

# One Stop Solution for Bioequivalence Analysis

Jiameng Yuan, Xue Shan



# Agenda

- Background
- Sample Size Calculation
- Noncompartmental (NCA) parameter analysis
- One Stop solution

网址: www.highthinkmed.com

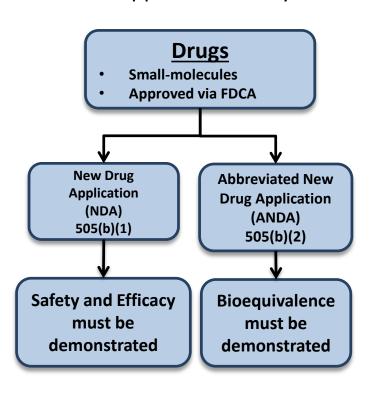
北京市丰台区丰台北路18号恒泰中心C座23层

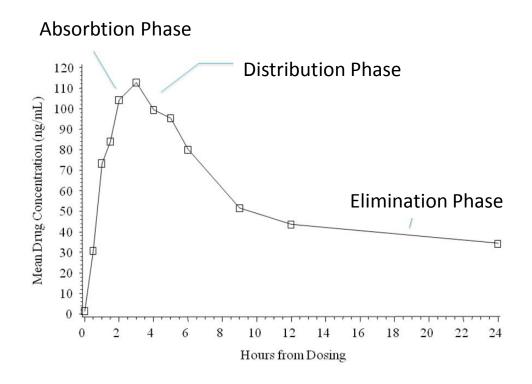


# Background

## For generic (small-molecule) drug products:

Drug Price Competition and Pantent Term Restoration Act


(Hatch-Waxman Act), 1984


Abbreviated New Drug Application (ANDA)



# Background

## FDA Approval Pathways





北京海金格医药科技股份有限公司

<sup>†</sup>FDCA = Federal Food Drug and Cosmetic Act

\*PHSA = Public Health Service Act



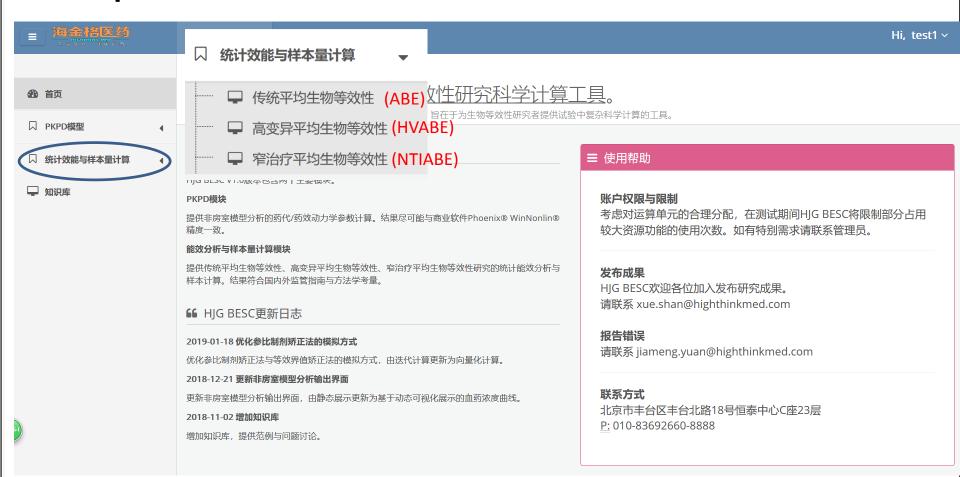


Hi, test1 v

| ● 首页  □ PKPD模型  ・ |    |          |                |  |
|-------------------|----|----------|----------------|--|
| □ PKPD模型          |    | =        | 海金格医药          |  |
| □ PKPD模型          |    |          |                |  |
| □ 知识库             |    | <b>2</b> | 首页             |  |
| □ 知识库             |    |          | PKPD模型 ◆       |  |
|                   |    |          | 统计效能与样本量计算   ◆ |  |
|                   |    | Ţ        | 知识库            |  |
|                   |    |          |                |  |
|                   |    |          |                |  |
|                   |    |          |                |  |
|                   |    |          |                |  |
|                   |    |          |                |  |
|                   |    |          |                |  |
|                   |    |          |                |  |
|                   |    |          |                |  |
|                   |    |          |                |  |
|                   |    |          |                |  |
|                   |    |          |                |  |
|                   |    |          |                |  |
|                   |    |          |                |  |
|                   |    |          |                |  |
|                   | 1) |          |                |  |
|                   |    |          |                |  |
|                   |    |          |                |  |
|                   |    |          |                |  |
|                   |    |          |                |  |

