
1 

PharmaSUG 2013 - Paper BB05 

OpenCDISC: Beyond Point and Click 
Frank DiIorio, CodeCrafters, Inc., Philadelphia PA 

ABSTRACT 
The OpenCDISC validation framework has rapidly gained popularity with programmers and statisticians who have to 
validate data compliance with ADaM, SDTM and other CDISC standards.  The most common way to use the software 
is via the user interface.  Its clean design and simplicity make it an appealing tool.  Given that the software is open 
source, however, it makes sense to go "under the hood" and explore some of its other capabilities.  This presentation 
discusses some ways Rho, Inc. has ventured beyond the user interface and has effectively utilized OpenCDISC.  
Some of the topics require a rudimentary knowledge of XML. Accordingly, we will briefly discuss the structure of the 
standards' configuration files and some tools that work well with these XML files. 

INTRODUCTION 
The migration from paper-based to electronic submissions to the FDA revolutionized the review process.  The 
anticipated improvements in data quality and review time were affected, however, by a lack of data standardizatio.  A 
new study meant a reviewer had to become familiar with dataset contents, naming conventions, and data types – all 
of which are essential for a thorough understanding of the study, all of which take time. 

The introduction of CDISC data models – SDTM and, later, others such as ADaM and SEND – became a viable, 
though not perfect, solution to the lack of standardization.  The FDA now accepts clinical and analysis data that 
conform to the CDISC models.  This, in turn, has led to these models becoming the de facto standard for 
organizations dealing with the FDA. 

The standards hold great promise.  Similar data structures mean generalized tools can be built to construct and 
review model-compliant data.  Also, studies using the models can be used in meta analyses.  There is, though, a cost 
that comes with standards compliance.  Workflow, in particular, data validation, becomes more complex. 

Validation?  Haven’t datasets submitted to the FDA always been validated?  Of course, but compliance with the 
CDISC models adds a new dimension to the validation process.  In the past, pre-standards, the validation process 
was a matter of ensuring that the specification for creating a variable was followed.  Now the validation has to ensure 
that the data was created correctly and that it complies with the appropriate CDISC standard.  Dataset and variable 
names, attributes, and other metadata are among the items that need to be compliant. 

The up side to the greater validation burden is that third-party software can be created to complement or replace in-
house tools.  One such tool was WebSDM, used since the mid-2000’s by the FDA.  WebSDM was a somewhat 
closed, non-extensible system, and its list of validation checks was not widely circulated.  The alternative to WebSDM 
was for pharma companies and CROs to write their own validation suites.  This was an arduous process, and one that 
became increasingly untenable as new standards were introduced and existing ones were revised. 

Clearly, there was a gap to be filled.  OpenCDISC and the SAS® Clinical Data Toolkit are but two of the solutions.  
The OpenCDISC Validator has become popular both within the FDA and the health sciences community.  This paper 
focuses on several underexplored uses of the software.  The fact that it doesn’t discuss the Clinical Data Toolkit or 
products from other companies should in no way suggest that these applications are less capable than OpenCDISC. 

OPENCDISC 
OpenCDISC.org was founded in 2008, its objective being an open source, collaborative environment for anyone 
working with CDISC standards.  The first released product was the Validator, which ran checks exclusively on SDTM 
datasets.  Subsequent versions have improved performance, added data models (SEND and ADaM), and have 
modified and added numerous checks.  OpenCDISC Enterprise, a more full-featured, for-pay version of the software, 
was introduced in 2012. 

It is easy to see why the Validator has become popular within the pharma community: it is easy to use; its 
configuration files can be repurposed for tasks other than validation, and the original “Community” version is free.  
Most important, it has been embraced by the FDA: when looking for validation rules in the FDA web site, you’re 
directed from FDA web site (http://www.fda.gov/forindustry/datastandards/studydatastandards/default.htm) to 
OpenCDISC.org.  Repeat after me: “if the FDA likes it, we like it.”



OpenCDISC: Beyond Point and Click, continued 

2 

THE VALIDATOR INTERFACE 
Let’s look at the typical way to run the Validator, via the GUI (shown in Figure 1, below).  Usage is straightforward: 
specify the standard, the datasets to be validated, the configuration (validation rules) file, and other options that 
control the type and amount of diagnostic output.  Once the options are selected, click “Start” to begin the Java-based 
processing. 

