No News Is Good News:
A Macro to Reveal the Untold Normal Lab Results
Ming Yan, Eli Lilly and Company, Indianapolis, IN

ABSTRACT
In clinical trials, specific lab microscopic UA, RBC morphology, and special WBC subordinate tests are reported to sponsors by laboratory ONLY if an abnormality is observed. The normal results which are not explicitly reported, however, need to be in place in order to compute a percentage of abnormalities for each lab test in the subject population. This macro starts from SDTM LB domain that only stores observed abnormal lab tests, distinguishes the unreported normal test results from tests that are not performed, and creates ADaM dataset with all the normal results filled in for all patients at all time-point that the lab tests were performed. By doing the imputation at ADaM level, this macro avoids repetitive data processing in table programming and makes table generation simpler and faster.

INTRODUCTION
Morphology DATA is widely collected in Oncology clinical trials and urine microscopic example is commonly collected for compounds where there are kidney function/inflammation concerns. Cell morphology, for example, is a collection of subtype tests on coloring, cell size, cell shape, etc., for RBC, WBC test, and platelet. The laboratories may report to sponsors only the subtypes with an abnormality observed. A common practice at the laboratory is that technicians look at blood sample under microscope and count the subtype that can be seen. What is seen is reported and what is not seen is not reported to the sponsor. Since all the subtypes that are seen and reported are abnormal, the subtype analytes in the GLS (Generic Lab System) data are always abnormal (“Bad news”). What is absent in the GLS data set (“No news”) is considered normal (“Good news”). If there is no abnormal finding at all for a patient, an over-arching lab test code is used to indicate all the sub-ordinary tests are normal for that patient.

When percentage of abnormal cell morphology and urine microscopic exams result are analyzed, the absent subtype tests must be in place as “NORMAL” in order to get correct denominator. For example,

% of patients with abnormal finding of “HYPOCHROMIA” @ Visit 5
= (# of patients with “HYPOCHROMIA” reported explicitly as present @ Visit 5 in GLS DATA set) / ((# of patients with “HYPOCHROMIA” reported explicitly as present @ Visit 5 in GLS data set) + (# of patients with Hematology Cell Morphology test performed @ Visit 5 but “HYPOCHROMIA” not reported explicitly as present)).

This paper introduces a program to solve the problem at ADaM level. It distinguishes the unreported normal result from skipped visits, and prepares ADaM dataset with all the normal subtype value filled in.

EXAMPLE
The program reads in SDTM DATA sets in following structure. All the subtype tests share the same LBTESTCD and LBTEST value as the over-arching test. LBSTRESC stores the name of the abnormal subtype tests (Visit 6). When all subtypes are normal, LBSTRESC=’NORMAL’ (Visit 1, 2, 5).
No News Is Good News: A Macro to Reveal the Untold Normal Lab Results, continued

Figure 1. Input SDTM Data is a sample figure.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Visit</th>
<th>Date</th>
<th>Lab Test</th>
<th>Parameter</th>
<th>Code</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>10322</td>
<td>1</td>
<td>11 Aug 2016</td>
<td>V1 Screening</td>
<td>RBC Morphology</td>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td>10322</td>
<td>2</td>
<td>08 Oct 2016</td>
<td>V2 Baseline</td>
<td>RBC Morphology</td>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td>10322</td>
<td>5</td>
<td>29 Sep 2016</td>
<td>V5</td>
<td>RBC Morphology</td>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td>10322</td>
<td>6</td>
<td>05 Dec 2016</td>
<td>V6</td>
<td>RBC Morphology</td>
<td></td>
<td>Normal</td>
</tr>
</tbody>
</table>

Figure 1. Input SDTM Data

Two analyses need to be performed starting from the DATA above. One is to count percentage of patients with abnormal over-arching lab, the other is to count percentage of patients with abnormal subtype.

METHODOLOGY

The program below is used to detect any abnormal subtype, and fill up all absence with “Normal” for all patients. The only exception is, if a patient didn’t conduct any lab draw at a certain visit, that visit is not filled. In the example above, the patient didn’t conduct visit 3 or 4.

