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ABSTRACT

Traditionally the process for programming ADaM datasets is cumbersome and relies heavily on manual
work. Per regulatory requirements clinical programing algorithms should be clearly defined in the analysis
specification documents in natural language(human-readable). Programmers spend most of the time
developing or updating SAS® code according to specification documents. By adopting Machine Learning
and leveraging the power of NLP we could analyze human-readable text from the specification
documents, train the machine to convert defined algorithms to metadata and map them to the core pieces
of SAS® code.

This paper is part 2 of Metadata-based Auto-Programming Process?, and it shares an approach to
automatically generate SAS® code to create ADaM datasets from source SDTM datasets via metadata
and NLP methodology.

The strategy would be to extract key information from defined algorithms written in human language and
existing code, populate metadata and then utilize the metadata to generate code.

INTRODUCTION

According to Gartner, “by 2020, natural-language generation and artificial intelligence will be a standard
feature of 90% of modern business intelligence platforms”3. Following the trend, adopting Machine
Learning and leveraging the power of NLP we can analyze human language, train the machine to convert
defined algorithms to metadata and map them to the core pieces of code (e.g., SAS® or R) to automate
the programing process.

We started an innovative project called Autocode in programming team. Autocode project’s main
objective is to automate generation of SAS® code for analysis datasets and analysis reports. The vision
is to apply new technology to analyze the data structure, digitize the specification document and SAS®
code and store them in the form of metadata into a database. Advantages of this model would be more
automation, standardization and re-usability study after study. This project is still in the prototype stage
and we will share our design, progress and experience in this paper.

FIRST MAIN TOPIC
METADATA DRIVEN APPROACH

With increased enforcement from regulatory agencies towards standardized data and the industry moving
towards standardizing analysis requirements, we look to achieve more automation by reusing standard
and previously used study algorithms stored in metadata to generate code for analysis.
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Figure 1. Metadata management

MODULES

Our model is comprised of three different modules to analyze data, SAS® code and document
specifications. We use SAS® to calculate the metadata summary for source data and output data. We are
using regular expressions and exploring the powerful parser generator ANTLR (Another Tool for
Language Recognition) to parse the SAS® code automatically and NLP methodology to analyze
specification documents to calculate document similarity and extract key pieces to find the algorithm
patterns.
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Figure 2. Modules to analyze data, SAS® code and specifications

The goal of the three modules is to extract key information from different sources for data analysis and
make them machine readable in structured data, from which we can generate SAS code for analysis.
Here are the 3 modules:

1. PDE (PowerDataExplorer)?: This module is used to generate metadata for SDTM & ADaM
datasets, including data elements, structure/hierarchy, relationship, changes/differences across
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Figure 3. PDE Module

2. PME (PowerMacroExplorer): This module is used to create a dataset which contains
program/macro dependency, macro parameters and macro calls in historical use cases by scanning
and parsing codes across multiple study folders
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Figure 4. PME Module

3. ADaM Planning Sheet analyzed by NLP: The Excel specification includes key information such as
SAS macro name (SASMCR) and text descriptions of the derivation algorithm (ORIGCOM)
necessary to guide programmer to create SAS code for the variable derivations. Generally,
ORIGCOM columns may be any combination of plain English text, a formula, pseudocode, etc. It
describes the source of the data or the derivation clearly and it serves as the submission-ready text
for the source/derivation/comments in define.xml. This paper focus on derivation and we will
introduce how to analyze the algorithm text in ORIGCOM using NLP to map it to macro metadata
and generate SAS code. At this stage we focus on the planning sheet, but a similar approach can be
applied to other document specifications like protocol and Statistical Analysis Plan (SAP).
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Figure 5. ADaM Planning Sheet example



Natural Language Processing (NLP)

Natural language processing (NLP) is a branch of artificial intelligence that helps computers understand,
interpret and manipulate human language. NLP draws from many disciplines, including computer science
and computational linguistics, in its pursuit to fill the gap between human communication and computer
understanding®. NLP is important because it helps analyze large volumes of textual data efficiently and
resolve ambiguity in language to structure a highly unstructured textual data source. Below is a simple
example of syntax analysis to discover structure of the algorithm text.

