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Abstract 

Cox proportional hazard model is one of the most used statistical methods in survival 

analysis, and is highly relied on the proportional hazards (PH) assumption - the 

hazard ratios should be constant. However, the proportional-hazards assumption of 

constant hazard ratios is frequently violated in the data of clinical trials. An extension 

to the Cox PH model with time-varying covariates was adopted when proportionality 

assumption are violated. After checking the assumption violation to Cox PH model, 

our practice here is to offer estimation to time-varying coefficient Cox PH model and 

have them implemented in SAS.  
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1. Introduction 

Survival analysis, or time-to-event analysis, can be conducted to explore the 

occurrence of events to be interested, such as death, or progression of disease, etc, 

since the intervention to population of subjects. Survival analysis considers not only 

about events but also time that events happen. Especially in tumor analysis, if the 

observation time is long enough, all patients will tend to have the same 

event—death. Only by considering both events and time can reveal the truth. 

Survival analysis includes the description of the survival progress, the comparison of 

survival progress and analysis of the survival time influencing factors. 

 

Cox proportional hazard model (Cox, 1972) is one of the most widely applied 

statistical analysis methods to explore the relationship between survival explanatory 

variables and outcomes. The assumption to Cox PH model is the hazard ration of a 

group to a baseline group is assumed constant through the time. The assumption 

may be violated and will get misleading effect estimates and even wrong conclusion 

if time-varying covariates are included into the model without appropriate modeling.  

Furthermore, the hazard of the event from any group is a constant multiple of the 

hazard in any other. The hazards for groups should be proportional and cannot cross 

or diverge. Strong violations of the proportional hazards assumption can have 

detrimental effects on the validity and efficiency of the partial likelihood inference. 

Therefore, checking to the proportionality of the hazard should be conducted prior 

to the survival analysis by a Cox PH model. 

 

The paper is organized as below. In the section 2 will introduce the Cox PH model 

with time-varying covariates. Section 3 will present the methods in SAS used to 

validate the assumptions to Cox PH model. In the last section, based on the example 

data Stanford heart transplant program (Crowley, J. and Hu, M., 1977), the survival 

estimation to Cox PH model will be described. 



2. Cox PH model with time varying coefficients 

In Cox PH model  

h1(t) = h0(t)𝑒𝛽𝑍                        (2.1) 

the hazard function ℎ(𝑡) is dependent on these p covariates x1, x2, … , xp. And the 

interpretation of β can be explained by the log hazard ratio, which means the hazard 

ratio for two treatment group of the variable 𝑍 from studies is  

𝐻𝑅1 =  
h0(t)e𝛽𝑍1

h0(t)e𝛽𝑍2
= 𝑒𝛽(𝑍1−𝑍2)                   (2.2) 

Since survival data occur over time, some important covariates considered in the 

model may also change over time. And this will violate the assumptions of that the 

hazards for groups should be proportional and cannot cross or diverge (Allison, 

2010) .  

 

To address such issue, time dependent covariates are introduced into the model, 

which is  

h2(t) = h0(t)𝑒𝛽1 𝑍1+𝛽2 𝑋1(𝑡)                   (2.1’) 

 

and the corresponding hazard ration is updated as below 

𝐻𝑅2 =  
h0(t)𝑒𝛽1 𝑍1+𝛽2 𝑋1(𝑡)

h0(t)𝑒𝛽1 𝑍1+𝛽2 𝑋2(𝑡)
= 𝑒𝛽1(𝑍1−𝑍2)+𝛽2(𝑋1(𝑡)−𝑋2(𝑡))        (2.2) 

3. Assessment of proportionality assumptions 

Some methods (Xue X.N., Xie, X.H., et al, 2013) (Xue Y, , Schifano ED., 2017) have 

been proposed to assess the violation to the assumption of Cox PH model, such as 

graphical methods: Log Cumulative Hazard plot, Schoenfeld Partial Residuals plot, 

cumulative martingale residual plot and Standardized Sco-re Process plot, and some 

other statistical testing methods as below.  

3.1 Likelihood ratio test 

Cox has proposed to have time-dependent covariates included into the Cox PH model 

(Cox, 1972), and likelihood ratio test is used to test if the time-dependent covariates 

will contribute to the model. The corresponding test statistics are: 

𝐿𝑅 =  −2 log(ℎ1(𝑡)) − (−2 log(ℎ2(𝑡))) 

which is follow a chi-square distribution with freedom of 𝑝 = 𝑑𝑓ℎ1(𝑡) − 𝑑𝑓ℎ2(𝑡). And 

the method can be implemented with procedure of PHREG to fit the null and 

alternative models.   

