Initialize row
counter to keep track
of different records
and for each
occurrence of \cell
token in each row
represents different
variable.

Once the data is
captured in dataset,
transpose the

dataset to replicate it
to the input file
structure.

Note: This step will produce dataset which will to much extent imitate the input file. Depending upon the automation
and requirements for the output dataset, below steps can be followed.

Step 5: Handling the spanned Column headers
Spanning headers are difficult to identify. A spanning header is a text that sits on top of 2 or more columns. In order

to identify a header as spanning we must identify the
twip values for all columns and compare them.
1. Once we know the twip value and content of the
header cell, flag the blank columns
2. MXCNT: Identify maximum number of columns/table
to identify if there is any spanning in a table or not.

else if index(string,'{')>0 and index(string,'\cell')=0
and index(string,'}')=0 then do;
 _col1=trim(left(substr(string,(index(string,'{')+1))));
end;
else if index(string,'{')=0 and index(string,'\cell')=0
and index(string,'}')=0 and index(string,'\')=0 then do;
 col1=trim(left(_col1)) || " " || trim(left(col1));
 _col1='';
end;
* if \ is missing means no tokens only data,
 read full string;
 _col1=trim(left(_col1))|| " " || trim(left(string));
end;
else if index(string,'{')=0 and index(string,'\cell')>0
and index(string,'}')>0 then do;
 col1=trim(left(substr(string,1,(index(string,'\cell')-1))));

%*Identify whether table data is TFs or DATA table.;
……
if (hdrflg=1 or hdrflg1=1) then do;
 if hdr=1 then pageid = pageid + 1;
 if hdr>0 then type='TITLE';
 else if hdr=0 then type='FOOTNOTE';
end;
else do;
 if hdr=0 then type='DATA';
 else if hdr>0 then type='HEADER';
end;
…….

3. SHDR: Identify if header row is spanning or not
by comparing number of cols for each header
row against max column count maxc.
4. HDRLIST: Get list of unique headers for each
table.
5. DUMMY: Create dummy dataset with each
header row having multiple columns;
6. Merge Dummy dataset containing one row per
table/header with actual data.

7. Merge with Spanning column flag dataset
8. Using the Spanhdr flag(sflag) and Blank flag(Bflag) re-assign the data values for spanning columns.
9. BLANK value is assign for blank columns and later removed.

Step 6: Distinguish Document data from Titles and Footnotes

Once the spanning headers are
identified, the title and footnote data
needs to be separated from the
document data so that they can be
processed differently. Based upon the
derivation of hdrflg and hdrflg1 variables
(explained in Step 2), we can
differentiate between Title and Footnote
data and Document data.

Step 7: Concatenate Headers
This step could be optional. In this step, different column headings for same column are concatenated together into

one row where different data
rows are separated by a
delimiter=”|”. The purpose behind
it is it makes easy to read the
data and it is easy to replicate for
the validator to replicate one

header row rather than multiple header rows.

Step 8: Extract Unique Titles and Footnotes into a SAS dataset and create a TF_id.
Create Title and Footnote (T&F) dataset with unique Titles and Footnotes and initialize the tf_id counter whose value

increases with any change in either title or
footnote.

Step 9: Generate Output Datasets
Finally create the horizontal and vertical data structure by re-arranging the variables.

Horizontal Dataset

It is very similar to the input RTF file. It contains the following columns.
1. TF_ID: This variable value will increase incase there is a change in any title or footnote value.

2. HD_ID: This variable value will increase incase there is a change in any Column header value.

3. H1-Hn: These variable(s) will contain the column header values, where multiple column headers value/column

will be separated by specified/DEFAULT DELIMITER.

Figure 1. Multiple column headers for same row concatenated together

Figure 2. Unique Titles and Footnotes

if index(string,'\cellx')>0 then
twpval=scan(string,-1,'\cellx');

 %* Blank Column Flag, to stop spanning from
over-writing blank columns;
 if cval='' then bcol=1;
 else bcol=0;
run;

4. C1-Cn: These variable(s) will contain the column data as
contained in the output file. The value of the columns
specified by the Group_Column Range will be retained,
in case there is any grouped value.

The hvalue column is sorted by variables in order based on their
representation in the output file.

Vertical Dataset

The horizontal dataset is fine when all columns in the table fit across the page. The problem with this structure is

when a table has too many columns to fit on a page. When this happens,
second column on the page has one header for the first X pages, then
another header for the rest. For the validator, there is no way to know how
many columns fit on the page nor is it correct to assume that the number of
columns on the page is static. To allow the use of RTF_READ for all QC
the Vertical Dataset structure was developed. This structure can be thought
of as a normalized version of the horizontal dataset. Think of transposing
the column headers down by the first (c1) column on the page.

The structure of this dataset is one record per c1 value, per hvalue
There are multiple advantages to this structure

• If columns do not fit horizontally across the page, they could be

transposed to a vertical structure and can be easily validated.
• It has less columns
• Easy to validate

ADVANTAGES:

1. It will work for any RTF file generated by SAS
2. Its comprehensive approach lets user generate a SAS dataset which can be easily be created by the

validator their by helping to speed up the validation process.
3. It is designed to handle spanning headers
4. it co-relates the data on different pages with column header id (hd_id) and title and footnote id (tf_id) which

can identify any change in the title and footnotes or column headers.
5. It generates both horizontal data which is similar to that of the output file and vertical data which is much

easier to validate.
6. It separates Title and footnotes data from document data
7. This process of decoding RTF Files eases the validation process and saves lot of times for multiple rounds

of validation if required.

CONCLUSION

This paper simplifies the process of understanding RTF file and converting them into SAS dataset which otherwise is
a difficult process. Hopefully you will be able to leverage the information presented in this paper to help automate
QC within your organization.

Figure 3. Horizontal Data Structure

Figure 4. Vertical Data Structure

REFERENCE

• RTF Pocket Guide By Sean Burke
 Publisher: O'Reilly Media Released: July 2003

• SAS RTF Content

Website: http://support.sas.com/rnd/base/ods/templateFAQ/Template_rtf.html

ACKNOWLEDGEMENT

We would like to thank Vijaya (Vijaya.Raut@cognizant.com), Geeta (Geeta.Nagwekar@cognizant.com) and Ruchita
(Ruchita.Srivastav@cognizant.com) from Cognizant Validation team, Mumbai, India who played a vital role in
validation and deployment of this utility

CONTACT INFORMATION

Sandeep Juneja Daniel Boisvert / Andrew Illidge
8000 Regency Pkwy, Suite 360 500 Kendall Street
Cary, NC 27518 Cambridge, MA 02142
Phone:919-653-3982 Phone: 617-768-6061 / 4452
Email: sjuneja@Ockham.com Email: Daniel.Boisvert@genzyme.com
 Email: Andrew.Illidge@genzyme.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration

http://support.sas.com/rnd/base/ods/templateFAQ/Template_rtf.html
mailto:Vijaya.Raut@cognizant.com
mailto:Geeta.Nagwekar@cognizant.com
mailto:Ruchita.Srivastav@cognizant.com
mailto:sjuneja@Ockham.com
mailto:Daniel.Boisvert@genzyme.com
mailto:Andrew.Illidge@genzyme.com