Code to pre-process data:

```sas
proc sort data=lb out=abnormal nodupkey;
  where LBSTRESC ^= 'NORMAL';
  by siteid subjid VISITNUM VISIT LBDTM LBREFID;
run;

data abnormal;
  set abnormal;
  lbstresc='ABNORMAL';
  param = lbtest;
  paramcd = lbtestcd;
run;
data lb1; set lb abnormal; run;
data LB2;
  set LB1;
  PARCAT3=LBTEST;
  *** Subtype ***;
  if LBSTRESC not in ('ABNORMAL','NORMAL') then do;
    AVALC='ABNORMAL';
    PARAM = LBSTRESC;
    if SCAN(PARAM,3,'>')='' and SUBSTR(SCAN(PARAM,3,''),1,1)='(' then
      PARAMCD=SUBSTR(SCAN(PARAM,3,''),1,3);
    else if SCAN(PARAM,2,'>')='' and SUBSTR(SCAN(PARAM,2,''),1,1)='(' then
      PARAMCD=SUBSTR(SCAN(PARAM,2,''),1,4);
    else PARAMCD=SUBSTR(PARAM,1,8);
  End;
  *** Over-arching ***;
  else if LBSTRESC in ('ABNORMAL','NORMAL') then do;
    AVALC=LBSTRESC;
    PARAMCD=LBTESTCD; PARAM=LBTEST;
  End;
run;
```
1. As long as any abnormal subtype is reported, create an over-arching record with AVALC='ABNORMAL'. This is for the purpose of over-arching result analysis.

2. Store over-arching test name in PARCAT3 to group all subtype tests.

3. All subtype test that is reported is abnormal. The subtype name is stored in LBSTRESC in SDTM. For these records, set AVALC to ‘ABNORMAL’ and copy test name from LBSTRESC to PARAM.

4. Construct unique PARAMCD by concatenating the first few letters from every word in PARAM.

5. All over-arching test’s value is either ‘NORMAL’ or ‘ABNORMAL’. For these records, copy result from LBSTRESC to AVALC and copy test name/code from LBTEST/LBTESTCD to PARAM/PARAMCD respectively. Figure 2 demonstrates the records after step 1-5.

![Figure 2. Data structure after standardizing parameter and value](image)

Fill in records for normal subtype:

```plaintext
PROC SORT DATA=LB2 OUT=ABN(keep=PARAMCD PARAMCD2 PARAM) NODUPKEY;  6
   WHERE AVALC NOT IN ('NORMAL','') and PARAM NOT IN ('RBC Morphology','WBC Morphology','Microscopic (urine sediment)','');
   by PARAM;
RUN;
PROC SORT DATA=LB2 OUT=FRAME0 NODUPKEY;
   by SITEID subjid VISITNUM VISIT LBDTM LBREFID PARCAT3;
RUN;
PROC SQL;
CREATE TABLE FRAME AS
   SELECT l.*, r.PARAMCD, r.PARAM
   FROM FRAME0(KEEP=SITEID SUBJID VISITNUM VISIT LBDTM LBREFID PARCAT3) AS L, ABN AS R
   ORDER BY SITEID, SUBJID, VISITNUM, VISIT, LBDTM, LBREFID, PARAMCD;
quit;
PROC SORT DATA=LB2;
   by SITEID subjid VISITNUM VISIT LBDTM LBREFID PARAMCD;
RUN;
PROC SORT DATA=LB2 OUT=ABN2;
   by SITEID subjid VISITNUM VISIT LBDTM LBREFID PARAMCD;
   where AVALC not in ('NORMAL','');
RUN;
DATA NORMS;
   MERGE FRAME(in=a) ABN2 (in=b);
   by SITEID subjid VISITNUM VISIT LBDTM LBREFID PARAMCD;
   if a and not b;
   AVALC='NORMAL';
RUN;
```
6. Identify all abnormal subtypes.

![Parameter table]

Figure 3. Lab tests ever reported as abnormal by any patient at any visit in a clinical study

7. FRAME0 contains one record for each patient each visit. For any patient missing a visit, lab tests were not done and that visit will not exist in FRAME0. To identify visits with morphology labs performed, we select patient and visits with PARAMCD in ('RBC Morphology','WBC Morphology','Microscopic (urine sediment)') or any of their subtypes.

8. Set up a shell, so that if any patient ever has any abnormal sub-type, that sub-type is filled for all patients at all lab draws. If any patient skipped a visit, the skipped visit is not in this shell. For the purpose of brevity, only Visit 5 and 6 records are illustrated below.

![Shell table]

Figure 4. A shell with one record per patient per visit per sub-type

9. For any sub-type test that is not reported as abnormal, fill up AVALC with ‘NORMAL’.

```R
DATA LB3;
  SET LB2 (in=a) NORMS (in=b);
  by SITEID subjid VISITNUM VISIT LBDTM LBREFID;
RUN;
```
10. Pool over-arching test (LB2), abnormal sub-type (LB2), and normal sub-type labs (NORMS) together.