Figure 1:  Validator Interface 

 
The GUI is simple to use and gives the user a good deal of flexibility.  Repeated usage, however, surfaces some 
issues: 
• Location:  The BAT file that runs the Validator is located in the OpenCDISC root directory.  Unless you copy the 

file to each study directory or create a desktop shortcut, you have to navigate to the root directory each time you 
use the program. 

• Persistence:  Selection of model, directory, etc. are not saved once you exit the GUI. 
• Checks:  This is not a GUI issue per se, but is important nonetheless.  The standard, out-of-the-box checks are 

thorough, but may require modification (some might need to be turned off, study requirements may raise the 
need for additional checks, etc.) 

• Output:  The diagnostic output, typically an XLS file, is written to the same directory (\reports, below the 
OpenCDISC root directory) regardless of study. 

• Resource consumption:  The Validator runs in the foreground.  This can degrade other applications’ 
performance. 

With the above in mind, we can develop a wish list of another way to run the Validator: 
• Location:  Be able to run the application from any directory, thus removing the need for navigation to the 

OpenCDISC directory. 
• Persistence:  Have the ability to preserve settings (model, datasets, configuration file, etc.). 
• Customized checks:  Be able to define a subset of existing checks and/or write new ones. 



OpenCDISC: Beyond Point and Click, continued 

3 

• Output:  Be able to direct Validator output to a less-general, study-specific directory. 
• Performance:  Be able to batch/remote submit a program that runs the Validator. 

All of these goals can be attained by looking at capabilities of the Validator that lie beyond the simple, traditional point-
and-click usage.  We need to know how to create a DOS BAT file to run the Validator and how to customize OCD’s 
configuration files.  Note that while the paper discusses the construction of a BAT file, the underlying concept – using 
a scripting language to execute the Validator – is applicable to any operating system. 

TOPIC 1: CREATING VALIDATOR BAT FILES 
Typically, to run OCD, you have to navigate to the OCD root directory, run the Validator client BAT file, enter model, 
etc.  Then, when validation is complete, you have to navigate to the reports directory.  These file and directory 
locations are identified in Figure 2, below: 

Figure 2:  Directory Structure 

 

TOOLS 

A fairly straightforward approach to extending the GUI’s functionality is to create a program, in this case, a SAS 
macro, that will generate and run a BAT file that controls the Validator’s input, processing, and output.  In order to 
accomplish this, we need to know several things: 
• Location of OpenCDISC directories 
• Location of input (XPT) and output (typically, XLS) files 
• Syntax of DOS BAT files (or the scripting language of the host operating system).  In particular, we need to know 

the syntax required to navigate to a directory and to execute the Validator 

• Validator Command Line Interface (CLI) parameters.  These are shown in Table 1, below.  (The table’s contents 
were created by navigating to the OpenCDISC root directory, then to \lib, then entering  
java -jar validator-cli-1.3.jar –help 

Runs the GUI 

XLS output

Validation rules



OpenCDISC: Beyond Point and Click, continued 

4 

Table 1: Command Line Client Parameters 
------------------------------------------------------------------ 
                   OpenCDISC Validator Command Line Client 
 ----------------------------------------------------------------- 
 The following parameters may be passed to the Validator. Note that 
 certain parameters may be required. 
 For additional help, or to submit suggestions, please visit our  
 community at http://www.opencdisc.org/ 
 General Parameters 
    -task               Validate|Generate (Validate) 
    -type               SDTM|Define|Custom (SDTM) 
 Source Data Parameters 
    -source              <path> 
    -source:type         SAS|Delimited (SAS) 
    -source:delimiter    <delimiter> (,) 
    -source:qualifier    <qualifier> (") 
Configuration Parameters 
    -config              <path> 
    -config:define       <path> 
    -config:codelists    <path> 
 Report Parameters 
    -report              <path> 
    -report:type         Excel|HTML|CSV|XML (Excel) 
    -report:cutoff       <#> (1000) 
    -report:overwrite    yes|no  
 Generation Parameters 
    -output              <path> 
    -output:overwrite    yes|no 