Dependency j Part of Speech
Assign to Y on last non-missing record within PARAMCD where ADT < = ARFSTDT
VERB ADP NOUN ADP ADJ ADJ NOUN  ADP NOUN ADV  NOUN PUNCT X  NOUN

source: https://cloud.google.com/natural-language

Figure 6. Syntax analysis from NLP

We have loaded 600,000+ records of variable derivation algorithms into our prototype Metadata
Repository (MDR) system collected from the planning sheets across 60+ compounds and 1000+ study
folders. Taking the variable ABLFL (Baseline Record Flag) derivation for example, there are 3000+
records of algorithms and 380 unique algorithm descriptions. After some pre-processing steps to
normalize (lemmatization and removing some stop words) the texts, we did basic syntax analysis to get
some idea of the key nouns, adjectives and their relationships in ABLFL derivation, like the words ‘first’,
‘last’, ‘closest’, ‘'multiple’, ‘average’ etc. that play important role to describe the algorithms to select the
right value from data.
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Figure 7. Syntax analysis for variable ABLFL derivation



There are two approaches developed to map the human-language defined algorithms to code. The unsupervised
approach is to calculate the document similarity of algorithm sentences to get the corresponding standard/historical
codes. The supervised approach is to split algorithm sentences to phrases and map phrases to code pieces in a
training database and then incorporate the RNN (Recurrent Neural Networks)*! model to learn the pattern and
generate more flexible code.

e Unsupervised approach: For new data analysis algorithms we search the database based on text similarity

score to get the most similar standard/historical algorithms and codes. We applied two approaches to calculate
the text similarity, Fuzzy string-matching algorithm based on edit distance, and Word Mover's Distance (WMD)
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algorithm based on semantic distance, and we also created the algorithm clusters from the similarity matrix.

1.

Fuzzy String Matching, also called Approximate String Matching, is the process of finding strings
that approximatively match a given pattern. The degree of closeness between two strings is
measured using Levenshtein Distance!?, also known as edit distance which basically is based on
counting the number of primitive operations (insertion, deletion, and substitution) necessary to
convert the string into an exact match. We use the fuzzywuzzy® package to do the calculation:

from fuzzywuzzy import fuzz

'Y* if index(ATRTRF, 'BEFORE/DURING') or ASTDT=AP@1SDT"
"if index(atrtrf, "BEFORE/DURING') or astdt =ap®lsdt then ablfl="Y""

textA
textB

fuzz.ratio(textA.upper(),textB.upper())/100
.82

Figure 8. Text similarity score using fuzzywuzzy

Word Mover's Distance (WMD) algorithm is a method that allows us to assess the "distance"
between two documents in a meaningful way, even when they have no words in common, via
vector embeddings of words. Word embeddings (word vectors) are numeric representations of
words, usually generated via dimensionality reduction on a word cooccurrence matrix for a large
corpus. These vectors are used to calculate semantic similarity between words and documents:
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Figure 9. WMD algorithm via word embedding

We use the library textacy’ which is built on top of spaCy® package to compute the word mover's
distance and get the text similarity score



import textacy.similarity
import spacy
nlp = spacy.load( 'en_vectors_web _lg")

textA
textB

"Defined as Closest Non-Missing Value prior to the first treatment date"
"Defined as nearest non-Missing value before the first dosing date™

textacy.similarity.word_movers(nlp(textA), nlp(textB), metric=u'cosine’)

0.8109184230589997

Figure 10. Text semantic similarity score using WMD

We loaded pre-trained ‘en_vectors_web_1g’® model which provides 300-dimensional vectors for
over 1 million terms of English, and we can also create our own word embeddings to cover more
domain specific vocabularies in our industry if we have more training data.

For a group of algorithms, we calculate similarity score for each pair of algorithm texts and
generate the similarity matrix, based on which we are able to find the most similar pairs (or top 3
most similar ones), also hierarchical clustering dendrogram plots are created to show algorithm
clusters.

© : ABLFL set to "Y" on last record within each PARAMCD where ADT <= DS.DSSTDTC where DS.DSDECOD='RANDOMIZED'.

1 : Baseline is defined as Closest Non-Missing value on or prior to the date of first study agent administration (including ti

me if available).

