Generating Valuable Dummy Data for Analytical Method Development

Tadashi Matsuno, Yoshitake Kitanishi, Shionogi & Co., Ltd.

Things to keep in mind

Here we focus only on the technical aspects and how to dummy data.

When actually using data, it is necessary to consider multiple aspects in addition to technology, such as laws and regulations, contracts, and an understanding of data providers.

Summary

- Background for considering methods for dummying data
- Scenarios to consider
- Exploration of methods for dummying one-record data
- Dummying data and evaluation
- About the future

Data related to SHIONOGI Data Science Department

The Data Science Department is promoting the integration of valuable and diverse internal data, as well as the development of data utilization infrastructure, advanced analysis techniques, and talent cultivation, in order to enable cross-functional utilization of these data in the value chain..

SHIONOGI Central Data Management Concept

Hub for data collection and distribution between business systems

Data warehouse that prepares data in a format that is easy to use.

- Data modernization
- Data cleansing
- Mapping conversion, integration
- Confidential management

Motivation

- Dummy data without using anonymous processing technology
- Deliverables ✓It can be expected the same analysis as the original data without reducing the amount of information.
 - ✓ Unable to extract actual sensitive information (such as specific individuals)

Possibility of using dummy data

Dummy data generation scenario

The dummy coding techniques and evaluation criteria for data sets used in analysis vary depending on their shape and purpose, and it is necessary to conduct verification for each of them.

•One Record (e.g. Personnel information, subject background)

•Time series data (e.g. stock price, blood pressure for each subject)

•Relational data (e.g. RWD, SDTM, ADaM)

•Inflating data (e.g., improving machine learning modeling accuracy)

Today's Focus

Scenario One Record data dummyization

SHIONOGI

One record data

Consists of a row containing a unique identifier and associated information fields and attributes 2D data table

For Example					
product list	PRODUCT ID	NAME	CATEGORY	PRICE	WEIGHT
Employee information (1 person Record)	EMP NO.	NAME	DEPARTMENT	POSITION	START DATE
Subject background (DM)	USUBJID	AGE	SEX	RACE	ARM

<u>Analysis scene</u>

- Understand the characteristics of the entire data through summary statistics, distribution visualization, etc.
- ✓ Qualify data by joining with other tables using identifiers as keys

Dummyization of one-record data: What can be imitated?

- ✓ Distribution of numerical data
- ✓ Distribution of categorical values
- ✓ Relationship between features

 \Rightarrow These have the same characteristics as the original data, and the individual rows do not match.

Creating a sample dataset for the experiment

Created 600 lines of DM-like sample data for safe and secure verification.

*Age, height, and weight are not categorized and treated as numerical data (for verification without using anonymous processing technology)

Feature value

- ID (unique)
- **Height:** Continuous value correlated with weight normal distribution
- Weight: Continuous value that correlates with height, only 40 kg or more
- Age: Discrete value, only over 20 years old
- Sex: Category (nominal scale) Male to female 1:1
- **Race/ethnicity:** correlated categories (nominal scale) imbalance
- **Drug assignment:** Category (nominal scale) 1:1 Uncorrelated
- Test result 1: Category (nominal scale) binary
- **Test result 2:** Category (nominal scale) binary