北京海金格医药科技服

http://besc.hjgmed.com 注册 用户名 User name **Password** 密码 确认密码 Password confirm **Email** 声明: 系统不存储任何用户计算数据 注册


+JG BESC将限制部分占用 青联系管理员。 m 3层

kmed.com |8号恒泰中心C座23层



# Sample Size Calculation





北京海金格医药科技股份有限公司

网址: www.highthinkmed.com 北京市丰台区丰台北路18号恒泰中心C座23层

BASIC SYSTEM





#### Desing:

- 2 Formulation 2 Sequence 2
   Period Crossover
- 2 Formulation 3 Sequence 3
   Period Partial Replicate
   Crossover
- 2 Formulation 2 Sequence 4
   Period Replicate Crossover

北京海金格医药科技股份有限公司



Highly variable drugs (HVDs), the estimated within-subject variability is >30%

HVDs often fail to meet current regulatory acceptance criteria for average bioequivalence (ABE)

There are HVDs list published by FDA (中检院2017.1.16)

Narrow Therapeutic Index ABE (NTIABE):

Generally use 2 Formulation 2 Sequence 4 Period Replicate Crossover design

There are NTIDs list published by FDA (中检院2018.6.25)



2006 FDA raised Scaled Based on Intra-subject Coefficient of Variation principle

2007 FDA received first HVABE study

2008 FDA published articles

2010 FDA published HVABE guidance (draft)

2010 EMA published HVABE guidance for Scaled Based on Intra-subject Coefficient of Variation

2011 FDA approved first HVABE study using Scaled Based on Intra-subject Coefficient of Variation principle

#### = 高变异平均生物等效性 Highly Variable Drug Average Bioequivalence (HVABE) 请输入下列参数 **Power** Samplesize ● 统计效能 ○ 样本量 选择计算类型 试验设计 2制剂3序列3周期部分交叉设计 Design 美国食品药品家督管理局 (FDA) Rule 判定规则 Reference Scaled Average Bioequivalence Algorithm 计算方法 ● 参比制剂矫正法 ○ 等效界值矫正法 Acceptance Limits Scaled Average Bioequivalence **Alpha** 0.05 一类错误 Lower bioequivalence limits 8.0 等效界值下限 等效界值上限 1.25 Upper bioequivalence limits 样本量 样本量 Expected T/R 预期比值 预期比值 Ratio 受试制剂个体内变异数 受试制剂个体内变异数 CV 参比制剂个体内变异数 受试制剂个体内变异数 Simulation times 模拟次数 10000 计算 ■ 计算结果



#### Design:

- 2 Formulation 3 Sequence 3Period Partial ReplicateCrossover
- 2 Formulation 2 Sequence 4
   Period Replicate Crossover

#### Standard:

- FDA
- EMA

北京海金格医药科技股份有限公司

## ■ 窄治疗指数平均生物等效性计算 Narrow Therapeutic Index Drug Average Bioequivalence



| 请输入下列参数                          | 效<br><b>选择计算类型</b> | Power Samplesize<br>○ 统计效能 ● 样本量                  |   |  |  |  |  |  |
|----------------------------------|--------------------|---------------------------------------------------|---|--|--|--|--|--|
| Design                           | 试验设计               | 2制剂2序列4周期重复交叉设计                                   | ~ |  |  |  |  |  |
| Rule                             | 判定规则               | 美国食品药品家督管理局(FDA)                                  | ~ |  |  |  |  |  |
| Algorithm                        | 计算方法               | ● 参比制剂矫正法 Reference Scaled Average Bioequivalence |   |  |  |  |  |  |
| Alpha                            | 一类错误               | 0.05                                              |   |  |  |  |  |  |
|                                  | 等效界值下限             | 0.8 Lower bioequivalence limits                   |   |  |  |  |  |  |
|                                  | 等效界值上限             | 1.25 Upper bioequivalence limits                  |   |  |  |  |  |  |
| Power                            | 目标统计效能             | 0.8                                               |   |  |  |  |  |  |
| Expected T <sub>i</sub><br>Ratio | /R<br>预期比值         | 0.95                                              |   |  |  |  |  |  |
| 受试制剂<br>CV                       | 別个体内变异数            | 0.2                                               |   |  |  |  |  |  |
|                                  | 引个体内变异数            | 0.15                                              |   |  |  |  |  |  |
| Simulation tin                   | nes 模拟次数           | 10000                                             |   |  |  |  |  |  |
| 计算                               |                    |                                                   |   |  |  |  |  |  |