2 : Baseline measurement is defined as the closest non-missing measurement taken on or prior to the date of first study agent
administration (including time if available). If the first study treatment date is missing, the corresponding visit date should

be used.

3 : Flag the record derived as the average of AVAL for the screening and baseline recor _
baseline record. Added records are identified by DTYPE=Baseline.
4 : Set to Y on last non-missing record within PARAMCD where ADT <= ARFSTDT. -
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6 : The average of the [thre o 1000000 0489793 0472665 0496263 I 0579195 0572269 0536683 0491077
gged with ABLFL = 'Y'. 1 0489793 1000000 0830546 0611701 0521401 0632433 0632893 0586422 0737165
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9 0484180 0720911 0701358 0618789 0550547 0680406 0659032 0601753 0859198 °

10 0470768 0740544 0801246 0645277 0465441 0647403 0650800 0645384 0672573 o

9: ABLFL set to "Y" on last record within each PARAMCD where ADT <= DS.DSSTDTC where DS.DSDECOD='RANDOMIZED".
===> 4: Set to Y on last non-missing record within PARAMCD where ADT <= ARFSTDT.

Figure 11. Text similarity matrix

We have noticed that the algorithm descriptions in new studies are becoming more and more
standardized than that in the legacy studies, as shown below, which lays great foundation to
more automation over time.
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Figure 12. Comparison between new study and legacy study

Supervised approach: Small pieces of algorithms are much easier to be matched and reused than
long sentences and we can map the algorithm to code based on pieces. The NLP software NLTK®
and spaCy are used to split the algorithm documentation to meaningful pieces, and the powerful
parser generator ANTLR is used to parse the SAS® code (both macro calls and data steps), and then
the language pieces and code pieces would be mapped and combined to build the training database
prepared for the RNN (Recurrent Neural Networks) deep learning model, based on which machine
can learn the algorithm pattern and so map the new algorithm to code automatically and more
flexibly. Below are the 5 steps and steps 3-5 are in a proof of concept stage.

1. Split algorithm texts into pieces using NLP tools (NLTK and spaCy) with manually reviews:

nwun

# Extract Keywords using noun chunks grammar = [F

text = str(Origcom) NP:

doc = nlp(text) J

:Eiw2;i2k=iﬁoggz?;éan chunks: {(.*)+} # Chunk everything

keywords[chuni.lemma_] += 1 }((<NP|WDT|NP$|HRB‘IN>)+){ # Chink sequence

keywords.most_common (50) o

[(*the average', 3), #WDT wh-determiner which

E.'.ngige:c? Sfteéi 3 #WP wh-pronoun who, what

E:ﬂ'le gaseline' . 3), #WPS possessive wh-pronoun whose

(-{h; d;;e-, 2, #WRB wh-abverb where, when

E;;;Zt 5‘2:‘)"13’ agent administration®, 2).  #N (Prepositions and Subordinating conjunctions)

('the screening', 2), e e

( the close non - miss value', 2), Set to Y on last non-missing record within PARANCD where ADT <= ARFSTOT.
ast record’, s ' Vo oo o [ !

(*each paramcd’, 1), =) ['set toy', 'last non-missing record’, 'paramcd’, 'adt < = arfstdt .']

(‘where adt < = ds.dsstdtc’, 1),

Display 1. Split texts into pieces with NLTK and spaCy

2. Parse codes using ANTLR and extract key parameters:



proc sort data=_adabilflbl;
by usubjid paramcd prev adt adtm;
run;

data _outdsn (drop=prev);
set _adabilflbl;
by usubjid paramcd prev adt adtm;
if last.prev and prev=1 then ablfl="Y";
run;

file
globalStatement 5 globalStatement4 <EOF>
pri:n: datasts]
procSort data datasetlistOutpt | dataStepStatementList2 ifStmt2 run ;

proc sort pr\)cs-:lni)pbanml /Kmmmm /s—t\ % then W :
pm«:SoTOpu-mi by usubjid paramed prev adt W dataseﬂl.;sunpm /N w;s*m and W b = expres|snon4

procSonQptionData _outdsn (  datasetOptionList ) dataslv:nnput by usubjid paramcd prev adt adtm ; last prev  prev = expressiond fteral 1

data = datasetinput datastOption2  dataset lterat2  stringliteratd
dataset dop = prev _adabifibl numbertiteral ' Y
_adabifbl 1

Display 2. Code parsing with ANTLR

3. Map algorithm text pieces to macro name and parameters in the training data

AssigntoYon non-missing record within PARAMCD where ADT <= ARFSTDT.