MACRO PARAMETERS 

A robust design for a macro that builds the Validator BAT file requires a modest number of parameters.  Those  that 
correspond with the CLI include: 
• model:  Data model (ADaM or SDTM) 
• ver:  IG version of the model (for example, 3.1.2 if model is SDTM) 
• XPT:  Directory or LIBNAME containing the XPT files to validate 
• data:  Blank-delimited list of files in XPT directory to validate.  Special handling, demonstrated in Example 2, 

below, if XPT identifies a LIBNAME. 
• useDefine:  Use define.xml to control Controlled Terminology and other checks? 
• msgLim:  Report message limit 
• outFile:  Name of report dataset 
• outDir:  Directory of output dataset 
• OCdir:  OpenCDISC Validator root directory 

Other possible parameters: 
• dateTime:  Add date-time to the output file name? 
• runBat:  Run the BAT file? 

MACRO DESIGN 

The design of the macro is straightforward. 
• Check for valid values of data model, add date-time, run BAT file and other parameters.  Verify that the XPT and 

output directories exist.  If define.xml is, verify it is present in the XPT directory.  Write messages to the SAS Log 
and terminate if any test fails. 

• Obtain the location of the OpenCDISC Validator directory.  Verify that the configuration file for the data model 
and IG version (e.g., STDM 3.1.2) exists.  Write messages to the SAS Log and terminate if any test fails. 

• Write the BAT file to the same directory as the output XLS. 
• Optionally, run the BAT file. 



OpenCDISC: Beyond Point and Click, continued 

5 

The purpose of this macro, like any macro, is to simplify the user’s life.  Yet we can readily see that specification of all 
parameters could become tedious.  There are directories (input, output, Validator) and model-IG version to specify.  
Some of these can, of course, be handled by choosing sensible default values (model=sdtm, ver=3.1.2).  Others, 
due to their non-generic, study-specific nature can’t have defaults (XPT, outDir, and Ocdir). 

This is where study and enterprise-level metadata come into play.  If a parameter isn’t specified and cannot have a 
default value, the macro can assign a value by referring to the appropriate metadata table.  If, for example, outDir 
was not specified, the macro could attempt to identify the location by using study-level metadata.  Similarly, if OCdir 
was null, the macro could use global metadata to locate the default Validator version’s root directory. 

Consider this call to the macro, which is preceded by a macro call that allocates libraries for a study: 

%setup(study=j:\LargePharm\Ablixa) 
%runOCval(model=sdtm, ver=3.1.3) 

The macro uses a combination of user-specified values (model and ver), default values (useDefine, outName, et 
al.) and metadata-supplied values (for XPT, outDir and OCdir) to produce the BAT file.   

Table 2, below, shows how the macro directly or indirectly uses the macro parameters and metadata when it builds 
the file (refer to items displayed like this). 

Table 2: Parameter, Metadata Usage in the Generated BAT File 
@echo off 
rem Model [model]  IGVersion [ver] 
rem Report parameters: Cutoff [msgLim]   
rem Configuration file     [OCdir\config\config-model-ver.xml] 
rem Input/XPT directory    [XPT] 
rem Output XLS             [outDir\outFile.xls] 
rem Output BAT             [outDir\outFile.bat] 
OCdir: 
cd OCdir\lib 
java -jar validator-cli-OCver.jar -task="Validate" -type=”model" ^ 
-source=“XPT\*.xpt" ^ 
-config=“OCdir\config\config-model-ver.xml" ^ 
-report="outDir\outFile.xls " ^ 
-report:overwrite="yes" -report:cutoff=“msgLim"  

EXAMPLE 1: VALIDATE ALL DATASETS 

A complete program to create and run the BAT file is shown below.  If the program is run in the foreground, SAS will 
execute, then terminate once the BAT file is built and begins execution.  Since the macro specifies processes should 
run asynchronously, the DOS window running the Validator will remain active until validation is complete.  If the 
program is run as a remote process, the SAS Log will be updated and the Validator process will run to completion 
without user notification.  Note that regardless of how the program is run, the problem of lack of parameter 
persistence is solved: if the program is saved, then the parameters are, by definition, also saved.  To save a different 
set of parameters, simply create another call to the macro or save the modified call as a new program.  The output 
BAT file is displayed in Table 3, below. 