#### ■ 计算结果

基于2制剂2序列4周期重复交叉设计和0.8至1.25生物等效区间,假设受试制剂与参比制剂的预期比值为0.95,受试制剂个体内变异系数为0.2,参比制剂个体内变异系数为0.15,模拟次数为10000次,至少需要28达到0.8。

vww.highthinkmed.com E台区丰台北路18号恒泰中心C座23层



## ■ 相关指南 Guidance

查看窄治疗指数平均生物等效性操作教程。

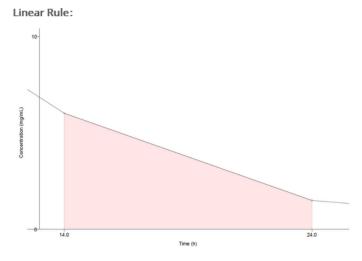
查看窄治疗指数平均生物等效性方法学详述。

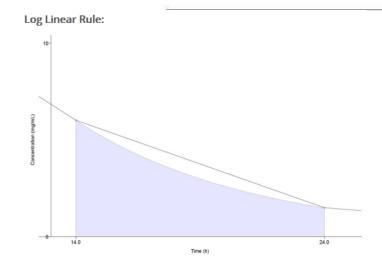
查看窄治疗指数平均生物等效性实战技巧。

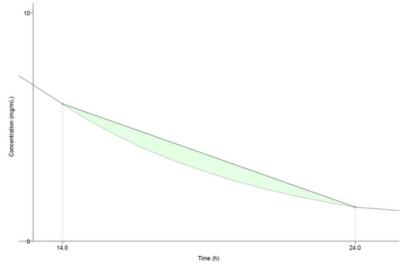
## **■** 相关下载 Downloads

下载窄治疗指数平均生物等效性文献。

下载窄治疗指数平均生物等效性验证报告。



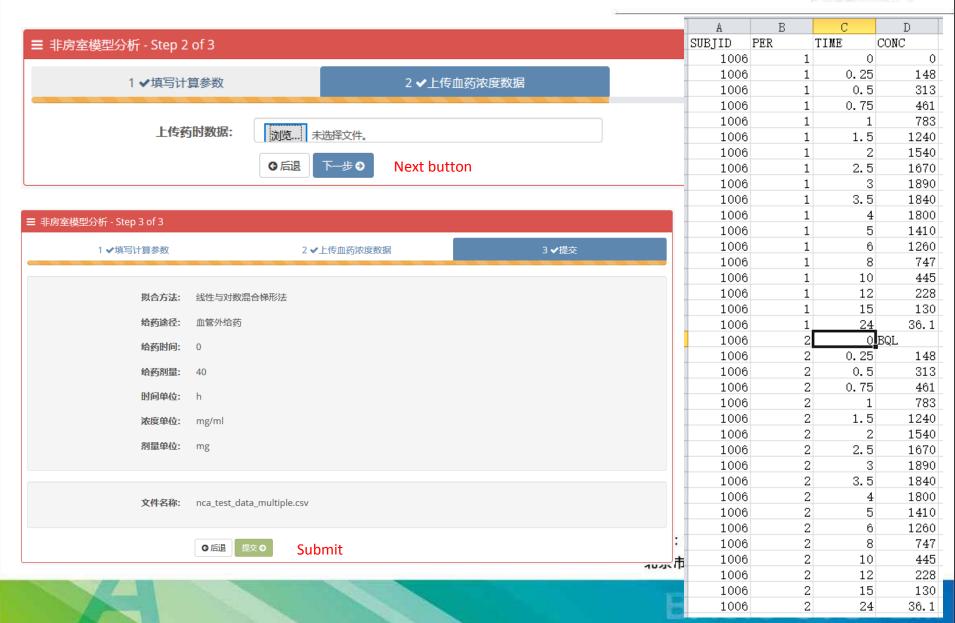


## PK/PD parameter Analysis


| ■ 非房室模型分析 - Step 1 of 3          | Noncompartmental Analysis (NCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4)                                                       |  |  |  |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|--|--|--|
| /<br>1 <b>✓</b> 填写计算参数 <b>Pa</b> | rameters 2 ✔上传血药浓度数据 Upload co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ncentration file 3 <b>√</b> 提交 Submit                    |  |  |  |  |
| AUC fitting 拟合方法:                | ● 线性与对数混合梯形法  ○ 线性梯形法  Linear-up and Log-Linear-down Tog-Linear-down Tog-Lin |                                                          |  |  |  |  |
| Route 给药途径:                      | mc1,345) 1-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | j-推注 Intravascular administration - Injection            |  |  |  |  |
| Administration Dur 给药时间:         | 当给药途径为血管内给药时,此项必填                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 for Extra-vascular positive number for Intra-vascular. |  |  |  |  |
| Dose 给药剂量:                       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | positive number for intra-vascular.                      |  |  |  |  |
| Time unit 时间单位:                  | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |  |  |  |  |
| Concentration unit 浓度单位:         | mg/mL, ug/mL, ng/mL, pg/mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                          |  |  |  |  |
| Dose unit 剂量单位:                  | g, mg, ug, ng, pg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |  |  |  |  |