<table>
<thead>
<tr>
<th>SUBJ</th>
<th>VISITNUM</th>
<th>VISIT</th>
<th>LBDTM</th>
<th>LBREFID</th>
<th>param</th>
<th>paramd</th>
<th>PARCAT3</th>
<th>AVALC</th>
</tr>
</thead>
<tbody>
<tr>
<td>10322</td>
<td>5</td>
<td>V5</td>
<td>29SEP16:13.37.35</td>
<td>50000001184</td>
<td>RBC Morphology</td>
<td>HMT71</td>
<td>RBC Morphology</td>
<td>NORMAL</td>
</tr>
<tr>
<td>10322</td>
<td>5</td>
<td>V5</td>
<td>29SEP16:13.37.35</td>
<td>50000001184</td>
<td>Anisocytosis</td>
<td>Anisocytosis</td>
<td>RBC Morphology</td>
<td>NORMAL</td>
</tr>
<tr>
<td>10322</td>
<td>5</td>
<td>V5</td>
<td>29SEP16:13.37.35</td>
<td>50000001184</td>
<td>Elliptocytosis</td>
<td>Elliptocytosis</td>
<td>RBC Morphology</td>
<td>NORMAL</td>
</tr>
<tr>
<td>10322</td>
<td>5</td>
<td>V5</td>
<td>29SEP16:13.37.35</td>
<td>50000001184</td>
<td>Hypochromia</td>
<td>Hypochromia</td>
<td>RBC Morphology</td>
<td>NORMAL</td>
</tr>
<tr>
<td>10322</td>
<td>5</td>
<td>V5</td>
<td>29SEP16:13.37.35</td>
<td>50000001184</td>
<td>Macrocytosis</td>
<td>Macrocytosis</td>
<td>RBC Morphology</td>
<td>NORMAL</td>
</tr>
<tr>
<td>10322</td>
<td>5</td>
<td>V5</td>
<td>29SEP16:13.37.35</td>
<td>50000001184</td>
<td>Microcytosis</td>
<td>Microcytosis</td>
<td>RBC Morphology</td>
<td>NORMAL</td>
</tr>
<tr>
<td>10322</td>
<td>5</td>
<td>V5</td>
<td>29SEP16:13.37.35</td>
<td>50000001184</td>
<td>Polychromia</td>
<td>Polychromia</td>
<td>RBC Morphology</td>
<td>NORMAL</td>
</tr>
<tr>
<td>10322</td>
<td>5</td>
<td>V5</td>
<td>29SEP16:13.37.35</td>
<td>50000001184</td>
<td>Schistocytosis</td>
<td>Schistocytosis</td>
<td>RBC Morphology</td>
<td>NORMAL</td>
</tr>
<tr>
<td>10322</td>
<td>5</td>
<td>V5</td>
<td>29SEP16:13.37.35</td>
<td>50000001184</td>
<td>Target cells</td>
<td>Target cells</td>
<td>RBC Morphology</td>
<td>NORMAL</td>
</tr>
<tr>
<td>10322</td>
<td>6</td>
<td>V6</td>
<td>05DEC15:09.44.14</td>
<td>50000001185</td>
<td>RBC Morphology</td>
<td>HMT71</td>
<td>RBC Morphology</td>
<td>ABNORMAL</td>
</tr>
<tr>
<td>10322</td>
<td>6</td>
<td>V6</td>
<td>05DEC15:09.44.14</td>
<td>50000001185</td>
<td>Anisocytosis</td>
<td>Anisocytosis</td>
<td>RBC Morphology</td>
<td>ABNORMAL</td>
</tr>
<tr>
<td>10322</td>
<td>6</td>
<td>V6</td>
<td>05DEC15:09.44.14</td>
<td>50000001185</td>
<td>Elliptocytosis</td>
<td>Elliptocytosis</td>
<td>RBC Morphology</td>
<td>ABNORMAL</td>
</tr>
<tr>
<td>10322</td>
<td>6</td>
<td>V6</td>
<td>05DEC15:09.44.14</td>
<td>50000001185</td>
<td>Polychromia</td>
<td>Polychromia</td>
<td>RBC Morphology</td>
<td>ABNORMAL</td>
</tr>
<tr>
<td>10322</td>
<td>6</td>
<td>V6</td>
<td>05DEC15:09.44.14</td>
<td>50000001185</td>
<td>Schistocytosis</td>
<td>Schistocytosis</td>
<td>RBC Morphology</td>
<td>ABNORMAL</td>
</tr>
<tr>
<td>10322</td>
<td>6</td>
<td>V6</td>
<td>05DEC15:09.44.14</td>
<td>50000001185</td>
<td>Target cells</td>
<td>Target cells</td>
<td>RBC Morphology</td>
<td>ABNORMAL</td>
</tr>
<tr>
<td>10322</td>
<td>6</td>
<td>V6</td>
<td>05DEC15:09.44.14</td>
<td>50000001185</td>
<td>Polychromia</td>
<td>Polychromia</td>
<td>RBC Morphology</td>
<td>ABNORMAL</td>
</tr>
<tr>
<td>10322</td>
<td>6</td>
<td>V6</td>
<td>05DEC15:09.44.14</td>
<td>50000001185</td>
<td>Schistocytosis</td>
<td>Schistocytosis</td>
<td>RBC Morphology</td>
<td>ABNORMAL</td>
</tr>
<tr>
<td>10322</td>
<td>6</td>
<td>V6</td>
<td>05DEC15:09.44.14</td>
<td>50000001185</td>
<td>Target cells</td>
<td>Target cells</td>
<td>RBC Morphology</td>
<td>ABNORMAL</td>
</tr>
</tbody>
</table>