%setup(study=j:\LargePharm\Ablixa) 
%runOCval(model=sdtm, ver=3.1.3) 

Table 3:  Generated BAT File 
@echo off 
rem Model SDTM  IGVersion 3.1.2 
rem Report parameters: Cutoff 100 
rem Configuration file     [h:\OC\1.3.1\config\config-SDTM-3.1.2.xml] 
rem Input/XPT directory    [j:\LargePharm\Ablixa\sub\data\sdtm] 
rem Output XLS             [j:\LargePharm\Ablixa\prog\SDTM\val\OCVal.xls] 
rem Output BAT             [j:\LargePharm\Ablixa\prog\SDTM\val\OCVal.bat] 
h: 
cd h:\OC\1.3.1\lib 
java -jar validator-cli-1.3.1.jar -task="Validate" -type=”SDTM" ^ 
-source=“j:\clients\LargePharm\Ablixa\sub\data\sdtm\*.xpt" ^ 
-config=“h:\OC\1.3.1\config\config-SDTM-3.1.2.xml" ^ 
-report=" j:\LargePharm\Ablixa\prog\SDTM\val.xls " ^ 



OpenCDISC: Beyond Point and Click, continued 

6 

-report:overwrite="yes" -report:cutoff=“100"  

EXAMPLE 2: VALIDATE A SINGLE DATASET 

This differs from the previous example only by its addition of the data and xpt parameters.  While this may seem to 
be a somewhat trivial difference, its implications for workflow are significant.  Since the xpt parameter identified a 
LIBNAME, the macro attempts to locate native SAS dataset WORK.AE.  If the dataset exists, it is converted into an 
XPT file that can be processed by the Validator. 

%inc (or similar) to allocate autocall library and study, global metadata 
… code that produces dataset work.AE … 
%runOCval(model=sdtm, ver=3.1.3, xpt=work, data=ae) 

Being able to validate a single dataset as shown in this example means that it is a simple matter to validate the 
dataset as soon as it is created.  Feedback about dataset quality is both immediate and easy to obtain. 

TOPIC 2: CUSTOMIZED CHECKS 
In the previous section we learned how to bypass the Validator interface and easily specify the CDISC data model to 
be validated, where to look for input and output, and other features.  Being able to simplify the validation process is 
fine, but the question remains: just what, exactly, is being checked?  What are the validation rules, and how can we 
modify them?  Not surprisingly, these questions are answered in this section. 

WHAT ARE THE RULES? 

Recall the OpenCDISC Validator directory structure, depicted in Figure 2.  The config directory, one level below the 
Validator root directory, houses a set of files using the naming convention config-model-Igversion.xml.  These 
are Object Document Model (ODM)-compliant files with a vendor extension defining the validation rules.  The out-of-
the-box directory contents for Version 1.3.1 of the Validator is shown in Figure 3, below. 

Figure 3:  Configuration Directory 

 



OpenCDISC: Beyond Point and Click, continued 

7 

Each file contains this line near the top, prior to the ODM tag: 

<?xml-stylesheet type="text/xsl" href="resources/xsl/config.xsl"?> 

This tag says, in effect “when the XML file is opened, don’t display the raw XML.  Instead, transform it using the XSL 
[Extensible Stylesheet Language] file found in the resources\xsl directory.”  The XSL transforms the XML into a 
well-formatted (syntactically and aesethically) HTML page.  The transformed SDTM IG version 3.1.2 XML file is 
shown below, in Figure 4. 

Figure 4:  Rules XML Transformed Into HTML 

 
Recall the earlier comment that when you are in the FDA web site looking for validation rules, you are given a link to 
the OpenCDISC web site.  The configuration/XML files shown above are what the FDA is using as the rules for valid 
CDISC data models.  It is important to remember that the XML is not only a reference for you, it is also a reference for 
the FDA reviewer. 

WHY WOULD WE CHANGE THE RULES? 

Given that the XML files constitute what might be considered the Gold Standard for each model-IG version, why 
would we want to change the rules?  There are several valid (no pun intended) reasons for doing this: 
• A study may have datasets and/or variables that require scrutiny that goes beyond what the validation rules 

provide.  One alternative is to write a SAS program to perform the extra validation.  The other option is to work 
within the OpenCDISC validation framework and write a custom check. 