|                                  | 下一步• Next button                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          |  |  |  |  |

北京海金格医药科技股份有限公司










Compared with Log Linear, Linear rule over estimate the AUC.

比京海金格医药科技股份有限公司







| 田 主要PKPD参数 | PΚ | 1 | PΩ | na | ram | eters |
|------------|----|---|----|----|-----|-------|
|            |    |   |    |    |     |       |

| # SUBJID_PER | CMAX   | TMAX | CLST  | TLST | LAMZHL             | AUCLST             | AUCALL             | AUCIFO             | AUCIFP             | AUCPEO             | AUCPEP             | AUMCLST            | AUMCIFO           | AUMCIFP           | AUMCPEO            | AUMCPEP            |
|--------------|--------|------|-------|------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------------|-------------------|--------------------|--------------------|
| 1 1006_1     | 1890.0 | 3.0  | 36.1  | 24.0 | 4.590477290548983  | 12955.139453683432 | 12955.139453683432 | 13194.217437171654 | 13190.529508334017 | 1.8119906286724885 | 1.7845383273041526 | 77586.07446170643  | 84907.27798201087 | 84794.34379545465 | 8.622586537111177  | 8.500884624022076  |
| 2 1006_2     | 1890.0 | 3.0  | 36.1  | 24.0 | 4.590477290548983  | 12955.139453683432 | 12955.139453683432 | 13194.217437171654 | 13190.529508334017 | 1.8119906286724885 | 1.7845383273041526 | 77586.07446170643  | 84907.27798201087 | 84794.34379545465 | 8.622586537111177  | 8.500884624022076  |
| 3 1007_1     | 1890.0 | 3.0  | 130.0 | 15.0 | 2.801342279042573  | 12295.544877752622 | 12295.544877752622 | 12820.937617547572 | 12798.142342059404 | 4.097927588976513  | 3.9271126298936476 | 65341.115067926126 | 75345.37178815225 | 74911.31594626735 | 13.277864960776864 | 12.775374130666417 |
| 4 1007_2     | 1890.0 | 3.0  | 228.0 | 12.0 | 2.4551152998713013 | 11772.23738361276  | 11772.23738361276  | 12579.80943190193  | 12616.35464286453  | 6.419588886944472  | 6.690658935536331  | 58349.58013101928  | 70900.85090863824 | 71468.835944015   | 17.702567200205177 | 18.356610457840205 |