Sample "DM like" Dataset

eight wei	GHT SEX	RACE	ETHNIC	ARM	TEST01	TEST02
165.9	54.8F	RACE1	ETHNIC2	PLACEBO	NEGATIVE	POSITIVE
153.8	74.9F	RACE3	ETHNIC1	PLACEBO	NEGATIVE	NEGATIVE
158.0	66.4F	RACE1	ETHNIC2	PLACEBO	NEGATIVE	POSITIVE
173.1	77.6F	RACE3	ETHNIC2	PLACEBO	NEGATIVE	NEGATIVE
157.2	49.0F	RACE1	ETHNIC2	PLACEBO	NEGATIVE	POSITIVE
179.4	69.1M	RACE1	ETHNIC2	PLACEBO	POSITIVE	POSITIVE
167.1	69.4M	RACE1	ETHNIC2	PLACEBO	POSITIVE	POSITIVE
154.2	70.0F	RACE1	ETHNIC2	PLACEBO	NEGATIVE	POSITIVE
160.0	74.1F	RACE1	ETHNIC2	PLACEBO	NEGATIVE	POSITIVE
182.7	102.5M	RACE3	ETHNIC1	PLACEBO	NEGATIVE	NEGATIVE
169.8	48.6F	RACE1	ETHNIC2	PLACEBO	NEGATIVE	POSITIVE
	EIGHT WEI 165.9 153.8 158.0 173.1 157.2 179.4 167.1 154.2 160.0 182.7 169.8	EIGHTWEIGHTSEX165.954.8 F153.874.9 F153.066.4 F173.177.6 F157.249.0 F157.469.1 M167.169.4 M154.270.0 F160.074.1 F182.7102.5 M169.848.6 F	EIGHT WEIGHT SEXRACE165.954.8 FRACE1153.874.9 FRACE3158.066.4 FRACE1173.177.6 FRACE3157.249.0 FRACE1179.469.1 MRACE1167.169.4 MRACE1154.270.0 FRACE1160.074.1 FRACE1182.7102.5 MRACE3169.848.6 FRACE1	EIGHT WEIGHT SEXRACEETHNIC165.954.8 FRACE1ETHNIC2153.874.9 FRACE3ETHNIC1158.066.4 FRACE1ETHNIC2173.177.6 FRACE3ETHNIC2157.249.0 FRACE1ETHNIC2179.469.1 MRACE1ETHNIC2167.169.4 MRACE1ETHNIC2154.270.0 FRACE1ETHNIC2160.074.1 FRACE1ETHNIC2182.7102.5 MRACE3ETHNIC1169.848.6 FRACE1ETHNIC2	EIGHT WEIGHT SEXRACEETHNICARM165.954.8 FRACE1ETHNIC2PLACEBO153.874.9 FRACE3ETHNIC1PLACEBO158.066.4 FRACE1ETHNIC2PLACEBO173.177.6 FRACE3ETHNIC2PLACEBO157.249.0 FRACE1ETHNIC2PLACEBO167.169.1 MRACE1ETHNIC2PLACEBO167.169.4 MRACE1ETHNIC2PLACEBO154.270.0 FRACE1ETHNIC2PLACEBO160.074.1 FRACE1ETHNIC2PLACEBO182.7102.5 MRACE3ETHNIC1PLACEBO169.848.6 FRACE1ETHNIC2PLACEBO	EIGHT WEIGHT SEXRACEETHNICARMTEST01165.954.8FRACE1ETHNIC2PLACEB0NEGATIVE153.874.9FRACE3ETHNIC1PLACEB0NEGATIVE158.066.4FRACE1ETHNIC2PLACEB0NEGATIVE173.177.6FRACE3ETHNIC2PLACEB0NEGATIVE157.249.0FRACE1ETHNIC2PLACEB0NEGATIVE179.469.1MRACE1ETHNIC2PLACEB0POSITIVE167.169.4MRACE1ETHNIC2PLACEB0NEGATIVE154.270.0FRACE1ETHNIC2PLACEB0NEGATIVE160.074.1FRACE1ETHNIC2PLACEB0NEGATIVE182.7102.5MRACE3ETHNIC1PLACEB0NEGATIVE169.848.6FRACE1ETHNIC2PLACEB0NEGATIVE

600 Rows (ACTIVE300: PLACEBO300)

How to make a one-record data table dummy

In order to perform dummyization while preserving the original characteristics, we tried the following method.

Missing imputation dummyization method

After intentionally generating missing values, kNN is used to complete missing values and process the data into data that has similar characteristics to the original data but is not completely identical.