Figure 5. Dataset containing both over-arching test and subtype, with ‘NORMAL’ subtype filled in.

Output final DATA sets:

```
DATA OVERARCH SUBTYPE;
   SET lb3;
   if PARAM=PARCAT3 then output OVERARCH;
   else output SUBTYPE;
RUN;
```

11. Store over-arching lab and sub-type lab in different DATA set for analysis.

FINAL OUTPUTS

The program creates below output DATA sets.

1. DATA set OVERARCH contains over-arching tests only, which only reports overall “Normal” or “Abnormal” without low-level information.

<table>
<thead>
<tr>
<th>SUBJ</th>
<th>VISITNUM</th>
<th>VISIT</th>
<th>LBDTM</th>
<th>LBREFID</th>
<th>param</th>
<th>paramd</th>
<th>AVALC</th>
</tr>
</thead>
<tbody>
<tr>
<td>10322</td>
<td>1</td>
<td>V1 Screening</td>
<td>11AUG16:21:5.</td>
<td>50000001182</td>
<td>RBC Morphology</td>
<td>HMT71</td>
<td>NORMAL</td>
</tr>
<tr>
<td>10322</td>
<td>2</td>
<td>V2 Baseline</td>
<td>08OCT16:12:4.</td>
<td>50000001183</td>
<td>RBC Morphology</td>
<td>HMT71</td>
<td>NORMAL</td>
</tr>
<tr>
<td>10322</td>
<td>5</td>
<td>V5</td>
<td>29SEP16:13.37.35</td>
<td>50000001184</td>
<td>RBC Morphology</td>
<td>HMT71</td>
<td>NORMAL</td>
</tr>
<tr>
<td>10322</td>
<td>6</td>
<td>V6</td>
<td>05DEC15:09.44.14</td>
<td>50000001185</td>
<td>RBC Morphology</td>
<td>HMT71</td>
<td>ABNORMAL</td>
</tr>
</tbody>
</table>

Figure 6. Dataset for Overarch result analysis

2. DATA set SUBTYPE contains all subtype tests. Only visit 2 through 6 are displayed below for brevity. The patient doesn't have visit 3 or 4 in SDTM DATA, hence visit 3 and 4 records are not created in SUBTYPE.
 This patient has only 5 abnormal subtype tests but 10 tests are inserted as “Normal” for visit 5. This is because in addition to what we see in the example, some other patients have 5 other
abnormal subtype tests. Percentage of abnormality needs to be calculated for any abnormal subtype, so as long as any patient reports any abnormal subtype, we fill in that subtype for the entire population.

Figure 7. Output dataset for subtype result analysis.

CONCLUSION
Since labs only report abnormal subtype tests for microscopic UA, RBC morphology, and special WBC, all the non-reported subtypes are assumed to be "Normal". This paper presents a program to distinguish the non-reported normal subtypes from the skipped visits and fill in the non-reported normal value at ADaM level to expedite the TFL creation.

ACKNOWLEDGMENTS
Thanks to my mentor Cindy Lee, my supervisor Hangtao Xu, and other colleagues at Eli Lilly and Company, who reviewed this paper and provided helpful suggestions.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Ming (Janice) Yan
Eli Lilly and Company
317-433-3783
yan_ming_x1@lilly.com
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.