| 囲 末端消除率 |            | Elimination parameters |        |        |        |                    |                    |                     |                    |                   |  |  |
|---------|------------|------------------------|--------|--------|--------|--------------------|--------------------|---------------------|--------------------|-------------------|--|--|
| #       | SUBJID_PER | LAMZ                   | LAMZST | LAMZED | LAMZNP | R2                 | R2ADJ              | CORR                | CLSTP              | В0                |  |  |
| 1       | 1006_1     | 0.15099675626040415    | 12.0   | 24.0   | 3.0    | 0.9964792079462493 | 0.9929584158924987 | -0.9982380517422933 | 35.54313470819754  | 7.194669171343158 |  |  |
| 2       | 1006_2     | 0.15099675626040415    | 12.0   | 24.0   | 3.0    | 0.9964792079462493 | 0.9929584158924987 | -0.9982380517422933 | 35.54313470819754  | 7.194669171343158 |  |  |
| 3       | 1007_1     | 0.2474339482702718     | 4.0    | 15.0   | 7.0    | 0.993543345018455  | 0.992252014022146  | -0.9967664445688644 | 124.35967498405405 | 8.534687195732483 |  |  |
| 4       | 1007_2     | 0.2823277507969913     | 6.0    | 12.0   | 4.0    | 0.9959184241908328 | 0.9938776362862491 | -0.9979571254271562 | 238.31772721347247 | 8.861537781222678 |  |  |

| <b>m</b> 1 | 11管外给药部分   | Intravascular administration parameters |                        |                        |                        |                   |                   |                   |  |  |  |  |
|------------|------------|-----------------------------------------|------------------------|------------------------|------------------------|-------------------|-------------------|-------------------|--|--|--|--|
| #          | SUBJID_PER | VZFO                                    | VZFP                   | CLFO                   | CLFP                   | MRTEVLST          | MRTEVIFO          | MRTEVIFP          |  |  |  |  |
| 1          | 1006_1     | 2.0077458489445883e-05                  | 2.0083071928853523e-05 | 3.0316311058592425e-06 | 3.03247871700126e-06   | 5.988825881735067 | 6.435188626102543 | 6.428426072045101 |  |  |  |  |
| 2          | 1006_2     | 2.0077458489445883e-05                  | 2.0083071928853523e-05 | 3.0316311058592425e-06 | 3.03247871700126e-06   | 5.988825881735067 | 6.435188626102543 | 6.428426072045101 |  |  |  |  |
| 3          | 1007_1     | 1.2609007966081576e-05                  | 1.2631466366882038e-05 | 3.1198966248188738e-06 | 3.125453595600768e-06  | 5.314210611857745 | 5.876744278439484 | 5.853296044386162 |  |  |  |  |
| 4          | 1007_2     | 1.1262436643762219e-05                  | 1.122981326444623e-05  | 3.1796984061270026e-06 | 3.1704879208213223e-06 | 4.956541244423367 | 5.636083065681132 | 5.664777026891508 |  |  |  |  |
|            |            |                                         |                        |                        |                        |                   |                   |                   |  |  |  |  |