Deep learning (GAN*)

Modeling the target data structure using two deep learning networks: a discriminator and a generator. This allows for the generation of synthetic data according to desired specifications.

LLM*(ChatGPT)

A language model built on a massive dataset. By conveying the desired features of the data to be generated through prompts (natural language instructions), the model produces output.

*Generative Adversarial Networks

*Large Language Models

Missing imputation dummyization method

A method of dummying data by intentionally missing and supplementing part of the data ①Generate missing values with an arbitrarily specified probability for each column ②Predict and impute missing values based on non-missing rows. kNN was used for prediction

🚺 SHIONOGI

GAN (Generative Adversarial Networks)

How to model table data using generative adversarial networks

CTGAN*: An algorithm that applies GAN, which has been mainly used for image generation, to table data

Expectations and concerns about this method

- •You can model the distribution of table data and complex relationships.
- ·Less risk of data being the same as the original
- Very large computational resources
- Difficult to interpret internal calculations of the network

Large language model (ChatGPT)

- In a secure OpenAl environment, explain the data set using prompts and output it as SAS program code.
- Add correction instructions after checking the distribution of generated data

```
data generated data;
                                                                             /* 相関係数 */
     次の特徴をもつダミーデータを生成するSASコードを生成してください
                                                                             correlation coefficient = 0.6;
                                                                             do i = 1 to 600;
                                                                              /* 1. AGEを生成 (例: 20から75までのランダムな値) */
                                                                              age = floor(20 + (75 - 20 + 1) * ranuni(0));
     カラムは、AGE,HEIGHT,WEIGHT,SEX,ARM,RACE,ETHNICです。
     600rowあります。
                                                                              /* 2. SEXを生成 (例: MとFが300ずつ) */
                                                                              if i <= 300 then sex = 'M':
     AGEは20以上の整数です。
                                                                              else sex = 'F';
     ARMはACTIVEとPLACEBOの2値で300ずつです。他のカラムと相関がありません。
                                                                              /* 3. HEIGHTを生成 */
     SEXはMとFが300ずつです。
                                                                              if sex = 'M' then do:
     HEIGHTは平均173.22、標準偏差7.1····
                                                                               height = rand('Normal', 173.22, 7.1);
                                                                              end:
                                                                              else do;
                                                                               height = rand('Normal', 160.82, 6.67);
                                             以下略
                                                                              end:
                                                                              /* 4. WEIGHTを生成 (身長との相関を持つ) */
                                                                              if sex = 'M' then do:
                                                                                do while (1);
                                                                                 weight = rand('Normal', 74.0 + correlation coefficient * (height - 173.22) *
Modifying instruction
                                                                                 if weight > 40 then leave;
                                                                                end;
     HEIGHTとWEIGHTの相関がないようです。相関係数0.6を想定して修正してくださ
```

🔳 SHIONOGI

Generated data table

Using the method described above, we generated dummy data of 600 rows each.