3.2 Schoenfeld residuals test and plot 

Schoenfeld residual (Grambsch, P. M. , Therneau, T.M., 1994) to test time-dependent 

variables was introduced to test the time-dependent covariates. This method can be 

implemented with code as below.  



proc phreg data = stan; 

   class treatment strata_factors subseq_att;  

   **** covariate to sub sequent therapies is to test for time dependent; 

   model overall_survival*cnsr(1) = treatment strata_factors subseq_att;  

   output out = resid ressch = sch_subseq_att; 

run; 

 

proc rank data = resid out = resrank ties = mean; 

     var overall_survival; 

  ranks overall_survival_rank; 

run; 

 

proc reg data = resrank ; 

     model overall_survival_rank = sch_subseq_att; 

run; 

 

With information from Output window below, the PH assumption is violated at the 

significant level of𝑝 = 0.01. 

 

There is another method with scaled Schoenfeld residual (Lin DY, Wei LJ, and Ying Z, 

1993)to test PH assumption, which can be implemented with SAS program below.  

 

proc phreg data = stan; 

   class treatment strata_factors subseq_att;  

   **** covariate to sub sequent therapies is to test for time dependent; 

   model overall_survival*cnsr(1) = treatment strata_factors subseq_att;  

   assess ph/resample; 

run; 

 

4. Estimation to time-varying Cox PH model 

Time-dependent variables can be used to model the effects of subjects transferring 

from one treatment group to another. Example data for analysis is the Stanford heart 

transplant program (Crowley, J. and Hu, M., 1977). In the data, 103 patients are 

accepted if physicians judge them suitable for heart transplant, and 89 patients have 

received transplant. In the study, when a donor becomes available, physicians choose 

transplant recipients according to various medical criteria. A patient’s status can be 

changed during the study from waiting for a transplant to being a transplant 

recipient. Transplant status can be defined by the time-dependent covariate 

function 𝑧 = 𝑧(𝑡) as 

𝑧(𝑡) = {
0, 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 ℎ𝑎𝑠 𝑛𝑜𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑡𝑟𝑎𝑠𝑝𝑙𝑎𝑛𝑡 𝑎𝑡 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑡  

1 , 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 ℎ𝑎𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑡𝑟𝑎𝑠𝑝𝑙𝑎𝑛𝑡 𝑎𝑡 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑡           
 



In the data, time-dependent variable transplant status takes value 1 or 0 at 

time  (measured from the date of acceptance), depending on whether or not the 

patient has received a transplant at that time.  

The following statements fit this model: 

 
proc phreg data= Heart; 

   model Days*Status(0)= XStatus Acc_Age / ties = EFRON; 

   if (WaitDays = . or Days < WaitDays) then XStatus=0; 

   else  XStatus= 1; 

run; 

 

With analysis output to this model, transplantation, which is assumed to be 

associated to the decrease of risk, is not significant (p = .9893), and the age to accept 

transplant is significant in the model (p=.0339). 

 

If we have the time dependent variable LOG(Age accept transplant + survival time) 

included into the model, the corresponding program is as below. 

 
proc phreg data= Heart; 

   model Days*Status(0)= XStatus Acc_Age LogAge / ties = EFRON; 

   if (WaitDays = . or Days < WaitDays) then XStatus=0; 

   else  XStatus= 1; 

   LogAge = LOG(Acc_Age + Days); 

run;  

 

And the output is as below. 

 

In the example data, there are some other time-dependent covariates - waiting time 

until transplant, three measures of tissue matching and days since transplant, which 

is changed at unpredictable times. We will consider the case of that the 

time-dependent covariates change in time intervals.  

 
proc phreg data= Heart; 

    model Days * Status(0) = Surg Acc_Age XStatus  

                                  mltd m2td m3td waittd dottd /  



                                  ties = EFRON; 

if wait > Days OR wait =. then XStatus=0;  

else XStatus = 1; 

 if XStatus = 1 then do; 

    mltd = m1; 

    m2td = m2; 

    m3td = m3; 

    waittd = wait; 

    dottd = dot; 

 end; 

 else do; 

    mltd = 0; 

    m2td = 0; 

    m3td = 0; 

    waittd = 0; 

    dottd = 0; 

 end; 

run; 

 

the corresponding result for each period is as below.  

 

5. Conclusion 

 

In the paper, we have introduced the Cox PH model with time-dependent covariates. 

For the Cox PH model, the PH assumption is the basis for the conducting of such 

model. But in some case, the covariates may be time-dependent. The methods to 

testing the assumption to Cox PH model is introduced, and the corresponding SAS 

programs are also exhibited for some example. In the model, methods to estimate 

the model for the case of that the covariates are time-dependent.   
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