#### ■ 相关指南 Guidance

查看非房室模型分析操作教程。

查看非房室模型分析方法学详述。

查看非房室模型分析AUC拟合方法选择考量。

### ■ 相关下载 Downloads

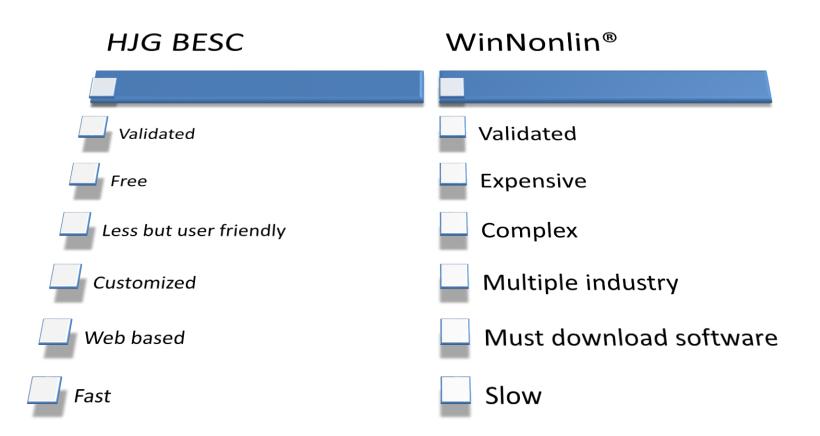
下载非房室模型分析数据范例。

下载非房室模型分析验证报告。

北京海金格医药科技股份有限公司






| <b>\$</b> ₩b         | # <del>*</del> = | 误差 Difference          |                        |                        |                   |  |  |  |
|----------------------|------------------|------------------------|------------------------|------------------------|-------------------|--|--|--|
| 参数<br>P              | 样本量<br>N         | 平均值<br>Mean            | 中位数<br>Median          | 最大值<br>Max             | 接受域<br>Acceptance |  |  |  |
| C <sub>max</sub>     | 743              | 0                      | 0                      | 0                      | 100.00%           |  |  |  |
| T <sub>max</sub>     | 743              | 0                      | 0                      | 0                      | 100.00%           |  |  |  |
| AUC <sub>0-t</sub>   | 743              | 0.97x10 <sup>-11</sup> | 0                      | 2.16x10 <sup>-10</sup> | 100.00%           |  |  |  |
| AUC <sub>0-inf</sub> | 739              | 0.90x10 <sup>-11</sup> | 0.28x10 <sup>-13</sup> | 2.95x10 <sup>-10</sup> | 100.00%           |  |  |  |
| %AUC Extra           | 739              | 0.60x10 <sup>-14</sup> | 0                      | 0.88x10 <sup>-13</sup> | 100.00%           |  |  |  |
| Half Life            | 739              | 0.50x10 <sup>-14</sup> | 0                      | 0.73x10 <sup>-13</sup> | 100.00%           |  |  |  |
| λ                    | 739              | 0                      | 0                      | 0.2x10 <sup>-14</sup>  | 100.00%           |  |  |  |

网址: www.highthinkmed.com

北京市丰台区丰台北路18号恒泰中心C座23层



## HJG BESC VS Phoenix WinNonlin®



北京海金格医药科技股份有限公司



# One Stop solution

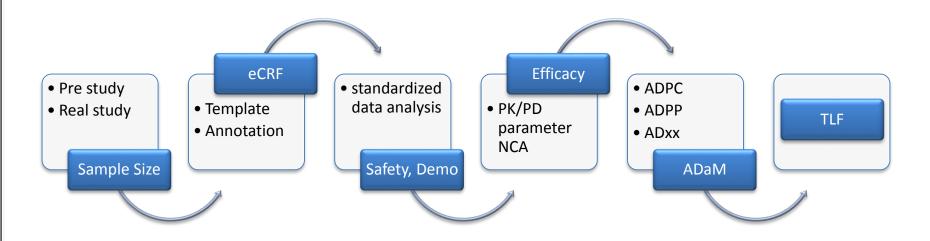



表2-11-FA 空腹试验各指标(C<sub>max</sub>、AUC<sub>0-t</sub>、AUC<sub>0-inf</sub>)T/R比值的90%置信区间结果(BES)

|                        | 几何     | 均值     |                     |              |                |        |
|------------------------|--------|--------|---------------------|--------------|----------------|--------|
| 参数(单位)                 | T      | R      | <br>点估计 (% <b>)</b> | 等效标准(%)      | 90% 置信区间(%)    | 把握度(%) |
| $C_{max}(ng/mL)$       | 37.75  | 39.15  | 96.42               | 80.00-125.00 | (91.85,101.21) | 100.00 |
| $AUC_{0-t}(h*ng/mL)$   | 268.33 | 270.76 | 99.10               | 80.00-125.00 | (95.25,103.11) | 100.00 |
| $AUC_{0-inf}(h*ng/mL)$ | 273.07 | 275.59 | 99.09               | 80.00-125.00 | (95.27,103.05) | 100.00 |

北京海金格医药科技股份有限公司

# http://besc.hjgmed.com





王登

统计学方法研究 海金格医药 生物统计与数据管理总监 🗸



袁加盟

海金格医药 生物统计与数据管理副总监 🗸



曲雪

统计学方法研究 海金格医药 高级生物统计师



王晓华

平台架构 信息技术工程师



统计编程实施



北京海金格医药科技股份有限公司