Drug allocation: active drug: 300 patients each with placebo

compared to sample data

make an evaluation

	ORI	GIN	IAL			IMPUTING										٩N		LLM								
AGE HEIO	HT WEIGH	T SEX	RACE	ETHNIC	ARM	AGE	HEIGHT	WEIGHT	SEX	RACE E	ETHNIC	ARM	AGE	HEIGHT	WEIGHT	SEX	RACE E	ETHNIC	ARM	AGE	SEX	HEIGHT	WEIGHT	RACE	ETHNIC	ARM
31 165	5.9 54.8	F	RACE1	ETHNIC2	PLACEBO	31	165.9	57.9	Μ	RACE1 E	ETHNIC2 F	PLACEBO	40	164	65.1	F	RACE1 E	THNIC2	PLACEBO	20	Μ	168.3	58.4	RACE	ETHNIC2	PLACEBO
53 153	3.8 74.9	F	RACE3	ETHNIC1	PLACEBO	53	163	74.9	F	RACE3 E	ETHNIC1 F	PLACEBO	27	157	61.6	F	RACE1 E	THNIC2	PLACEBO	36	М	181.5	80.7	RACE	ETHNIC2	PLACEBO
57 15	66.4	F	RACE1	ETHNIC2	PLACEBO	47	158	62.5	F	RACE1 E	ETHNIC2 F	PLACEBO	48	172.4	78.5	Μ	RACE1 E	THNIC2	PLACEBO	32	М	175.2	73.2	RACE	B ETHNIC1	PLACEBO
42 173	8.1 77.6	F	RACE3	ETHNIC2	PLACEBO	53	166	77.6	F	RACE3 E	ETHNIC2 F	PLACEBO	62	150.5	52.5	F	RACE1 E	THNIC2	PLACEBO	28	М	170.5	85.3	RACE	ETHNIC2	PLACEBO
32 157	7.2 49	F	RACE1	ETHNIC2	PLACEBO	32	157.2	49	F	RACE1 E	ETHNIC2 F	PLACEBO	58	159.7	53.7	F	RACE1 E	THNIC2	PLACEBO	36	Μ	173.2	51.0	RACE	ETHNIC1	PLACEBO
55 179	9.4 69.1	М	RACE1	ETHNIC2	PLACEBO	55	171	69.1	Μ	RACE1 E	ETHNIC2 F	PLACEBO	32	158.2	78	Μ	RACE4 E	THNIC1	PLACEBO	33	Μ	179.0	69.7	RACE	ETHNIC2	PLACEBO
65 167	7.1 69.4	Μ	RACE1	ETHNIC2	PLACEBO	65	167.1	69.4	Μ	RACE1 E	ETHNIC2 F	PLACEBO	68	172.3	69.6	Μ	RACE1 E	THNIC2	PLACEBO	59	Μ	168.6	71.1	RACE	B ETHNIC2	PLACEBO
66 154	1.2 70	F	RACE1	ETHNIC2	PLACEBO	66	154.2	70	F	RACE1 E	ETHNIC2 F	PLACEBO	51	171.8	99	F	RACE2 E	THNIC2	PLACEBO	49	Μ	176.3	86.4	RACE	B ETHNIC2	PLACEBO
33 16	50 74.1	F	RACE1	ETHNIC2	PLACEBO	46	160.3	64.2	F	RACE1 E	ETHNIC2 F	PLACEBO	48	159.9	58.4	F	RACE3 E	THNIC1	PLACEBO	21	Μ	180.3	80.9	RACE	ETHNIC2	PLACEBO
40 182	2.7 102.5	М	RACE3	ETHNIC1	PLACEBO	40	182.7	102.5	М	RACE3 E	ETHNIC1 F	PLACEBO	36	156.9	86.8	F	RACE4 E	THNIC1	PLACEBO	30	М	179.2	68.8	RACE	ETHNIC2	PLACEBO

Evaluation of dummy data

The generated dummy data was evaluated using the following indicators:

1 Distribution similarity

- i. Comparison by visualizing distribution
- ii. Similarity evaluation using JS divergence*
 - Supports continuous values and categorical values
 - Unlike a test, it can be evaluated relatively.

JS divergence*

An indicator that shows the difference between two probability distributions. It is KL divergence with symmetry

$$KL(P||Q) = \int P(x)(logP(x) - logQ(x))$$
$$JS(P||Q) = \frac{1}{2}(KL(P||R) + KL(Q||R))$$
$$R(X = x) = \frac{1}{2}(P(X = x) + Q(X = x))$$

2<u>Relationships between columns</u>

- •Numerical value x Numerical value \Rightarrow Pearson's R
- •Numeric value x category value (nominal) \Rightarrow Correlation ratio
- •Category value x category value (nominal) \Rightarrow Cramer's V

3Confidentiality risk

• Percentage of rows that match the original data in all columns

*Jensen-Shannon Divergence *Kullback-Leibler Divergence

Distribution similarity 1 Visualization of numerical columns (AGE, HEIGHT)

There is a tendency to converge to a normal distribution due to missing data imputation.