• You may be running the Validator at a point in your workflow where certain checks are not appropriate and 
should be turned off, rather than remain active and possibly produce false positives. 

• You may want to turn off an OpenCDISC check may have known issues (xxTPT variables in SDTM 3.1.2, for 
example, could legitimately have values such as “VISIT 2” – OpenCDISC 1.3, however, looked only for ISO 
8601-compliant values and would flag “VISIT 2” as an error). 

Some knowledge of an ODM-compliant XML file structure and of the Validator extensions is required in order to get a 
reasonable comfort level. 

XML, ODM, AND “NODES TO KNOW” 

As noted earlier, the rules for validation are contained in model version-specific XML files that conform to the ODM 
schema.  Either of the methods for altering the rules requires a rudimentary knowledge of the structure of the XML 
files.  Figure 5, below shows the SDTM 3.1.2 file opened using XMLPad, an open-source XML editor. 



OpenCDISC: Beyond Point and Click, continued 

8 

Figure 5:  Config File Opened using XMLPad 

 

Although it initially appears a bit daunting, after a bit of examination there’s a reassuring consistency and predictability 
to both the XML and the way it’s displayed: 
• The file is a hierarchy of nodes structured according to the ODM schema. The schema (not shown here and 

beyond the scope of this paper) controls the naming, order, and cardinality of elements.  It also identifies 
permissible values of various element attributes (e.g., ORIGIN, DATATYPE) and allows for inclusion of third-party 
(aka “vendor”) extensions to the schema (in the context of this paper, the Validator’s rules) 

• The file contains descriptions of item groups (datasets), individual items (variables), and references to and 
definitions of validation rules. 

The full ODM specification has hundreds of elements and attributes.  Figure 6, next page, depicts nodes that are 
relevant to validation as implemented by the OpenCDISC Validator. 



OpenCDISC: Beyond Point and Click, continued 

9 

Figure 6:  Validation-Related Nodes 

 
In English, the Figure can be loosely interpreted as “there will be a set of validation rules (def:Validation-
RuleDef) after the specification of each dataset (itemGroupDef) and its variables (itemDef).  After all datasets 
(itemGroupDef) have been defined, there are elements (def:ValidationRules) that define what, exactly, is 
evaluated for each type (val:Required, val:RegEx, et al.) of test.” 

To understand the linkage between a reference to a rule and the definition of a rule, refer to Figure 7: 

Figure 7:  Linking Rule References and Definition 

 
There can be any number of references to a specific rule.  If more than one dataset uses the rule, a reference to it 
can appear in each dataset’s itemGroupDef: 



OpenCDISC: Beyond Point and Click, continued 

10 

<val:ValidationRuleRef RuleID=”SD0002” Active=”Yes”/> 

There is a single definition of the rule.  Since the example we have chosen it involves identifying a Required variable, 
the test fits the “Required” rule type.  The XML tag begins with val:Required, and contains attributes (Variable, 
Message, Description, Type) that are defined by the Validator schema. 

<val:Required ID="SD0002" Variable="%Variables.Core:Required%" Message="NULL value 
in variable marked as Required"  Description="Required variables (where Core 
attribute is 'Req') cannot be NULL for any records"  Category="Presence"  
Type="Error"/> 

With this highly simplified interpretation in mind, let’s look at two ways to modify the XML. 

APPROACH 1: ALTERING EXISTING RULES 

The simplest, and most limiting, method is to simply turn off a rule.  Suppose we have review the transformed HTML 
in Figure 4 and have decided to turn off RuleID SD0002.  This is a straightforward process: 
• Using an XML or plain text editor, locate all references to RuleID SD0002 (search for RuleID=”SD0002”).  

Change the Active attribute from “Yes” to “No” 

• Save the XML to a different file in the \config directory, preserving the model as the second hyphen-delimited 
value (this is necessary for the Validator interface to locate config files appropriate to the odel).  For example: 
config-sdtm-3.1.1-cust.xml 

The next time the Validator is run for SDTM, the new XML file will appear in the “Configuration” selection list, as 
shown in Figure 8. 