%AsSsign(indsn=x value="Y" ,by=PARAMCD ,select=/25t non-missing ,subset=%str(.<ADT<=ARFSTDT) )

Display 3. Map into the macro name and parameters in the training data
4. Train an RNN model
many to many

Display 4. Training of RNN model

5. Complex algorithm decomposed into pattern algorithms



y cASSlgﬂ(indsmxxx,value: Y ,by:P/‘:\RAMCD ,select= non-missing ;subset=2%5tr{.<ADT<=ARFSTDT )

HSUBSET( )
%SUBSET(not missing(AVAL))
%SORTBY(PARAMCD ADT)
%SUBSET( PARAMCD)
%ASSIGN(ABLFL="Y")

Level 3 Level 2 Level 1 Level O

combine first/last/closest/highest %adagegr
merge/join ||lowestvorst %adanlO1fl
min/mav/average/total | | %adaoccf|
formula calculation %adarfstdt
non-missing/censored %adatpt
external mapping file %adavisfl

DataProc Pattern ADMacName  productionCode
fa %adablfl

Sort sbselwhere e ADXX.sas 3
SRR equal to source value %adadurn

DTC to datetime %adady
S;l;n'\ll'nary ISSiZ::d %adaecqnam O 2
a ew Seq/ce egroup“ralegol}‘
split IF-THEN/ELSE logic :agae?t

relative day, before/after| AApHE C

transpose

| %adavisit

-~ %adbdsavisit
%adblvars
%adbmi
%adbsa
%adchg
%adclear
%adcmcgnam
%adcmdt
%adcmfupfl
Y%adcmontrtfl
%adcmprefl

0/ Addnncen

Son
Crand =

Display 5. Decompose complex algorithm into pattern algorithm

For the deep learning model, we need to prepare large amount of training data (language pieces with
corresponding code pieces). This is challenging because we need high-quality data, and this involves lots
of texts and codes preprocessing and manual review, compared to the unsupervised learning process.

CONCLUSION

We have designed and explored Metadata-based Auto-Programming Process with NLP to convert three
different parts (data, SAS® code and document specifications) into machine readable metadata and
connect them to try to achieve as much automation as possible in code generation for data analysis.
From our experience, the analysis standard, high quality training data and technology are key factors for
the success. Technological progress follows a pattern of exponential growth and there will be more and
more powerful Machine Learning and NLP technology available to our daily work over time, so the top
priority for us is to focus on the business side and collect ‘big’ standardized data, or Machine Learning
cannot help as “garbage in, garbage out”.

The benefits of Metadata-based Auto-Programming Process are:
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* Top-Down Standard end-to-end metadata management and project management

* Metadata-driven SAS code generation to reduce manual work and potential human error which
inevitably leads to wasted time in both coding and debugging

* Significant reduction in time to submission and increase in consistency and quality
* Accumulate and maintain internal knowledge in database and system

* Leave programmers more time for more complex tasks, in depth disease area understanding, more
time for broadening skillsets

O é AL,
Exploration / Map / Auto-Navigation

Open-Code / Standard/ Auto-Code
Experience / Documentation/ System automation

In a fast-changing world, technology is changing how we live. Like Auto-Navigation brings convenience in
our daily life, compared to the map and compass age. Humans needs keep-up with the fast pace
technology advancement.

We are only just scratching the surface when it comes to the uses of Al and Machine Learning in the
Pharmaceutical industry. However, even at this early stage, the technologies are proving to be
tremendously promising when it comes to giving new mechanistic insights to disease and thereby helping
to identify promising targets.

The technology will also help in terms of the industry’s selection of patients for clinical trials and enable
companies to identify any issues with compounds much earlier when it comes to efficacy and safety. So,
the industry has much to gain by adopting Al and Machine Learning approaches. It can be used to good
effect to build a strong, sustainable pipeline of new medicines®.
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