The distribution will be captured accurately according to the number of learning times.

Reproduced the distribution relatively accurately

Distribution similarity 2 Visualization of category columns (nominal) (SEX, RACE)

There is a tendency for majority selection to increase when imputing missing data.

There was a tendency to disproportionately increase the frequency of minorities.

Reproduced the distribution relatively accurately

Distribution similarity ③ Quantitative evaluation

We calculated the JS divergence value to quantitatively evaluate the similarity of the distributions. It is close to 0 for all methods, and it is considered that the similarity with the original data is high.

JS d	divergence	value of e	each	dummy	data	against	sample	data
------	------------	------------	------	-------	------	---------	--------	------

Dummy DATA	Paremeter	Age	Height	Weight	Sex	Race	Ethnic
IMPUTING	Missing rate20%	0.0065	0.0052	0.0018	0.0001	0.0013	0.0000
IMPUTING	Missing rate40%	0.0230	0.0083	0.0067	0.0002	0.006	0.0007
GAN	Learning Epoch 1000	0.0354	0.11	0.0292	0.0015	0.016	0.0043
GAN	Learning Epoch 10000	0.0066	0.0066 ②	0.0152	0.0011	0.015	0.0050
LLM	-	0.027	0.004	0.01	0.01	0.001	0.0002

 $0 \leq JS \leq 0.69 (\approx \log_e 2)$

Perfect match

completely different

Relationship between columns

In both cases, the relationships between columns generally showed the same tendency as the original.

- \checkmark For GAN, there was a slight correlation with race in drug allocation.
- ✓ Elements not included in the prompt, such as the relationship between race and height, were not replicated in the LLM.

SAMPLE IMPUTING														C	δA	Ν							L	LN	1			1.0						
AGE	1.00	0.03	0.17	0.01	0.01	0.00	0.00	AGE	1.0	0 -0.0	01 0.1	8 0.03	L 0.01	0.00	0.00	AGE	1.0	00 0.1	.1 0.:	21 0.	.01	0.07	0.03	0.02	AGE	1.00	0.02	0.01	0.00	0.00	0.00	0.00	- 1.0	
HEIGHT	0.03	1.00	0.51).45	0.02	0.01	0.00	HEIGHT	-0.0	01 1.0	0 0.5	3).49	0.01	0.01	0.00	HEIGHT	0.1	11 1.0	00 0.4	46).	.43	0.05	0.01	0.00	HEIGHT	0.02	1.00	0.43	0.44	0.01	0.00	0.00	- 0.8	
WEIGHT	0.17	0.51	1.00).07	0.24	0.04	0.01	WEIGHT	0.1	8 0.5	3 1.0	0).09	0.23	0.03	0.01	WEIGHT	0.2	21 0.4	6 1.	00	.14	0.12	0.02	0.03	WEIGHT	0.01	0.43	1.00	0.03	0.00	0.00	0.00	- 0.6	Race x height 0
SEX	0.01	0.45	0.07	1.00	0.15	0.13	0.00	SEX	0.0	1 0.4	9 0.0	9 1.00	0.16	0.18	0.00	SEX	0.0	01 0.4	3 0.	14 1	00	0.10	0.00	0.00	SEX	0.00	0.44	0.03	1.00	0.00	0.00	0.00		 Elements not prompted for
RACE	0.01	0.02	0.24	0.1!	1.00	0.60	0.00	RACE	0.0	1 0.0	1 0.2	3 0.10	1.00	0.59).00	RACE	0.0	07 0.0)5 O.'	12 0.	.10	1.00	0.63).16	RACE	0.00	0.01	0.00	0.00	1.00	0.64	0.00	- 0.4	Pearson's R : Continuous vs Continuous
ETHNIC	0.00	0.01	0.04	0.13	0.60	1.00	0.04	ETHNIC	0.0	0 0.0	1 0.0	3 0.18	0.59	1.00).07	ETHNIC	0.0	03 0.0)1 0.	02 0.	.00	0.63	1.00).11	ETHNIC	0.00	0.00	0.00	0.00	0.64	1.00	0.04	- 0.2	Correlation Ratio : Categorical vs Continuous
ARM	0.00	0.00	0.01	0.00	0.00	0.04	1.00	ARM	0.0	0 0.0	0 0.0	1 0.00	0.00	0.07	1.00	ARM	0.0	02 0.0	0 0.1	03 0.	.00	0.16	0.11	1.00	ARM	0.00	0.00	0.00	0.00	0.00	0.04	1.00		Cramer's V :
	AGE	HEIGHT	WEIGHT	SEX	RACE	ETHNIC	ARM		AGE	HEIGHT	WEIGHT	SEX	RACE	ETHNIC	ARM		AGE	HEIGHT	WEICHT	MEIGUI	SEX	RACE	ETHNIC	ARM		AGE	HEIGHT	WEIGHT	SEX	RACE	ETHNIC	ARM	- 0.0	Categorical vs Categorical