Figure 8: GUI Picks Up New Configuration File 

 

APPROACH 2: CREATING NEW RULES 

Creating a new validation rule requires a deeper knowledge of the Validator’s capabilities.  As Figure 7 implied, there 
are a variety of rule types.  The new rule should match the Validator rule category.  If the new rule requires that a 
variable have a unique value, the rule would be written using attributes defined for the “Unique” rule.  A complete 
enumeration of the rule types and syntax is beyond the scope of this paper and can be found on the OpenCDISC web 
site (www.OpenCDISC.org). 

For the sake of illustration, let’s assume that we want to add a rule that an SDTM sequence variable (domainSEQ) 
should be an integer.  The steps are: 
• Determine the rule type.  The validation test can be stated as a Regular Expression, so type=RegEx 
• Using the documentation from the OpenCDISC web site, determine what attributes are required for the test.  

Among these is RuleID, which should be unique and not conflict with any existing rule type’s RuleID. 
• Identify variables that will be evaluated with the new test. 
• Create a copy of the SDTM configuration file that will be modified. 
• Edit the file created above 

o Add val:ValidationRuleRef elements to each dataset using the new rule 
o Add val:RegEx as an element below (a “child” element of) val:ValidationRules 
• Save the XML. 



OpenCDISC: Beyond Point and Click, continued 

11 

Seen graphically, in Figure 9,below, the linkage of the new rule to the rule definition resembles that of Figure 7. 

Figure 9:  Custom Rule Reference, Definition 

 
As in Approach 1, the next time the Validator is run for SDTM, the new XML file will appear in the “Configuration” 
selection list.  The results file does not distinguish between standard and custom checks; If the validation criteria of 
the new test is not met, it will be reported in the same manner as any other test in the configuration file, as shown in 
Figure 10, below. 

Figure 10:  Validation Report Showing Custom Check 

 

CUSTOM CHECKS AND THE BAT FILE MACRO 

Recall that the macro discussed in the previous section had parameters which paralleled those of the Validator CLI.  
When building the config parameter in the BAT file, we used the macro’s model and ver parameters.  If custom 
check files are created, they need to be accessible to the macro.  This could be easily implemented by adding a 
parameter to the macro that contains the custom part of the file name, performing a test to ensure the configuration 
file exists, and adding it to the –config parameter in the BAT file: 

%runOCval(model=sdtm, ver=3.1.3, cust=seqCHK) 

The macro inserts the custom configuration file suffix in the BAT file as follows: 

-config=“h:\OC\1.3.1\config\config-SDTM-3.1.2-seqCHK.xml" ^ 

CONCLUSION 
This paper has described ways to extend the OpenCDISC Validator framework beyond the typical point-and-click 
usage.  Some topics not discussed (such as how to repurpose the configuration files and the workflow required to 
move to a new version of the Validator) are “ideas for another day.”  It’s worth noting that what we discussed – the 
BAT file generator and customized checks – require a knowledge of tools old (OS scripts such as BAT files) and new 
(XML, XML schema, regular expressions and the OpenCDISC API). 

If you’re not familiar with these topics, yourlearning curve will be unfavorably shaped.  The time spent acquiring the 
requisite skills is, however, time well spent.  It will enable you to confidently navigate the XML rules files and extend 
the Validator’s capabilities.  Even more important is the expansion of your skills into the XML technologies that are 
becoming increasingly prevalent in the industry.  You could code the entire validation suite in SAS, but that would be 



OpenCDISC: Beyond Point and Click, continued 

12 

thinking “inside the box.”  Although the SAS “box” is a large and comfortable place, in the long run you do yourself 
and your skill set a disservice by ignoring new technologies that are rapidly changing the industry landscape. 

ACKNOWLEDGMENTS AND DISCLAIMER 
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration.  

Other brand and product names are trademarks of their respective companies. 

This paper was written in the author’s capacity as a satisfied user of OpenCDISC and in recognition of the benefits 
and principles of open source software.  The author has no personal, financial interest in OpenCDISC or Pinnacle 21. 

CONTACT INFORMATION 
Your comments and questions are valued and encouraged.  Contact the author at:  

Name:  Frank DiIorio 
Enterprise: CodeCrafters, Inc. 
Work Phone: 919-602-8421 
E-mail:  Frank@CodeCraftersInc.com 
Web:  www.CodeCraftersInc.com 