Confidentiality risk assessment

Calculate the percentage of rows that completely match the original data (also examine the effects of increasing or decreasing the number of columns)

- ✓ GAN,LLM was 0 regardless of the number of columns, showing excellent results.
- Although the missing data imputation method can be expected to be alleviated by adding columns, it was suggested that the risk is higher than other methods.

Percentage of rows that exactly match the sample data in all columns

DATA	Parameter	7columns	8columns	9columns
IMPUTING	Missing rate20%	44%	42%	40%
IMPUTING	Missing rate40%	21%	19%	17%
GAN	Learning Epoch 1000	0%	0%	0%
GAN	Learning Epoch 10000	0%	0%	0%
LLM	-	0%	0%	0%

7columns:

'AGE', 'HEIGHT', 'WEIGHT', 'SEX', 'RACE', 'ETHNIC','ARM'

8columns: add "TEST1"

9columns: add "TEST02"

TEST1	TEST2
NEGATIVE	POSITIVE
POSITIVE	NEGATIVE
NEGATIVE	POSITIVE
NEGATIVE	NEGATIVE

* TEST:binary

One record data dummy evaluation

With either method, it was possible to create dummy data that captured the characteristics of the original data. I would like to use them flexibly depending on the purpose, taking into consideration the characteristics of each.

Missing imputation method	Case	IMPUTING	GAN	LLM
 ✓ Easy to maintain relationships between columns, suitable for modeling purposes ✓ Stable results can be obtained regardless of data size 	Distribution of each column	Tendency to approach mean value/mode	Good	Good
 ✓ Be especially careful when including personal information. GAN ✓ It has low confidentiality risk and can be expected to be applied 	Relationship between columns	Good	Imbalance data is partially inaccurate	Depends on prompt
 even when personal information is involved. ✓ Calculations are complex and output is unstable depending on the amount of data 	Confidentiality risk	A certain number is the same as the	Good	Good

LLM

- ✓ Easy to use due to low security risk and ease of calculation
- ✓ Only if the data can be expressed in prompts

Use depending on usage/purpose

original data

In order to promote the utilization of internal data, we are verifying data dummyization methods.

We were able to make One Record data into a dummy using the three methods discussed this time. When applying to business, we want to select an appropriate method based on the intended use. We will continue to explore and verify methods using a variety of data.

•One Record (e.g. personnel information, subject background)

•Time series data (e.g. stock price, blood pressure for each subject)

•Relational data (e.g. RWD, SDTM, ADaM)

•Inflating data (e.g., improving machine learning modeling accuracy, anomaly detection, etc.)

Future verification

